Dirichlet Pruning for Neural Network Compression
Supplementatry material

1 Comparison between the posterior distributions learned by tak-
ing implicit gradients using the inverse CDF of Gamma and by
taking explicit gradients using the analytic mean of Dirichlet.

We consider a model with a single hidden-layer for a binary classification problem, with varying dimensions
for input and hidden-layer, where input dimension d, and hidden dimension dj pairs we used are (d, =
100,dy, = 20); (d, = 500,dy = 200); and (d, = 1000,d; = 500). We assume that there is a known set
of ground-truth switch values (which we simulated) in each of these models, as well as a known set of
ground-truth parameter values Wy, Wa, by, bs (for one hidden layer MLP, which we also simulated). Then,
we generate inputs from an isotropic Gaussian with zero vector mean and variance 1, which we propagate
through each of the models for producing the class labels 0. We also generate inputs from an isotropic
Gaussian with the vector of 2’s for the mean and variance 0.2 and generated the class labels 1. Given these
datasets, under each model, we then compute the posterior distributions over the importance switch.

In Fig. [1} we find that the posterior distribution (Left column) with the inverse CDF of the Gamma
distribution provides smaller posterior variance (more certain) than the one with analytic mean, regardless of
the dimension of the switch, while the difference in variance gets larger with a higher dimension of the switch.
However, the difference in the posterior means in two cases is negligible. In terms of the computation time,
using the analytic mean of Dirichlet is a clear winner (no need to sample from the posterior), significantly
faster than the case with sampling and using the inverse CDF of the Gamma distribution for implicit
gradient computation. For instance, when d, = 1000 and dj, = 500, drawing 1000 samples from the Gamma
distribution and computing the Monte Carlo integration of the integral, and computing the gradients of
the integral wrt the parameters of the switch tookE] 14.317 seconds for performing one epoch training with
mini-batch size 100 for the dataset size N = 4000. On the other hand, without drawing samples, simply
taking the analytic mean of the Dirichlet to approximate the integral and computing the gradients of this
approximation with respect to the parameters of the switch takes only 0.570 seconds for the same one epoch
training.

2 Descriptions of the benchmark methods.

In the case of the compression experiment, the following benchmark methods are used:

e Ll-norm and L2-norm. In the case of convolutional neurons we compute L1- or L2-norm of the
parameters which belong to the given channel n; for n; € [1,2,..., N;]. In the case of fully-connected
neuron for n; € [1,2,..., N;], we compute L1- or L2-norm of all the incoming weights from the previous
layer to the parameter n;

e Group Lasso (GL) [I0] - the method combines non-structured regularization applied to every weight
with structured sparsity regularization applied to every layer. Then for groups of parameters it uses
group regularization during training using L2-norm (the name of the method is a misnomer).

1This computation time is measured on a desktop using Intel Xeon W-2135 CPUs at 3.70GHz.

sampling no sampling
with inverse CDF of Gamma with analytic mean of Dirichlet

=20
e

dim(switch)

wl tesibeniteiecionst 00 +.u++.4+u....u+

G 5 s 7 w0 s o s G 5 S0 75 1o s #e s
0ss
ozs

'
Mob] ot

0 25 S0 75 100 125 150 175 200 © 25 s0 75 100 125 150 175 200

035
020
030

=200

dim(switch)

=500
-
e

dim(switch)

Figure 1: Comparison of posterior distributions with varying switch dimension. Black dots indicate true
switch values from which we generated data. Red dots indicate the posterior means and the red vertical
lines are one posterior standard deviation.

e Derivative-based pruning [I], 9], where we compute the importance of the channel based on the gradient
of the following activation. RH*WixCt _ R Tet h; be the output produced by parameter (or in our
case channel or a set of parameters) and C be a cost function, negative log-likelihood being the most
common choice. Then following [4] the cost of removing this channel is

AC(h; = 0) = Chih;.

e Bayesian Compression for Deep Learning (BD) [3] - the approach proposes to phrase the compression
problem as a variational inference optimization with hierarchical sparsity-inducing prior to prune groups
(G) of parameters (nodes) in a CNN. The first method (BC-GNJ) uses the improper log-uniform prior
and its alternative reparametrization known as normal-Jeffrey (NJ) prior. The second method (BC-
GHS) incorporates prior hierarchy that uses two Half-Cauchy distributions, which induce horseshoe
(HS) prior distribution of the weights.

e Flops as a Direct Optization Objective (FDOO) [§] - the method concentrates on the problem of
reducing FLOPs (rather than parameters). They construct a loss function which incorporates the
number of FLOPs as a variable. The loss function is phrased as a fully-factorized spike-and-slab
posterior with the number of FLOPs as a sparsity inducing prior. The optimization of the FLOPS uses
score function estimator (REINFORCE). Two results correspond to the best compression rates given
two FLOPs budgets (100K and 200K FLOPs).

e Structured Bayesian Pruning via Multiplicative Noise (SBP) [5] - the authors introduce a dropout-like
layer with a certain kind of multiplicative noise (Bernoulli or Gaussian). Besides, sparsity-inducing log-
uniform prior is used, but it is placed over the noise variables rather than weights. The sparsification
is obtained during the variational lower bound training.

e Data-free parameter pruning [7] - the method uses neuron similarity to remove redundant neurons.
Assuming the same activation for all the outputs, the neurons which have similar weights are first
combined and then discarded.

3 The layer-by-layer compressed architectures.

Method Architecture Error FLOPs Params

Dirichlet (150) 6-8-40-20 1.1 168K 6K
Dirichlet (mean) 5-8-45-15 1.1 140K 5.5K
Dirichlet (joint) 6-7-35-17 1.1 158K 5.5K

BC-GNJ [3] 8-13-88-13 1.0 288K 15K
BC-GHS [3] 510-76-16 1.0 159K 9K
RDP [6] 4-7-110-66 1.0 117K 16K

FDOO (100K) [§] 2-7-112-478 1.1 113K 63K
FDOO (200K) [8] ~ 3-8-128-499 1.0 157K 76K

GL [10] 3-12-192-500 1.0 211K 112K
GD [7] 7-13-208-16 1.1 273K 29K
SBP [5] 3-18-284-283 0.9 226K 99K

Table 1: The structured pruning of LeNet-5.

Method Architecture Error FLOPs Params
Dirichlet 41-41-75-75-82-113-108-99-109-99-99-74-74-69-69 8.48 38M 0.84M
BC-GNJ 63-64-128-128-245-155-63-26 -24-24-20-14-12-11-15 8.3 142M 1.0M
BC-GHS 51-62-125-128-228-129-38-13-9-6-5-6-6-20 9.0 122M 0.8M

RDP 27-57-125-122-236-244-246-340-127-77-89-52-380-414 8.7 172M 3.1M

Table 2: The structured pruning of VGG-16.

Method Architecture Error Comp. Rate Params
Dirichlet 65,75,70,90,149,149,164,149,305,325,304,306 4.5 52.2% 17.4M
Lo ARM [2] 82-75-82-87-164-169-156-161-317-317-317-324 4.4 49.9% 18.3M
Lo ARM [2] 75-72-78-78-157-165-131-162-336-325-331-343 4.3 49.6% 18.4M

Table 3: The structured pruning of WideResNet-28-10.

Method Architecture Error FLOPs Params
Dirichlet 6,11,16 14M 0.24M% 17.4M

Table 4: The structured pruning of Resnet-56. The architecture indicates the number of channels of the
inner layer within each block of two convolutioal layers, for each of the three section containing nine blocks.

4 The complete channel visualization for the VGG-16 first convo-
lutional layer trained on CIFAR-10.

0 1 2 3 4 5 6 7

8 €; 10 11 12 13 14 1'5
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 50 o1 52 53 54 55
56 o7 98 99 60 61 62 63

Figure 2: The figure presents the complete feature maps of the first convolutional layer learnt by the VGG
network (presented also in Figure 1 of the main paper). The colormap indicates higher pixel values with red
and lower with blue. The top filters learnt by the importance switch method are 28,15,4,29,54,9,13,3,43,6.
Notice that these feature maps include the features with high activation values.

References

[1]

2]

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Yang Li and Shihao Ji. [_0-arm: Network sparsification via stochastic binary optimization. arXiv
preprint arXiw:1904.044532, 2019.

Christos Louizos, Karen Ullrich, and Max Welling. Bayesian compression for deep learning. In Advances
in Neural Information Processing Systems, pages 3288-3298, 2017.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional neural
networks for resource efficient transfer learning. arXiv preprint arXiv:1611.06440, 3, 2016.

Kirill Neklyudov, Dmitry Molchanov, Arsenii Ashukha, and Dmitry P Vetrov. Structured bayesian
pruning via log-normal multiplicative noise. In Advances in Neural Information Processing Systems,
pages 6775-6784, 2017.

Changyong Oh, Kamil Adamczewski, and Mijung Park. Radial and directional posteriors for bayesian
neural networks. arXiv preprint arXiv:1902.02603, 2019.

Suraj Srinivas and R Venkatesh Babu. Data-free parameter pruning for deep neural networks. arXiv
preprint arXiw:1507.06149, 2015.

Raphael Tang, Ashutosh Adhikari, and Jimmy Lin. Flops as a direct optimization objective for learning
sparse neural networks. arXiv preprint arXiv:1811.03060, 2018.

Lucas Theis, Iryna Korshunova, Alykhan Tejani, and Ferenc Huszar. Faster gaze prediction with dense
networks and fisher pruning. arXiv preprint arXiv:1801.05787, 2018.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in deep
neural networks. In Advances in Neural Information Processing Systems, pages 2074—2082, 2016.

	Comparison between the posterior distributions learned by taking implicit gradients using the inverse CDF of Gamma and by taking explicit gradients using the analytic mean of Dirichlet.
	Descriptions of the benchmark methods.
	The layer-by-layer compressed architectures.
	The complete channel visualization for the VGG-16 first convolutional layer trained on CIFAR-10.

