
1 Proofs of Theorems

Theorem 2.1. Non-terminating uniform matrix product states are equivalent to uncontrolled predictive state
representations.

Proof. Consider a uMPS {~σ, {τττy}y, ~ρ0} defined over sequences of length N and define the transfer operator
τττ :=

∑
y τττy. Say we want to compute the probability of observing yt at time t, conditioned on past observations

y1:t−1. This requires us to not only condition on the past observations, but also marginalize over all possible
future sequences yt:N (for example, see Miller et al. (2021) for the case of uBMs). The probability is calculated
as follows

P (yt | y1:t) =
~σ†τττN−tτττyt

(
τττyt−1

· · ·τττy1~ρ0
)

~σ†τττN−tτττ
(
τττyt−1 · · ·τττy1~ρ0

)
=
~σ†tτττyt

(
τττyt−1

· · ·τττy1~ρ0
)

~σ†tτττ
(
τττyt−1

· · ·τττy1~ρ0
) (1)

Here, we have defined the effective evaluation functional ~σt =
(
τττN−t

)†
~σ at time t. Intuitively, this represents

the evaluation functional after having marginalized over all possibilities for the remaining N − t time steps. We
perform this marginalization via the transfer operator τττ †. As N →∞ for fixed t, the trajectory of the effective
evaluation functional will be strongly determined by the spectral properties of τττ . Here, we restrict ourselves
to transfer operators where the magnitudes of the two largest eigenvalues are distinct. Note that this is not a
strong requirement, given that matrices with degenerate spectra form a measure zero subset of general square
matrices.1

Now if the top eigenvalue of τττ † is λ∗ = 1, ~σt will eventually converge to ~σ∗, the corresponding fixed point of τττ †,
owing to the second largest eigenvalue of τττ † satisfying |λ2| < 1. The probability computation in Equation 1 then
reduces to that of a PSR with evaluation functional ~σ∗. Note that in a PSRs, the ~σ is chosen precisely to be the
fixed point of the adjoint transfer operator via the normalization requirement ~σ†τττ = ~σ†, forcing λ∗ = 1.

If λ∗ 6= 1 for a uMPS model, we can simply rescale our matrices τττ to obtain a properly normalized transfer
operator, by replacing τττy with τττy/λ∗. Making this substitution in Equation 1, we see that the numerator and
denomenator are rescaled by the same constant λt−N∗ , leaving the overall probability distribution unchanged. As
before, this new model produces exactly the same probabilities as a PSR with the evaluation functional ~σ∗, for
~σ∗ the fixed point of τττ †.

Theorem 4.1. Non-terminating uniform Born machines are equivalent to norm observable operator models.

Proof. Note that uniform Born machines and norm observable operator models differ only in their evaluation
functionals, and that NOOM transfer operators are required to be trace-preserving. While uBMs can have
an arbitrary Kraus-rank 1 evaluation functional, NOOMs are restricted to the higher-rank identity evaluation
functional ~I. Both models have operators of the form τττy = φφφy ⊗ φφφy, which are completely positive with Kraus-
rank 1. Therefore, we need to show that an arbitrary uBM is equivalent to one where the transfer operator
τττ =

∑
y τττy is trace-preserving, which is the same as its adjoint τττ † being unital, i.e. having the identity ~I as a

fixed point (Nielsen and Chuang, 2011). With this fact demonstrated, the same argument used in the proof of

Theorem 2.1 to prove convergence of the effective functional of a uMPS to the fixed point ~σ†∗ can be applied
here. This has the effect of replacing the original Kraus-rank 1 functional of the uBM by the identity ~I in the
non-terminating limit, completing the conversion from uBM to NOOM.

If the uBM transfer operator τττ is already trace-preserving then we are done, so assume it is not. We make
the generic assumption2 that the two eigenvalues of τττ with greatest magnitude, λ∗ and λ2, satisfy |λ∗| > |λ2|.

1uMPS which violate this non-degeneracy condition are associated with “(anti-)ferromagnetic order” in quantum-
many body physics, and can produce periodic behavior in the limit of non-terminating sequences (Cuevas et al., 2017).
Although we don’t give the full details here, such degenerate uMPS can still be converted to equivalent PSR by redefining
the observation space to consist of k-tuples of adjacent observations, for k the periodicity of the uMPS. This procedure
is also called ‘blocking’ in the condensed-matter literature (Cirac et al., 2017).

2This is similar to the assumption made in proving Theorem 2.1, and is valid everywhere outside of a measure-zero
subset of uBMs. In the case of degenerate eigenvalues, the conversion from uBMs to NOOMs can still be achieved given
a slight redefinition of the observation space to combine together k adjacent observations.



By replacing all operators φφφy by φφφy/
√
λ∗, we convert the uBM into one whose transfer operator τττ has leading

eigenvalue of magnitude 1, a rescaling which leaves the joint probability distributions unchanged. In this case,
the quantum Perron-Frobenius theorem (Evans and Høegh-Krohn, 1977) then ensures that λ∗ = 1, and that
τττ † has a unique fixed-point operator ~σ∗ which is the vectorization of a full-rank (and consequently, invertible)
positive definite matrix σσσ∗.

A similarity transformation of S = σσσ
1/2
∗ can then be applied to the uBM matrices, replacing φφφy with φφφ′y = SφφφyS

−1.
This similarity transformation ensures the new transfer operator τττ ′ is trace-preserving, as demonstrated by the
following:

τττ ′†~I =

(∑
y
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† ⊗φφφ′†y

)
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∗
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∗

)(∑
y

φφφy
† ⊗φφφ†y

)(
(σσσ1/2
∗ )T ⊗ σσσ1/2

∗
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∗

)
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=
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∗

)
~σ∗
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In the equations above, we have used the facts that (a) σσσ∗, σσσ
1/2
∗ , and σσσ

−1/2
∗ are Hermitian, so that complex

conjugation acts as σσσ
1/2
∗ = (σσσ

1/2
∗ )T , (b)

(
ZT ⊗X

)
~Y = ~W with W = XYZ, for any matrices X,Y,Z, and (c)

τττ †~σ∗ = ~σ∗

We have demonstrated that the similarity-transformed uBM now possesses a trace-preserving transfer operator,
which by the arguments above ensures it is a valid NOOM in the non-terminating sequence limit.

Theorem 4.2. [HMM 6⊆ NOOM] There exist finite-dimensional hidden Markov models that have no equivalent
finite-dimensional norm-observable operator model.

We first introduce a lemma (Ito et al., 1992; Vidyasagar, 2011; Thon and Jaeger, 2015) that will help us in our
proof. It tells us that two equivalent PSRs of the same dimension are simply a similarity transform away from
one another.

Lemma 1 (Thon and Jaeger (2015)). Suppose (Cn, ~σ, {τττy}y∈O}, ~x0) and (Cn, ~σ′, {τττ ′y}y∈O}, ~x′0) are two equiv-
alent PSR representations, i.e., they generate the same sequence of probabilities. Then, there exists some non-
singular S ∈ Cn×n such that ~x′0 = S−1~x0, τττ ′y = S−1τττyS, and ~σ′T = ~σTS.

Proof. We construct a class of HMMs for which there are no equivalent NOOMs and give a proof by contradiction.
Let A = (Rp, ~σ, {τττy}y∈O, ~x0) be a minimal PSR equivalent to some hidden Markov model M = (Rm,A,C, ~p0)
for which some future state reachable from the initial state can be written as a convex combination of some
previously reached states, i.e., ~xk = α~xi + β~xj for some α, β > 0, α+ β = 1 and some i, j, k ∈ N with i < j < k

and ~xk =
τττyk
···τττy1

~x0

~σTτττyk
···τττy1

~x0
for some sequence of observations Y = y1, . . . , yk (and similarly for ~xj and ~xi which

truncate the observations at yj and yi respectively).

Suppose there exists an equivalent NOOM (represented in its vectorized form) M′ = (Rn,~I, {φy}, ~ψ0). Let
A′ = (Rp, ~σ′, {τττ ′y}y∈O, ~x′0) be a minimal PSR computing the same distribution as M′.

Then, by Lemma 1, we have some similarity transform S such that ~σ′T = ~σTS, τττ ′y = S−1τττyS, and ~x′0 = S−1~x0.
Thon and Jaeger (2015) show that there are matrices Φ,Π that relate the NOOM to its minimal representation as
A′ = ΠΦ+M′ΦΠ+ (where + represents the Moore-Penrose pseudoinverse). This allows us to relate the NOOM

with the minimal PSR representation of its equivalent HMM as ~ITΦΠ+S−1 = ~σT , τττy = SΠΦ+φyΦΠ+S−1, and

~x0 = SΠΦ+ ~ψ0.

Now, by the NOOM evolution rules, the NOOM state at timestep k for the sequence Y is ~ψk =
φyk
···φy1

~ψ0

~ITφyk
···φy1

~ψ0

and the probability of any given observation at that time-step is P (y|~ψk) = ~ITφy
~ψk. Further, note that the



NOOM state must be a vectorized rank-1 matrix whose eigenvector has unit `2 norm, i.e., ~ψk = vec(~ψk ~ψ
T
k ) with

‖~ψk‖2 = 1.

But we can also write NOOM state in terms of its equivalent PSR-HMM as

~ψk = ΦΠ+S−1~xk

= ΦΠ+S−1(α~xi + β~xj)

= ΦΠ+S−1
(
α
(
SΠΦ+ ~ψi

)
+ β

(
SΠΦ+ ~ψj

))
= α~ψi + β ~ψj

If ~ψi and ~ψj are valid NOOM states, we have that ~ψk = α~ψi + β ~ψj = αvec(~ψi ~ψ
T
i ) + βvec(~ψj ~ψ

T
j ) = vec(α~ψi ~ψ

T
i +

β ~ψj ~ψ
T
j ). However, α~ψi + β ~ψj is not the vectorization of a rank-1 matrix in general. In particular, ~ψk has unit

Kraus-rank only if ~ψi and ~ψj are linearly dependent, which is true only if ~xi and ~xj are linearly dependent. Thus,

whenever ~xi and ~xj are linearly independent, ~ψk cannot have unit Kraus-rank. But as normalized HMM states,
~xi and ~xj are always linearly independent, unless they are exactly the same. Hence, a contradiction. Thus, for
such an HMM, there is no equivalent NOOM.

NOOMs are a restrictive model class The proof above essentially argues that if an HMM had an equivalent
NOOM, then anytime a reachable HMM state can be written as a convex combination of some other reachable
states, the equivalent NOOM state should also admit a representation as a convex combination of the NOOM-
equivalent reachable states, but such a representation violates the condition that NOOM states have unit Kraus-
rank, and hence there cannot be an equivalent NOOM. Here, we provide an example of an HMM that can have
a state be a linear (here, convex) combination of two prior linearly independent states

~x0 =

[
1
0

]
τττ1 =

[
0.25 0.5
0.75 0

]
τττ2 =

[
0 0
0 0.5

]
(2)

Then, for the sequence Y = (1, 1):

~x0 =

[
1
0

]
~x1 =

[
0.25
0.75

]
~x2 =

[
0.7
0.3

]
= 0.6~x0 + 0.4~x1 (3)

Since ~x0 and ~x1 are linearly independent, we know that such an HMM cannot have an equivalent NOOM because
of NOOM’s state rank constraints. In this case, we see that if an HMM reaches a state that lies strictly inside
the convex hull of other reachable states, it rules out a NOOM representation. This constitutes a fairly expansive
class of HMMs, suggesting that NOOMs cannot model a wide variety of HMMs, making NOOMs a restrictive
model class. This core insight holds for any quantum model that updates and maintains only pure quantum
states. Since HQMMs allow states to be vectorizations of arbitrary rank matrices (and so convex combinations
of other reachable states), we do not run into the same issues.

Corollary 4.1 (uBM * HMM and HMM * uBM). There exist finite-dimensional uniform Born machines that
have no equivalent finite-dimensional hidden Markov models, and vice-versa

Proof. For the first relationship uBM * HMM, note that we already know that NOOM * HMM. Zhao and
Jaeger (2010) demonstrate this by designing the NOOM probability clock model, where the latent state (and
therefore conditional probabilities) exhibit oscillatory behavior. The negative entries in NOOM operators allow
their top eigenvalues to be complex valued, which allow for such oscillatory behavior. On the other hand, HMMs
with non-negative operators with real eigenvalues cannot produce such oscillations. Geometrically, valid finite-
dimensional HMM states are restricted to form polyhedral cones, while the oscillations in the probability clock
require state dynamics on non-polyhedral (or infinitely generated polyhedral) cones. From Theorem 4.1, we know
that a non-terminating uBM with the same operators as the probability clock NOOM will generate identical
probabilities, and thus produce the same dynamics as the probability clock NOOM. These are then instances of
uBMs that cannot be modeled by a finite dimensional HMM.

For the second relationship HMM * uBM, note that Theorem 4.2 tells us that there exist HMMs that cannot
be modeled by finite dimensional NOOMs. The same HMMs cannot be modeled by non-terminating finite
dimensional uBMs, as these are equivalent to NOOMs.



Theorem 5.1. Non-terminating uniform locally purified states are equivalent to hidden quantum Markov models.

We follow the same approach as in Theorem 4.1. Uniform LPS models and HQMMs differ only in their evaluation
functionals, and that HQMMs operators are trace-preserving. While uLPSs can have an arbitrary evaluation
functional, HQMMs are restricted to the identity evaluation functional ~I. Both models have operators of the
form τττy =

∑
y Ky ⊗Ky, which are completely positive operators.

As discussed in Theorem 4.1, the transfer operator τττ can be rescaled and similarity transformed into one that
is trace-preserving. In the limit of non-terminating sequences, the evaluation functional of this transformed
model will then converge to ~I, the fixed point of τττ †. Therefore, this similarity transform allows us to map a
non-terminating uLPS to an HQMM, proving that non-terminating uLPSs are equivalent to HQMMs.

Corollary 5.1 (NOOM ⊂ HQMM). Finite dimensional norm-observable operator models are a strict subset of
finite dimensional hidden quantum Markov models.

We know from Theorem 4.2 that there exist HMMs that cannot be modeled by finite-dimensional NOOMs.
However, since all HMMs can be modeled by finite dimensional HQMMs, the same HMMs serve as instances of
HQMMs that cannot be modeled by NOOMs. This, combined with the fact that NOOM ⊆ HQMM (Adhikary
et al., 2020), give us that NOOM ⊂ HQMM.

2 Expresiveness of HQMMs (uLPS)

With Corollary 5.1, we see that HQMMs are a particularly expressive constructive class of PSRs that avoid the
NPP by design. What makes HQMMs more expressive than HMMs is that they still admit infinitely generated
(i.e., non-polyhedral) cones of valid states (in reference to the discussion in Section 3.1). Geometrically, we can
think of the valid unit-Kraus rank (or equivalently pure density matrix) initial NOOM states as the extremal
points of a spectraplex, which is the intersection of the affine space of unit trace matrices with the convex cone
of PSD matrices. The arbitrary Schmidt rank (or mixed density matrices) admitted as initial states for HQMMs
fills the entire spectraplex (Adhikary et al., 2020).

The natural question to ask is whether HQMMs can model any finite dimensional PSRs, or if we lose any
expressiveness in using HQMMs or LPSs? Glasser et al. (2019) provide results for the non-uniform case: there
exist finite-dimensional non-uniform MPS that have no equivalent finite-dimensional LPS. A similar answer for
the uniform case is as yet unknown. Investigating this from the HQMM perspective, Monras and Winter (2016)
term the question of which PSRs have equivalent HQMMs as the completely positive realization problem. They
argue that a necessary and sufficient condition for a PSR to have an equivalent HQMM is if the operators
characterizing the PSR come from a semi-definite representable (SDR) cone that also defines the convex cone of
valid states.3 They suggest that if we could show that every valid cone for a PSR satisfied the SDR condition,
we could show that HQMMs are equivalent to PSRs via the Helton-Nie conjecture; while it is the case that every
SDR set is convex and semi-algebraic, the converse, known as the Helton-Nie conjecture was only recently shown
to be false (Scheiderer, 2018). Since convex semi-algebraic sets are SDR sets in a wide variety of cases, it may
still be the case that HQMMs are equivalent to PSRs. We thus pose two open questions that must be answered
to obtain a full characterization of HQMMs relative to PSRs: first, whether the convex cone characterizing the
PSR is semi-algebraic, and second, if it satisfies any sufficient conditions for being SDR (Helton and Nie, 2009),
and if not, how common such conditions are. Nevertheless, convex and semi-algebraic cones that are SDR are a
broad class and the results thus far show that HQMMs are the most expressive known subset of PSRs. Indeeed,
we do not know any examples of PSRs that do not have an equivalent finite-dimensional HQMM.

3 Controlled Stochastic Processes

In this paper, we have discussed various models of stochastic processes, including counterparts in quantum tensor
networks and weighted automata. These models are limited in the sense that they have no notion of control –
an agent can make observations of a system but cannot perturb it. We now extend our analysis to controlled
stochastic processes; connections between these models are illustrated in Figure 2.

3The intersection of the cone of positive semi-definite matrices with an affine subspace is called a spectrahedron, and
linear maps of spectrahedra are called spectrahedral shadows or semi-definitely representable sets. These are the feasible
regions of a semidefinite program.



Figure 1: Tensor network diagrams for controlled processes.

Figure 2: Subset relationships between models, and new relationships established in this paper. The grey sections
represent potentially non-strict subsets.

3.1 Partially Observable Markov Decision Processes

Partially observable Markov decision processes (POMDPs) can be viewed as natural extensions of hidden Markov
models to controlled stochastic processes. Formally, we give the following definition4:

Definition 1 (Partially Observable Markov Decision Processes). An n-dimensional partially observable Markov
decision process for sets of discrete actions A and observations O is a tuple (Rn, {Aa}a∈A, {Ca}a∈A, ~x0), where

the matrices Aa ∈ Rn×n≥0 and Ca ∈ R|O|×n≥0 are non-negative column-stochastic transition and emission matrices

corresponding to the action a such that ~1 TAa = ~1 TCa = ~1 T . The initial state ~x0 ∈ Rn≥0 is also non-negative
and satisfies |~x0|1 = 1.

POMDPs can also be defined via observable operators Ta
y = diag(Ca

(y,:))A
a corresponding to taking ac-

tion a and observing y. The state update is done as ~xt =
Ta

y ~xt−1

~1TTa
y ~xt−1

, and probabilities are calculated as

P (a1y1, . . . , aN , yN) = ~1
T
Tak
yk
. . .Ta1

y1~x; exactly the same as HMMs, but with controls.

3.2 Input-Output Extensions of Stochastic Processes

In the main body of the paper, we considered uncontrolled PSRs, which are equivalent to the observable operator
models (OOMs) defined in Jaeger (2000). Augmenting these models with a notion of control, we obtain input-
output OOMs (IO-OOMs) (Jaeger, 1998) or controlled PSRs (Singh et al., 2004), which essentially consist of a
separate OOM for every action. With the same motivation, we can also define analogous input-output HQMMs
as follows

Definition 2 (Input-Output HQMM). An n2-dimensional input-output hidden quantum Markov model
for sets of discrete actions A and observations O is a controlled stochastic process given by the tuple
(Cn

2

,~I, {Lay}y∈O,a∈A, ~ρ0). The set of operators {Lay}y∈O for every action a form a set of CP-TP Liouville
operators. The initial state ~ρ0 is a vectorized unit-trace Hermitian PSD matrix of arbitrary rank.

The state update and probability computations for IO-HQMMs are done exactly the same as with HQMMs,
but now with operators indexed by both observations and actions at each time step: P (a1y1 . . . akyk) =

~ITLakyk . . .L
a1
y1~ρ0 and ~ρ ′ =

L
ak
yk
...La1

y1
~ρ0

~ITL
ak
yk
...L

a1
y1
~ρ0

Similarly, we can define input-output uLPSs and input-output uMPSs

4We have ignored the reward function commonly associated with controlled stochastic processes to draw a clearer
comparison with uncontrolled processes. Our analysis can be equivalently applied with reward functions.



in exactly the same way, with non-terminating variants being equivalent to IO-HQMMs and IO-OOMs/PSRs
respectively. When viewed as a tensor network in Figure 1, we immediately see that such IO-HQMMs and
uniform IO-LPSs have the same structure as matrix product operators (Chan et al., 2016; Murg et al., 2008)
which can be viewed as MPSs with an additional open index at each core.

Quantum Observable Markov Decision Processes are Input-Ouput HQMMs Barry et al. (2014)
developed quantum observable Markov decision processes (QOMDPs) as a strict generalization of classical
POMDPs, by swapping the belief state vector ~x with the density matrix of a quantum state ρρρ. Ignoring re-
ward functions, QOMDPs can be defined as follows

Definition 3. An n-dimensional quantum observable Markov decision process for sets of discrete actions A and
observations O is a tuple (Cn, {Ka

y}a∈A,y∈O, ρρρ0), where the set of operators {Ka
y ∈ Cn×n}y∈O for each action a

forms a quantum channel with
∑
y∈OKa†

y Ka
y = I. The initial state ρρρ0 is a unit-trace Hermitian PSD density

matrix of arbitrary rank.

The probability of an action-observation sequence a1y1 · · · aT yT for a QOMDP is then taken to be

Tr
(
KaT
yT . . .K

a1
y1 ρ0 Ka1

y1
† . . .KaT

yT
†
)

. To draw connections with HQMMs, we represent the vectorized version

of the QOMDP update equations as follows:

~ρ ′ = vec

 KaT
oT . . .K

a1
o1 ρρρ Ka1

o1
† . . .KaT

oT
†

Tr
(
KaT

oT . . .K
a1
o1 ρρρ Ka1

o1
† . . .KaT

oT
†
)
 =

(
K

aT
yT ⊗KaT

yT

)
. . .
(
K

a1
y1 ⊗Ka1

y1

)
~ρ

~I
(
K

aT
yT ⊗KaT

yT

)
. . .
(
K

a1
y1 ⊗Ka1

y1

)
~ρ

=
LaT

yT . . .L
a1
y1 ~ρ0

~ITLaT
yT . . .L

a1
y1 ~ρ0

Notice that this expression is identical to the update equation for IO-HQMMs. The only difference is that the
QOMDP operators are restricted to have unit Kraus-rank: Lay = K

a

y ⊗Ka
y. This makes them somewhat like

NOOMs; however, unlike NOOMs, QOMDPs allow latent states of arbitrary Kraus-ranks – i.e. both mixed and
pure states. We thus arrive at the following theorem characterizing the expressiveness of QOMDPs

Theorem 3.1. QOMDPs ⊆ IO-HQMMS = non-terminating uniform IO-LPS ⊆ IO-OOMs = PSRs

Quantum Markov decision processes were also studied by Ying and Ying (2014), who arrived at essentially the
same model as QOMDPs. Cidre (2016) proposed an alternate formulation, called Quantum MDPs (QuaMDPs),
along with an associated point-based value iteration algorithm similar to that used to learn classical POMDPs
(Pineau et al., 2003). Although connections to QOMDPs were not considered in the original work, QuaMDPs are
a special case of QOMDPs. The filtering process in IO-HQMMs and QOMDPs corresponds to positive operator
valued measurements, which are generalizations of the more restrictive projection valued measurements used
in QuaMDPs. One can reduce positive operator valued measurements to projection based measurements via
the Stinesprig dilation theorem (Stinespring, 1955), but this requires the system interacting with an ancillary
sub-system; this is not the case in QuaMDPs.

Undecidability of Perfect Planning In moving from POMDPs to QOMDPs, Barry et al. (2014) find an
apparent classical-quantum separation in the problem of perfect goal state reachability. They consider particular
instances of controlled processes where certain states are labeled as goals, and are set to be absorbing – the
transition probabilities from these states to any other state is zero; we will refer to these as goal oriented models.
In such models, the perfect goal state reachability problem is stated as follows: given an arbitrary initial state
and a goal state, is there a sequence of operators that will leave the system in a goal state with probability 1 in
a finite number of steps. In other words: is there a policy that will take the agent deterministically from some
initial state to a goal state in a finte number of steps? Barry et al. (2014) show that this problem is undecidable
for QOMDPs, even though it is decidable for POMDPs. The undecidability of perfect goal state reachability in
QOMDPs is a consequence of the undecidability of the quantum measurement occurence problem (Eisert et al.,
2012). Intuitively, Barry et al. (2014) point out that the decidability of the same problem for POMDPs boils
down to its non-negativity constraints. However, negative parameters are also present in classical generalizations
of POMDPs, namely IO-OOMs or PSRs, as well as other quantum models including IO-HQMMs or IO-LPS.
Thus, we would expect this problem should be undecidable for these models as well. Indeed, we can show this
to be the case using the subset relationships we have established between these models and QOMDPs.

Theorem 3.2 (Perfect Goal State Reachability). Given an initial state and a goal state, it is undecidable whether
there exists a policy that will leave a goal-oriented IO-HQMM, (non-terminating uniform) IO-LPS, IO-OOM or
PSR in the goal state in a finite number of steps.



Proof. QOMDPs are contained within the class of IO-HQMMs or IO-uLPS, which are, in turn, contained within
the class of IO-OOMs or PSRs. If a problem is undecidable for a model class, it must be undecidable in general
for any other class that contains it as a subset. Therefore, we immediately see that the undecidability carries
over to these models as well.
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