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Abstract

Recently, invariant risk minimization (IRM)
[Arjovsky et al., 2019] was proposed as
a promising solution to address out-of-
distribution (OOD) generalization. In
[Ahuja et al., 2020], it was shown that
solving for the Nash equilibria of a new class
of “ensemble-games” is equivalent to solving
IRM. In this work, we extend the framework
in [Ahuja et al., 2020] for linear regressions
by projecting the ensemble-game on an `∞
ball. We show that such projections help
achieve non-trivial OOD guarantees despite
not achieving perfect invariance. For linear
models with confounders, we prove that
Nash equilibria of these games are closer to
the ideal OOD solutions than the standard
empirical risk minimization (ERM) and
we also provide learning algorithms that
provably converge to these Nash Equilibria.
Empirical comparisons of the proposed
approach with the state-of-the-art show
consistent gains in achieving OOD solutions
in several settings involving anti-causal
variables and confounders.

1 Introduction

Recent years have witnessed a surge in examples
highlighting vulnerabilities of machine learning mod-
els [Geirhos et al., 2020]. In an alarming study
[DeGrave et al., 2020], it was shown how models
trained to detect COVID-19 from chest radiographs
used spurious factors such as the source of the data
rather than the lung pathology [DeGrave et al., 2020].
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In another commonly cited example [Beery et al., 2018]
trained a convolutional neural network (CNN) to clas-
sify camels from cows and found the model to rely
on the background color (green pastures for cows and
desert for camels) to carry out classification.

Recently, [Arjovsky et al., 2019] proposed a framework
called invariant risk minimization (IRM) to address
the problem of models inheriting spurious correlations.
They showed that when data is gathered from multi-
ple environments, one can learn to exploit invariant
causal relationships, rather than relying on varying
spurious relationships, thus learning robust predictors.
The authors used the invariance principle based on
causality [Pearl, 1995] to construct powerful objects
called “invariant predictors”. An invariant predictor
loosely speaking is a predictor that is simultaneously
optimal across all the training environments under a
shared representation. In [Arjovsky et al., 2019], it was
shown that for linear models with confounders and/or
anti-causal variables, learning ideal invariant predic-
tors translates to learning solutions with ideal out-of-
distribution (OOD) generalization behavior. However,
building efficient algorithms guaranteed to learn these
invariant predictors is still a challenge.

The algorithm in [Arjovsky et al., 2019] is based on
minimizing a risk function comprising of the standard
risk and a penalty term that tries to approximately en-
sure that predictors learned are invariant. The penalty
is non-convex even for linear models and thus the algo-
rithm is not guaranteed to arrive at invariant predictors.
Another recent work [Ahuja et al., 2020], proposed a
framework called invariant risk minimization games
(IRM-games) and showed that solving for the Nash
equilibria (NE) of a special class of “ensemble-games”
is equivalent to solving IRM for many settings. The
algorithm in [Ahuja et al., 2020] has no convergence
guarantees to the NE of the ensemble-game. To sum-
marize, building algorithms that are guaranteed to con-
verge to predictors with non-trivial OOD generalization
is unsolved even for linear models with confounders
and/or anti-causal variables.
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In this work, we take important steps towards this
highly sought after goal. As such, we formulate an
ensemble-game that is constrained to be in the `∞ ball.
Although this construction might seem to be surpris-
ing at first, we show that these constrained ensemble-
game based predictors have a good OOD behavior
even though that they may not be the exact invari-
ant predictors. We provide efficient algorithms that
are guaranteed to learn these predictors in many set-
tings. To the best of our knowledge, our algorithms are
the first for which we can guarantee both convergence
and better OOD behavior than standard empirical risk
minimization. We carry out empirical comparisons in
the settings proposed in [Arjovsky et al., 2019], where
the data is generated from models that include both
causal and anti-causal variables as well as confounders
in some cases. These comparisons of our approach
with the state-of-the-art depict its promise in achieving
OOD solutions in these setups. This demonstrates that
searching over the NE of constrained ensemble-games
is a principled alternative to searching over invariant
predictors as is done in IRM.

2 Related Work

IRM [Arjovsky et al., 2019] has its roots in the the-
ory of causality [Pearl, 1995]. A variable y is caused
by a set of non-spurious actual causal factors xPa(y)

if and only if in all environments where y has
not been intervened on, the conditional probabil-
ity P (y|xPa(y)) remains invariant. This is called
the modularity condition [Bareinboim et al., 2012].
Related and similar notions are the independent
causal mechanism principle [Schölkopf et al., 2012,
Janzing and Schölkopf, 2010, Janzing et al., 2012] and
the invariant causal prediction principle (ICP)
[Peters et al., 2016, Heinze-Deml et al., 2018]. These
principles imply that if all the environments (train and
test) are modeled by interventions that do not affect the
causal mechanism of target variable y, then a classifier
trained on the transformation that involves the causal
factors (Φ(x) = xPa(y)) to predict y is an invariant
predictor, which is robust to unseen interventions.

In general, for finite sets of environments, there
may be other invariant predictors. If one has
information about the causal Bayesian network
structure, one can find invariant predictors that
are maximally predictive using conditional inde-
pendence tests and other graph-theoretic tools
[Magliacane et al., 2018, Subbaswamy et al., 2019].
The above works select subsets of features, primarily
using conditional independence tests, that make the
optimal classifier trained on the selected features invari-
ant. In IRM [Arjovsky et al., 2019], the authors give
an optimization-based reformulation of this invariance

that facilitates searching over transformations in a con-
tinuous space. Following the original work IRM from
[Arjovsky et al., 2019], there have been several interest-
ing works — [Teney et al., 2020, Krueger et al., 2020,
Chang et al., 2020, Koyama and Yamaguchi, 2020,
Mahajan et al., 2020] is an incomplete representative
list — that build new methods inspired from IRM to
address OOD generalization. In these works, similar
to IRM, the algorithms are not provably guaranteed to
converge to predictors with desirable OOD behavior.

3 Background

3.1 Nash Equilibrium and Concave Games

A standard normal form game is written as a tuple
Ω = (N , {ui}i∈N , {Si}i∈N ), where N is a finite set of
players. Player i ∈ N takes actions from a strategy
set Si. The utility of player i is ui : S → R, where
we write the joint set of actions of all the players as
S = Πi∈NSi. The joint strategy of all the players is
given as s ∈ S, the strategy of player i is si and the
strategy of the rest of players is s−i = (si′ )i′ 6=i.

Definition 1. A strategy s† ∈ S is said to be a pure
strategy Nash equilibrium (NE) if it satisfies

ui(s
†
i , s
†
−i) ≥ ui(k, s

†
−i),∀k ∈ Si,∀i ∈ N

NE defines a state where each player is using the best
possible strategy in response to the rest of the players.
A natural question to ask is when does a pure strategy
NE exist. In the seminal work of [Debreu, 1952] it was
shown that for a special class of games called concave
games such a NE always exists.

Definition 2. A game Ω is called a concave game if
for each i ∈ S

• Si is a compact, convex subset of Rmi

• ui(si, s−i) is continuous in s−i
• ui(si, s−i) is continuous and concave in si .

Theorem 1. [Debreu, 1952] For any concave game Ω
a pure strategy Nash equilibrium s† always exists.

In this work, we only study pure strategy NE and use
the terms pure strategy NE and NE interchangeably.

3.2 Invariant Risk Minimization & Invariant
Risk Minimization Games

We are given a collection of training datasets D =
{De}e∈Etr gathered from a set of environments Etr,
where De = {xie, yie}

ne
i=1 is the dataset gathered from

environment e ∈ Etr and ne is the number of points
in environment e. The feature value for data point
i is xie ∈ X and the corresponding label is yie ∈ Y,
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where X ⊆ Rn and Y ⊆ R. Each point (xie, y
i
e) in

environment e is drawn i.i.d from a distribution Pe.
Define a predictor f : X → R. The goal of IRM is to use
these collection of datasets D to construct a predictor
f that performs well across many unseen environments
Eall, where Eall ⊇ Etr. Define the risk achieved by f in
environment e as Re(f) = Ee

[
`(f(Xe), Ye)

]
, where `

is the square loss when f(Xe) is the predicted value
and Ye is the corresponding label, (Xe, Ye) ∼ Pe and
the expectation Ee is defined with respect to (w.r.t.)
the distribution of points in environment e.

Invariant predictor and IRM optimization: An
invariant predictor is composed of two parts a represen-
tation Φ ∈ Rd×n and a predictor w ∈ Rd×1. We say
that a data representation Φ elicits an invariant predic-
tor wTΦ across the set of environments Etr if there is a
predictor w that achieves the minimum risk for all the
environments w ∈ argminw̃∈Rd×1 Re(w̃

TΦ), ∀e ∈ Etr.
IRM may be phrased as the following constrained opti-
mization problem:

min
Φ∈Rd×n,w∈Rd×1

∑
e∈Etr

Re(w
TΦ)

s.t. w ∈ argmin
w̃∈Rd×1

Re(w̃
TΦ), ∀e ∈ Etr

(1)

If wTΦ satisfies the constraints above, then it is
an invariant predictor across the training environ-
ments Etr. Define the set of invariant predictors wTΦ
satisfying the constraints in (1) as S IV. Informally
stated, the main idea behind the above optimiza-
tion is inspired from invariance principles in causal-
ity [Bareinboim et al., 2012][Pearl, 2009]. Each envi-
ronment can be understood as an intervention. By
learning an invariant predictor the learner hopes to
identify a representation Φ that transforms the ob-
served features into the causal features and the optimal
model trained on causal representations are likely to
be same (invariant) across the environments provided
we do not intervene on the label itself. These invariant
models can be shown to have a good out-of-distribution
performance. Next, we briefly describe IRM-games.

Ensemble-game: Each environment e is endowed
with its own predictor we ∈ Rd×1. Define an ensemble
predictor w̄ ∈ Rd×1 given as w̄ =

∑
q∈Etr wq; for the

rest of this work a bar on top of vector represents an
ensemble predictor. We require all the environments
to use this ensemble w̄. We want to solve the following
new optimization problem.

min
Φ∈Rd×n,w̄∈Rd×1

∑
e∈Etr

Re

(
w̄TΦ

)
s.t. we ∈ argmin

w̃e∈Rd×1

Re

([
w̃e +

∑
q∈Etr\{e}

wq

]T

Φ

)
, ∀e ∈ Etr

For a fixed representation Φ, the constraints in the
above optimization (3.2) represent the NE of a game
with each environment e as a player with actions
w̃e. Environment e selects w̃e to maximize its utility

−Re
([
w̃e+

∑
q 6=e w̃q

]T

Φ

)
. Define the set of ensemble-

game predictors w̄TΦ, i.e. the predictors that satisfy
the constraints in (3.2) as SEG. In [Ahuja et al., 2020]
it was shown that the set of ensemble SEG = S IV. Hav-
ing briefly reviewed IRM and IRM-games (we presented
them with linear models but these works are more gen-
eral), we are now ready to build our framework.

4 Linear Regression Games

4.1 Unconstrained Linear Regression Games

The data is gathered from a set of two environments,
Etr = {1, 2}. 1 Each data point (Xe, Ye) in envi-
ronment e is sampled from Pe. Each environment
e ∈ {1, 2} is a player that wants to select a predictor
we ∈ Rn×1 such that it minimizes

Re(w1,w2) = Ee
[(
Ye −wT

1Xe −wT
2Xe

)2]
(2)

where Ee is expectation w.r.t Pe. We write the
above as a two player game represented by a tuple
Γ = ({1, 2}, {Re}e∈{1,2},Rn×1). We refer to Γ as a un-
constrained linear regression game (U-LRG). A Nash

equilibrium w† = (w†1,w
†
2) of U-LRG is a solution to

w†1 ∈ argmin
w̃1∈Rn×1

E1

[(
Y1 − w̃T

1X1 −w†,T2 X1

)2]
w†2 ∈ argmin

w̃2∈Rn×1

E2

[(
Y2 −w†,T1 X2 − w̃T

2X2

)2] (3)

The above two-player U-LRG is a natural extension of
linear regressions and we start by analyzing the NE
of the above game. Before going further, the above
game can be understood as fixing Φ to identity in the
ensemble-game defined in the previous section.

For each e ∈ {1, 2}, define the mean of features µe =
Ee[Xe], Σe = Ee

[
XeX

T
e

]
and the correlation between

the feature Xe and the label Ye as ρe = Ee
[
XeYe

]
.

Assumption 1. Regularity condition. For each
e ∈ {1, 2}, µe = 0 and Σe is positive definite.

The above regularity conditions are fairly standard and
the mean zero condition can be relaxed by introducing
intercepts in the model. When µe = 0, Σe is the
covariance matrix. For each e ∈ {1, 2}, define w∗e =
Σ−1
e ρe, where Σ−1

e is the inverse of Σe. w∗e is the
least squares optimal solution for environment e, i.e.,

it solves minw̃∈Rn×1 Ee
[(
Ye − w̃TXe

)2]
.

1Discussion on multiple environments is in the supple-
ment.
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Proposition 1. If Assumption 1 holds and if the least
squares optimal solution in the two environments are

• equal, i.e., w∗1 = w∗2, then the set {(w†1,w
†
2) | w†1 +

w†2 = w∗1} describes all the pure strategy Nash
equilibrium of U-LRG, Γ.

• not equal, i.e., w∗1 6= w∗2, then U-LRG, Γ, has no
pure strategy Nash equilibrium.

We provide brief proof sketches here and all the detailed
proofs are in the Appendix.

Proof sketch: Consider the case when the least
squares optimal solution is different for the two en-
vironments. Also, assume that the NE of the U-LRG
exists. In the NE, the ensemble predictor used will
not be the least squares optimal predictor for at least
one of the environments. If this is the case, then such
an environment can always update its predictor to im-
prove its loss. This contradicts the fact that the two
environments are using predictors that form the NE.
Therefore, NE cannot exist.

From the above proposition, it follows that agreement
between the environments on least squares optimal
solution is both necessary and sufficient for the exis-
tence of NE of U-LRG. Next, we describe the fam-
ily of linear structural equation models (SEMs) in
[Arjovsky et al., 2019] and show how the two cases,
w∗1 = w∗2 , and w∗1 6= w∗2 naturally arise.

4.1.1 Nash Equilibria for Linear SEMs

In this section, we consider linear SEMs from
[Arjovsky et al., 2019] and study the NE of U-LRG.

Assumption 2. Linear SEM with confounders
and anti-causal variables (Figure 1) For each e ∈
{1, 2}, (Xe, Ye) is generated from the following SEM

Ye ← γTX1
e + ηT

eHe + εe,

X2
e ← αeYe + ΘeHe + ζe

(4)

The feature vector is Xe = (X1
e ,X

2
e ). He ∈ Rs is a

confounding random variable, where each component
of He is an i.i.d draw from a distribution with zero
mean and unit variance. He affects both the labels
Ye through weights ηe ∈ Rs and a subset of features
X2
e ∈ Rq through weights Θe ∈ Rq×s. εe ∈ R is

independent zero mean noise in the label generation.
Ye affects a subset of features X2

e with weight αe ∈ Rq,
ζe ∈ Rq is an independent zero mean noise vector
affecting X2

e . X1
e ∈ Rp are the causal features drawn

from a distribution with zero mean and affect the label
through a weight γ ∈ Rp, which is invariant across the
environments.

The above model captures many different settings. If
αe = 0 and Θe 6= 0, then features X2

e appear cor-

Figure 1: SEM from Assumption 2. We show the
link between Ye and X2

e with a dotted line because in
our theoretical analysis (Proposition 4,5) we assume
that the edge does not exist but in the experiments
we compare in the more general setting where such an
edge exists.

related with the label due to the confounder He. If
αe 6= 0 and Θe = 0, then features X2

e are correlated
with the label but they are effects or anti-causal. If
both αe 6= 0,Θe 6= 0, then we are in a hybrid of the
above two settings. In all of the above settings it can
be shown that relying on X2

e to make predictions can
lead to failures under distribution shifts (modeled by
interventions). From [Arjovsky et al., 2019], we know
that for the above family of models the ideal OOD
predictor is

(
γ,0

)
as it performs well across many dis-

tribution shifts (modeled by interventions). Hence, the
goal is to learn

(
γ,0

)
.

No confounders & no anti-causal variables
(w∗1 = w∗2): Consider the SEM in Assumption 2.
For each environment e ∈ {1, 2}, assume αe = 0 and
Θe = 0, i.e. no confounding and no anti-causal vari-
ables. This setting captures the standard covariate
shifts [Gretton et al., 2009], where it is assumed that
Pe(Ye|Xe = x) is invariant across environments, here
we assume Ee(Ye|Xe = x) = γTx is invariant across
environments. The least squares optimal solution for
each environment is w∗e =

(
γ,0

)
, which implies that

w∗1 = w∗2 . From Proposition 1 we know that a NE
exists (any two predictors adding to w∗1 form an NE).
In this setting, different methods – empirical risk mini-
mization (ERM), IRM, IRM-games, and methods de-
signed for covariate shifts such as sample reweighting –
should perform well.

Confounders only (w∗1 6= w∗2): Consider the SEM
in Assumption 2. For each environment e ∈ {1, 2},
assume αe = 0, Θe 6= 0, i.e. confounders only setting.

Define Σe1 = Ee
[
X1
eX

1,T
e

]
and define the variance

for the noise vector ζ as σ2
ζe

= Ee[ζe � ζe], where �
represents element-wise product between two vectors.

Assumption 3. Regularity condition for linear
SEM in Assumption 2. For each environment e ∈
{1, 2}, Σe1 is positive definite and each element of the
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vector σ2
ζe

is positive.

Assumption 3 is equivalent to Assumption 1 for SEM
in Assumption 2 (it ensures Σe is positive definite).

Proposition 2. If Assumption 2 holds with αe = 0
for each e ∈ {1, 2}, and Assumption 3 holds, then the
least squares optimal solution for environment e is

w∗e = (winv
e ,wvar

e ) =
(
γ,
(
ΘeΘ

T
e +diag[σ2

ζe ]
)−1

Θeηe

)
(5)

Proof sketch: Recall that the least squares optimal
solution for environment e is w∗e = Σ−1

e ρe. We use the
structure of the SEM in Assumption 2 and Assump-
tion 3 to simplify Σe and ρe to arrive at the above
expression.

We divide w∗e into two halves winv
e = γ and wvar

e =(
ΘeΘ

T
e + diag[σ2

ζe
]
)−1

Θeηe. Observe that the first

half winv
e is invariant, i.e., it does not depend on the

environment, while wvar
e may vary as it depends on the

parameters specific to the environment e.g., Θe,ηe. In
general, wvar

1 6= wvar
2 (e.g., s = q, Θe is identity Iq, σ

2
ζe

is one 1q, η1 6= η2) and as a result w∗1 6= w∗2 . In such
a case, from Proposition 1, we know that NE does not
exist. ERM and other techniques such as domain adap-
tation [Ajakan et al., 2014, Ben-David et al., 2007,
Glorot et al., 2011, Ganin et al., 2016], robust op-
timization [Mohri et al., 2019, Hoffman et al., 2018,
Lee and Raginsky, 2018, Duchi et al., 2016], would
tend to learn a model which tends to exploit infor-
mation from the spuriously correlated X2

e thus placing
a non-zero weight on the second half corresponding to
the features X2

e and not recovering (γ,0).

IRM based methods are designed to tackle these prob-
lems. These works try to learn representations that
filter out causal features, X1

e , with invariant coeffi-
cients, winv

e , from spurious features, X2
e , with variant

coefficients wvar
e and learn a classifier on top resulting

in the invariant predictor (γ,0). However, the current
algorithms that search for these representations in IRM
and IRM-games are based on gradient descent over non-
convex losses and non-trivial best response dynamics
respectively, both of which are not guaranteed to con-
verge to the ideal OOD predictor (γ,0). We formally
state the assumption underlying these methods, which
we also use later.

Assumption 4. Spurious features have varying
coefficents across environments. wvar

1 6= wvar
2

4.2 Constrained Linear Regression Games

In U-LRG, Γ, the utility of environment 1 (2) is
−R1(w1,w2)

(
−R2(w1,w2)

)
. For each environment

e ∈ {1, 2}, −Re is continous and concave in we. For
each e in the game Γ, the set of actions it can take
is in Rn×1, which is not a compact set. If the set of
actions for each environment were compact and con-
vex, then we can use Theorem 1 to guarantee that
a NE always exists. Let us constraint the predictors
to be in the set W =

{
we

∣∣ ‖we‖∞ ≤ wsup
}

, where
‖ · ‖∞ is the `∞ norm and 0 < wsup < ∞. We de-
fine the constrained linear regression game (C-LRG) as
Γc =

(
Etr, {−Re}e∈Etr ,W

)
.

Proposition 3. A pure strategy Nash equilibrium al-
ways exists for C-LRG, Γc.

Proof sketch: W is a closed and bounded subset in
the Euclidean space, which implies it is also a compact
set. W is also a convex set as `∞ norm is convex. From
Definition 2, C-LRG, Γc, is concave. Therefore from
Theorem 1 it follows that a NE always exists for Γc.

Unlike the game Γ, a NE always exists for the game
Γc. Let w†1,w

†
2 be an NE of Γc and let w̄† be the

corresponding ensemble predictor, i.e. w̄† = w†1 +

w†2. In the next theorem, we analyze the properties of

w†1,w
†
2 but before that we state some assumptions.

Assumption 5. Realizability. For each e ∈ {1, 2}
the least squares optimal solution w∗e ∈ W.

We write the feature vector in environment e as Xe =
(Xe1, . . . , Xen) and the least squares optimal solution
in environment e as w∗e = (we1, . . . , wen). Divide the
features indexed {1, . . . , n} into two sets U and V. U
is defined as: i ∈ U if and only if the weight associated
with ith component in the least squares solution is
equal in the two environments, i.e., w∗1i = w∗2i. V is
defined as: i ∈ V if and only if the weight associated
with ith component in the least squares solution is not
equal in the two environments, i.e., w∗1i 6= w∗2i. For
an example of these sets, consider the least squares
solution to the confounded only SEM in equation (5)
under Assumption 4 , winv

1 = winv
2 = γ =⇒ U =

{1, . . . , p}, and wvar
1 6= wvar

2 =⇒ V = {p+1, . . . , p+q}.
Assumption 6. Features with varying coeffi-
cients across environments are uncorrelated.
For each i ∈ V the corresponding feature Xei is un-
correlated with every other feature j ∈ {1, . . . , n}\{i},
i.e., E[XeiXej ] = E[Xei]E[Xej ].

The above assumption says that any feature component
whose least squares optimal solution coefficient varies
across environments is not correlated with the rest of
the features. We use the above assumption to derive
an analytical expression for the NE of Γc next.

For a vector a, |a| represents the vector of absolute
values of all the elements. Element-wise product of
two vectors a and b is written as a � b. Define an
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indicator function 1a≥b; it carries out an element-wise
comparison of a and b and it outputs a vector of ones
and zeros, where a one at component i indicates that
ith component of a, ai, is greater than or equal to
the ith component of b, bi. Recall that the ensemble
predictor constructed from NE is w̄† = w̄†1 + w̄†2.

Theorem 2. If Assumptions 1, 5, 6 hold, then the
ensemble predictor, w̄†, constructed from the Nash equi-
librium, (w†1,w

†
2), of Γc is equal to(

w∗1 � 1|w∗2 |≥|w∗1 | +w
∗
2 � 1|w∗1 |>|w∗2 |

)
1w∗1�w∗2≥0 (6)

Proof sketch: In order to prove the above theorem,
we first establish an intermediate result in the form of a
lemma. In the lemma, we show that if the least squares
optimal solution in the two environments are different,
i.e., w∗1 6= w∗2 , then the NE predictor for at least one
of the environments w†e is at the boundary of the con-
straint set W. We use Karush-Kuhn-Tucker (KKT)
conditions [Boyd and Vandenberghe, 2004] for subdif-
ferentiable convex functions to arrive at this lemma.

Building on this lemma, we use the Assumption 6 and
the `∞ norm constraint to arrive at a component-wise
separability for feature components in set V (defined in
Assumption 6). This separability enables us to analyze
the NE independently in a component-wise fashion. We
discuss two main cases in which the component-wise
analysis of NE is divided. Say we are looking at one
of the components k ∈ V. The least squares optimal
coefficient for the component k are w∗1k and w∗2k for the
two environments. Consider the case when 0 ≤ w∗1k <
w∗2k. In this case, the w†1k = −wsup + w∗1k and w†2k =
wsup form the NE. In this state, the first environment
has no incentive to deviate as the total weight for
component k is w∗1k, which is the optimal choice for
environment 1 for component k. Since the second
environment’s optimal weight is larger than the first
environment, it has an incentive to increase its weight
but it cannot as it is already using the largest weight
possible wsup. Consider another case when w∗1k < 0 <

w∗2k. In this case, the w†1k = −wsup and w†2k = wsup

corresponds to the NE. In this state, the total weight for
component k is 0, environment 1 will want to decrease
the weight further to push it closer to w∗1k but it cannot
as it is already using the smallest weight possible −wsup.
Similarly, environment 2 wants to increase the weight
but it cannot as it is already using the largest weight
possible wsup.

Casewise analysis of NE in equation (6)

• w∗1 = w∗2 : Similar to Proposition 1
{

(w†1,w
†
2) | w†1 ∈

W,w†2 ∈ W,w†1 +w†2 = w∗1
}

is the set of NE of C-LRG

• w∗1 6= w∗2 : We analyze this case under two categories

� Opposite sign coefficients: If the ith compo-
nent of w∗1 and w∗2 have opposite signs, then
the ith component of the ensemble predictor,
w̄†, constructed from the NE of Γc, is zero, i.e.,
w̄†i =

[
1w∗1�w∗2≥0

]
i

= 0. In this case, the coeffi-
cient of the environments’ predictors in the NE,
w†1i and w†2i, have exact opposite signs and both are
at the boundary one at wsup and other at −wsup.
This case shows that when the features have a
large variation in their least squares coefficients
across environments, they can be spurious (see
Proposition 4) and the ensemble predictor filters
them by assigning a zero weight to them.

� Same sign coefficients: If the ith component of
w∗1 and w∗2 have same signs, then the ith compo-
nent of ensemble predictor, w̄†, constructed from
the NE of Γc, is set to the least squares coefficient
with a smaller absolute value, i.e., w̄†i = w∗1i, where
|w∗1i| ≤ |w∗2i|. Suppose 0 < w∗1i < w∗2i, the coeffi-
cient of the environments’ predictors in the NE,
w†1i and w†2i have opposite signs, i.e., w†2i = wsup

and w†1i = w∗1 − wsup. This shows that ensemble
predictor is conservative and selects the smaller
least squares coefficient. This property is useful to
identifying predictors that are robust (see Propo-
sition 4). Lastly, only when the least square coeffi-
cients are the same, i.e., w∗1i = w∗2i, the coefficient
of the environments’ predictors in the NE can be
in the interior, i.e., |w†1i| < wsup and |w†2i| < wsup.

4.2.1 Nash Equilibria for Linear SEMs

Suppose for each environment e ∈ {1, 2} the data is
generated from SEM in Assumption 2. We study if
the NE of C-LRG, Γc, achieves or gets close to the
ideal OOD predictor (γ, 0). We compare the ensemble
predictors w̄† constructed from the NE of Γc to the
solutions of ERM (Theorem 2 enables this comparison).
In ERM, the data from both the environments is com-
bined and the overall least squares loss is minimized.
Define the probability that a point is from environment
e as πe (π2 = 1−π1). The set of ERM solutions for all
distributions, {π1, π2}, is SERM given as{
w
∣∣π1 ∈ [0, 1],w ∈ argmin

w̃∈Rn×1

∑
e∈{1,2}

πeEe
[(
Ye−w̃TXe

)2]}
Proposition 4. If Assumption 2 holds with αe = 0
and Θe an orthogonal matrix for each e ∈ {1, 2}, and
Assumptions 3, 4, 5 hold, then ‖w̄†−(γ, 0)‖ < ‖wERM−
(γ, 0)‖ holds for all wERM ∈ SERM. 2 Moreover, if all

2Exception occurs over measure zero set over proba-
bilities π1. If least squares solution are strictly ordered,
i.e., ∀i ∈ {1, . . . , n}, 0 < w∗1i < w∗2i and π1 = 1, then
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the components of two vectors Θ1η1 and Θ2η2 have
opposite signs, then w̄† = (γ, 0).

Proof sketch: The assumptions in the above proposi-
tion imply that Assumptions 1, 5, 6 hold. Therefore,
we can use Theorem 2 to derive the expression for the
NE based ensemble predictor. From Proposition 2 we
can derive the expression for the ERM based predictor.
We use these expressions to compare the distance of
the NE based ensemble predictor and the ERM based
predictor from the ideal OOD predictor to arrive at
the above result

From the first part of the above we learn that for many
confounder only models (αe = 0, Θe an orthogonal
matrix), the ensemble predictor constructed from the
NE is closer to the ideal OOD solution than ERM.
For the second part, set Θe = Iq, where Iq is identity
matrix. Suppose the signs of all the components of η1

and η2 disagree. As a result, the signs of latter half of
least squares solution wvar

e (in equation (5)) disagree.
From Theorem 2, we know that if the signs of the
coefficients in least squares solution disagree, then the
corresponding coefficient in the ensemble predictor is
zero, which implies w̄† = (γ, 0).

Remark. In Proposition 4, besides the regularity con-
ditions, the main assumption is Θe is orthogonal. This
assumption ensures that the the spurious features X2

e

are uncorrelated (Assumption 6). For confounder only
models this seems reasonable. However, in the models
involving anti-causal variables, i.e., αe 6= 0, the spuri-
ous features can be correlated and one may wonder how
does the ensemble predictor behave in such setups? In
experiments, we show that ensemble predictors perform
well in these settings as well. Extending the theory to
anti-causal models is a part of future work.

Insights from Theorem 2, Proposition 4

Suppose the data comes from the SEM in Assumption
2. For this SEM, [Arjovsky et al., 2019] showed that if
the number of environments grow linearly in the total
number of features, then the solution to non-convex
IRM optimization recovers the ideal OOD predictor.
We showed that for many confounder only SEMs (αe =
0 and Θe orthogonal) NE based ensemble predictor gets
closer to the OOD predictor than ERM and sometimes
recovers it exactly with just two environments, while
no such guarantees exist for IRM. Next, we show how
to learn these NE based ensemble predictor.

4.3 Learning NE of C-LRG

In this section, we show how we can use best response
dynamics (BRD) [Fudenberg et al., 1998] to learn the

wERM = w̄† = w∗1 . In general, w∗1 ,w
∗
2 are not ordered and

π1 ∈ (0, 1), thus C-LRG improves over ERM.

Algorithm 1: Best response based learning

Initialize: w̃1 = 0, w̃2 = 0, p = 0
while wdiff

1 > 0 or wdiff
2 > 0 do

w̃cur
1 = w̃1, w̃cur

2 = w̃2

w̃1 = minw1∈W R1(w1, w̃2)
w̃2 = minw2∈W R2(w̃1,w2)
wdiff

1 = ‖w̃cur
1 − w̃1‖, wdiff

2 = ‖w̃cur
2 − w̃2‖

end
Output: w̄+ = w̃1 + w̃2

NE. Each environment takes its turn and finds the best
possible model given the choice made by the other en-
vironment. This procedure (Algorithm 1) is allowed to
run until the environments stop updating their models.
In the next theorem, we make the same set of As-
sumptions as in Theorem 2 and show that Algorithm 1
converges to the NE derived in Theorem 2.

Theorem 3. If Assumption 1, 5, 6 hold, then the
output of Algorithm 1, w̄+, is(

w∗1 � 1|w∗2 |≥|w∗1 | +w
∗
2 � 1|w∗1 |>|w∗2 |

)
1w∗1�w∗2≥0

Proof sketch. We illustrate the dynamic of one of the
cases to provide some insight into the convergence. Con-
sider the ith component of the predictors w̃1i and w̃2i

from Algorithm 1. Suppose w∗1i > w∗2i and |w∗1i| > |w∗2i|.
The two environments push the ensemble predictor,
w̃1i + w̃2i, in opposite directions during their turns,
with the first environment increasing its weight, w̃1i,
and the second environment decreasing its weight, w̃2i.
Eventually, the environment with a higher absolute
value (e = 1 since |w∗1i| > |w∗2i|) reaches the bound-
ary (w̃1i = wsup) and cannot move any further due to
the constraint. The other environment (e = 2) best
responds. It either hits the other end of the boundary
(w̃2i = −wsup), in which case the weight of the ensemble
for component i is zero, or gets close to the other bound-
ary while staying in the interior (w̃2i = w∗2i − wsup), in
which case the weight of the ensemble for component i
is w∗2i.

BRD a sequence of convex minimizations. In
Algorithm 1, we assumed that at each time step each
environment can do an exact minimization operation.
The minimization for each environment is a simple
least squares regression, which is a convex quadratic
minimization problem. There can be several ways of
solving it – gradient descent for Re and solving for
gradient of Re equals zero directly, which is a linear
system of equations. We provide a simple bound for
the total number of convex minimizations (or turns for
each environment) in Algorithm 1 next. For each i ∈ V
(defined in Section 4.2), compute the distance between
the least square coefficients in the two environments
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|w∗1i − w∗2i| and find the least distance over the set
V given as ∆min = mini∈V |w∗1i − w∗2i| (following the
definition of V this distance is positive). The bound
on number of minimizations is 2wsup

∆min
.

4.3.1 Learning NE of C-LRG: Linear SEMs

Suppose the data is generated from SEM in Assumption
2. Next, we show the final result that the NE based
predictor, which we proved in Proposition 4 is closer
to the OOD solution, is achieved by Algorithm 1.

Proposition 5. If Assumption 2 holds with αe = 0
and Θe an orthogonal matrix for each e ∈ {1, 2}, and
Assumptions 3, 4, 5 hold, then the output of Algorithm
1, w̄+ obeys ‖w̄+ − (γ, 0)‖ < ‖wERM − (γ, 0)‖ for all
wERM ∈ SERM except over a set of measure zero (see
footnote 2). Moreover, if all the components of vectors
Θ1η1 and Θ2η2 have opposite signs, then w̄+ = (γ, 0).

We use Theorem 3 to arive at the above result. We have
shown through Theorem 2, Proposition 4, Theorem 3
and Proposition 5 that the NE based ensemble predictor
of Γc has good OOD properties and it can be learned by
solving a sequence of convex quadratic minimizations.

Extensions: In the supplement, we extend the Theo-
rem 3 to other BRD that are commonly used. We also
discuss how to extend the theory to settings beyond
Assumption 6. The entire analysis is for linear SEMs.
In the experiments section, we show how the method
performs when we use non-linear models and analysis
for non-linear models is left to future work.
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Figure 2: a) C-LRG (wsup = 2), b) U-LRG, c) R∞-LRG ,
d) C-LRG (wsup = 5)

5 Experiments

5.1 Linear SEM experiments

In this section, we first run the regression experiments
described in [Arjovsky et al., 2019]. We use the SEM

Method Solution Error

Oracle (1.0, 0.0) 0.0

U-LRG (0.34, 0.67) 0.88

C-LRG (wsup = 2) (0.95, 0.05) 0.005

C-LRG (wsup = 5) (0.95, 0.04) 0.005

R∞-LRG (0.33, 0.65) 0.87

R2-LRG (0.33, 0.63) 0.83

ERM (0.34, 0.67) 0.88

IRM (0.63, 0.44) 0.33

ICP (0.0, 0.0) 1.0

Table 1: Comparing variants of LRG, IRM, ICP, and ERM.

in Assumption 2 with following configurations.

• γ is a vector of ones with p dimensions, 1p, which
makes the ideal OOD model

(
1p,0q

)
. Each component

of the confounder He is drawn i.i.d. from N (0, σ2
He

).
σH1

= 0.2, σH2
= 2.0. We consider two configurations

for Θe and ηe. i) Θe = 0,ηe = 0, thus there is full
observability (F) as there are no confounding effects,
ii) each component of Θe and ηe is drawn i.i.d. from
N (0, 1) thus there is partial observability (P) as there
are confounding effects.

• Each component of αe is drawn i.i.d from N (0, 1).
εe ∼ N (0, σ2

εe) and each component of the vector ζe
is drawn from N (0, σ2

ζe
). We consider two settings for

the noise variances – Homoskedastic (HOM) σε1 = 0.2
and σε2 = 2.0, σζ1 = σζ2 = 1.0 and Heteroskedastic
(HET) σζ1 = 0.2 and σζ2 = 2.0, σε1 = σε2 = 1.0.

From the above, we gather that there are four possible
combination of settings in which comparisons will be
carried out – F-HOM, P-HOM, F-HET, P-HET. We use
the following benchmarks in our comparison. IRM from
[Arjovsky et al., 2019], ICP from [Peters et al., 2015],
and standard ERM. Note in each of the cases we use
a linear model. The code for our experiments can
be found at https://github.com/IBM/OoD. All other
implementation details can be found in the supplement.
The performance is measured in terms of the model
estimation error, i.e., the square of the distance from
the ideal model (1p,0q).

Before we discuss a comparison in all these settings, we
look at a two dimensional experiment where p = q = 1
and the parameters are set to F-HOM. We carry out
this comparison to illustrate several points. Firstly,
we want to show why is `∞ constraint very important.
Secondly, we want to show that the works when αe is
non-zero, i.e., X2

e is anti-causal (in the theory we had
assumed αe = 0). We compare with following variants
of the linear regression game (LRG) i) no constraints,

https://github.com/IBM/OoD
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Figure 3: We compare across four settings: a) F-HET, b) P-HET, c) F-HOM and d) P-HOM.

Method Test accuracy

Oracle 75

ERM 17.1± 0.60

IRM [Arjovsky et al., 2019] 66.90± 2.50

F-IRM game [Ahuja et al., 2020] 65.21± 1.56

Ours 66.99± 1.37

Table 2: Comparing test accuracies on colored MNIST.

which is the game U-LRG (Section 4.1), ii) regularize
each Re with `∞ penalty (R∞-LRG), and iii) regularize
each Re with `2 penalty (R2-LRG). In Table 1, we show
the estimated model against the respective method and
the estimation error. Observe that C-LRG was able to
outperform other variants of LRG. Moreover, C-LRG
performed better than the other existing methods as
well. w12 (w22) are the coefficients that model 1 (2)
associates with feature 2, which is spuriously correlated.
We plot the trajectories of the coefficients w12 (w22) of
the models of each of the environments for the spurious
features as the best response dynamics based training
proceeds in Figure 2. Observe how the `∞ constrained
models saturate on opposite ends of the boundary and
as a result they cancel the spurious factors out. In
contrast for other models, we do not see such an effect.
Lastly, see if we choose a larger bound wsup = 5 the
coefficients reach the boundary they just take more
steps than wsup = 2.

Next, we move to a more elaborate comparison for
the 10 dimensional setting from [Arjovsky et al., 2019]

(we also show results for 100 dimensional setting in
supplement). In Figure 3a, 3b, we show the model
estimation error for F-HET and P-HET settings. In
Figure 3c, 3d, we show the model estimation error as
a function of the training samples for F-HOM and P-
HOM settings. Observe that in each of the settings
C-LRG performs better than the rest or is close to the
best when the number of samples is more than 400.

5.2 Colored MNIST experiments

The entire discussion so far has been focused on linear
SEMs. We now to move non-linear setups and carry
out the colored MNIST (CMNIST) classification ex-
periment from [Arjovsky et al., 2019]. In CMNIST the
task is to classify the digits while ensuring the model
does not rely on the background color. We use the
ensemble-model construction from [Ahuja et al., 2020].
Each environment uses its own neural network (NN)
and the ensemble model averages the logits from the
different NNs. We use an `∞ constraint on the weights
of the last layer of the NN. In Table 2, we show the
comparisons of the different methods in terms of the
test accuracy. We defer other details to the supplement.

6 Conclusion
In this work, we developed a new game-theoretic ap-
proach to learn OOD solutions for linear regressions.
To the best of our knowledge, we have provided the
first algorithms for which we can guarantee both con-
vergence and better OOD behavior than standard em-
pirical risk minimization. Experimentally too we see
the promise of our approach as it is either competitive
or outperforms the state-of-the-art by a margin.
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7 Appendix

In this section, we provide the proofs to the proposi-
tions and theorems, and also provide other details on
the experiments. We restate all the propositions and
theorems for reader’s convenience. In all our results,
we use the following notation a is a vector, ai is the ith

component of vector a, A is a scalar random variable,
A is a vector random variable, Ai is the ith component
of the random variable A, A is a set, bold capitalized
Greek letters e.g., Σ are used for matrices. Im is a m
dimensional identity matrix and 1m is a m dimensional
vector of ones. A bar over a vector w, w̄, denotes
the ensemble predictor (sum of predictor from the two
environments).

7.1 Proposition 1

We restate Proposition 1 below.

Proposition 6. If Assumption 1 holds and if the least
squares optimal solution in the two environments are

• equal, i.e., w∗1 = w∗2, then the set {(w†1,w
†
2) | w†1 +

w†2 = w∗1} describes all the pure strategy Nash
equilibrium of U-LRG, Γ.

• not equal, i.e., w∗1 6= w∗2, then U-LRG, Γ, has no
pure strategy Nash equilibrium.

Proof. We start with latter part of the proposition.
Suppose there exists a pair w†1,w

†
2 which is a NE of

U-LRG. Observe that Re(w1,w2) is jointly convex in
w1,w2 (Re(w1,w2) = Ee[(Ye−wT

1Xe−wT
2Xe)

2]; loss
inside the expectation is convex and expectation is a
weighted sum over these losses). Let us compute the
gradient of Re(w1,w2) w.r.t we.

∇w1
R1(w1,w2) = 2Σ1(w1 +w2)− 2ρ1

∇w2
R2(w1,w2) = 2Σ2(w1 +w2)− 2ρ2

(7)

From the definition of pure strategy NE, it fol-
lows that w†1 (w†2) minimizes R1(·,w†2) (R2(w†1, ·)).
From the convexity of R1(·,w†2) and R2(w†1, ·)
it follows that ∇w1|w1=w†1

R1(w1,w
†
2) = 0 and

∇w2|w2=w†2
R2(w†1,w2) = 0. Therefore, we have

Σ1(w†1 +w†2)− ρ1 = 0 =⇒

w†1 +w†2 = Σ−1
1 ρ1 = w∗1

Σ2(w†1 +w†2)− ρ2 = 0 =⇒

w†1 +w†2 = Σ−1
2 ρ2 = w∗2

(8)

In the above equation (8), we use Assumption 1 and the
optimal solution defined in Section 4.1, w∗e = Σ−1

e ρe,

for each e ∈ {1, 2}. From equations (8) it follows
that w∗1 = w∗2 . Therefore, the existence of NE implies
w∗1 = w∗2 or in other words if w∗1 6= w∗2 implies NE does
not exist. In the above we learned that w∗1 = w∗2 is a
necessary condition for NE to exist. In the next part we
show that this condition is sufficient as well. Suppose
w∗1 = w∗2 = w∗. Define any point ŵ1 and another
point ŵ2 = w∗− ŵ1. Compute ∇w1|w1=ŵ1

R1(w1, ŵ2)
and ∇w2|w2=ŵ2

R2(ŵ1,w2). Using the expression in
equation (7) we get

∇w1|w1=ŵ1
R1(ŵ1, ŵ2) = 2Σ1(ŵ1 + ŵ2)− 2ρ1

= 2Σ1w
∗ − 2ρ1 = 0 (From the optimality of w∗ for R1)

∇w2|w2=ŵ2
R2(ŵ1, ŵ2) = 2Σ2(ŵ1 + ŵ2)− 2ρ2

= 2Σ2w
∗ − 2ρ2 = 0 (From the optimality of w∗ for R2)

(9)

From the convexity of R1 and R2 it follows that ŵ1,
ŵ2 simultaneously minimize R1 and R2. Therefore,
every such ŵ1 and ŵ2 that sum to w∗ form a NE. This
completes the proof.

7.2 Proposition 2

We restate Proposition 2 below.

Proposition 7. If Assumption 2 holds with αe = 0
for each e ∈ {1, 2}, and Assumption 3 holds, then the
least squares optimal solution for environment e is

w∗e = (winv
e ,wvar

e ) =
(
γ,
(
ΘeΘ

T
e +diag[σ2

ζe ]
)−1

Θeηe

)
(10)

Proof. We derive the expression for the optimal pre-
dictor in the confounder only SEM in Assumption 2.
Recall that the general expression for the least squares
optimal predictor (defined in Section 4.1) is

w∗e = Σ−1
e ρe (11)

We use the SEM in Assumption 2 to derive an expres-
sion for Σe. First observe that from Assumption 2, we
have that Ee[X1

e ] = 0 and

Ee
[
Ye
]

= γTEe
[
X1
e

]
+ ηT

e Ee
[
He

]
+ Ee

[
εe
]

= 0

Ee
[
X2
e

]
= αeEe

[
Ye
]

+ ΘeEe
[
He

]
+ Ee

[
ζe
]

= 0

Therefore
Ee
[
X1
e

]
= 0,Ee

[
X2
e

]
= 0 (12)

We divide Σe into four smaller matrices Σe1 =
Ee[X

1
eX

1,T
e ], Σe2 = Ee[X

2
eX

2,T
e ], Σe12 =

Ee[X
1
eX

2,T
e ] and Σe21 = Ee[X

2
eX

1,T
e ].
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From Assumption 2, we know (He, ζe) ⊥ X1
e and

X2
e ← ΘeHe + ζe, which implies X2

e ⊥X1
e .

Therefore, from X2
e ⊥X1

e and equation (12) it follows
that

Σe21 = Ee
[
X2
eX

1,T
e

]
= Ee

[
X2
e

]
Ee
[
X1,T
e

]
= 0q×p

(13)

Σe2 = Ee
[
X2
eX

2,T
e

]
= ΘeEe

[
HeH

T
e

]
ΘT
e+

ΘeEe
[
Heζ

T
e

]
+ Ee

[
ζeH

T
e

]
ΘT
e + E

[
ζeζ

T
e

]
= ΘeΘ

T
e + diag[σ2

ηe
]

(14)

In the above equation (14), we use Ee
[
HeH

T
e

]
= Is

and Ee
[
Heζ

T
e

]
= 0s×q, which follow from Assumption

2. From Assumption 3, we know that σ2
ηe
> 0 and we

use this observation in equation (14) to deduce that
Σe2 is positive definite.

From equation (13) we can simplify Σe into a block di-

agonal matrix written as diag
[
Σe1,Σe2

]
, where Σe1 =

Ee
[
X1
e ,X

1,T
e

]
and Σe2 = Ee

[
X2
e ,X

2,T
e

]
.

From Assumption 3, Σe1 is positive definite and we
showed above that Σe2 is positive definite as well.
Therefore, we can write the inverse of Σe as another
block diagonal matrix written as

Σ−1
e = diag

[
Σ−1
e1 ,Σ

−1
e2

]
(15)

Next let us simplify ρe =
[
Ee
[
X1
eYe

]
,Ee
[
X2
eYe

]]
.

Ee
[
X1
eYe

]
= Ee

[
X1
eγ

TX1
e + ηT

eHe + εe

]
= Σe1γ

(16)

Ee
[
X2
eYe

]
=

Ee
[
X2
e (γTX1

e + ηT
eHe + εe)] = Ee[X2

eη
T
eH

e
]

Ee
[
X2
eη

T
eH

e
]

= Ee
[
ΘeHeη

T
eH

e
]

= ΘeEe
[
HeH

T
e

]
ηe

= Θeηe

(
Since Ee

[
HeH

T
e

]
= Is

)
(17)

Combining equations (11)- (17),

w∗e = Σ−1
e ρe =

(
γ,
(
ΘeΘ

T
e + diag[σ2

ζe]
)−1

Θeηe

)
This completes the derivation.

7.3 Theorem 2

We first state a lemma needed for proving Theorem 2.

Lemma 1. Suppose Assumptions 1 and 5 hold. Con-
sider the case when w∗1 6= w∗2. In this case, at least one

of the predictors in the NE of C-LRG w†1 or w†2 has
to be on the boundary of the set, i.e. for at least one
e ∈ {1, 2}, ‖w†e‖∞ = wsup. Moreover, if ‖w†1‖∞ < wsup

(‖w†2‖∞ < wsup) and ‖w†2‖∞ = wsup (‖w†1‖∞ = wsup)
then the ensemble predictor is optimal for environment
e, i.e., w̄† = w∗2 (w̄† = w∗1).

Proof. We start with the first part of the above lemma.
In the first part, the only case that is excluded is when
both the points forming the NE are in the interior, i.e.,
‖w†1‖∞ < wsup and ‖w†2‖∞ < wsup. Denote w−e as the
predictor used by the environment q ∈ {1, 2} \ {e}. We
interhangeably use Re(we,w−e) and Re(w1,w2). For
environment e, from the definition of NE, it follows that
w†e satisfies w†e ∈ arg minwe∈W Re(we,w

†
−e). Note i)

Re(we,w
†
−e) is a convex function in we, and ii) the

set W has a non-empty relative interior (Since wsup >
0). From these two conditions it follows that Slater’s
constraint qualification is satisfied, which implies strong
duality holds [Boyd and Vandenberghe, 2004]. From
strong duality, it follows that w†e and λ†e, where λ†e
is the dual variable for the constraint ‖we‖∞ ≤ wsup,
satisfy the KKT conditions given as follows

‖w†e‖ ≤ wsup

λ†e ≥ 0

λ†e
(
‖w†e‖ − wsup

)
= 0

0 ∈ ∇w†eRe(w
†
e,w

†
−e) + λ†e∂(‖w†e‖∞)

(18)

In the above ∂(‖w†e‖∞) represents the subdifferential

of ‖ · ‖∞ at w†e. If ‖w†1‖∞ < wsup and ‖w†2‖∞ < wsup,

then λ†1 and λ†2 are both zero. As a result, we have for

e ∈ {1, 2}, ∇w†eRe(w
†
e,w

†
−e) = 0. From the expression

of the gradients in (7) we have for each e ∈ {1, 2}

∇w†eRe(w
†
e,w

†
−e) = 2Σe(w

†
e +w†−e)− 2ρe = 0

=⇒ w†1 +w†2 = Σ−1
e ρ

e = w∗e
(19)

From equation (19) it follows that w∗1 = w∗2 , which
contradicts the assumption w∗1 6= w∗2 . This completes
the proof for the first part of the Lemma.
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Next, we move to the latter part of the proof, which
states that if ‖w†e‖∞ < wsup and ‖w†−e‖∞ = wsup,
then the ensemble predictor is optimal for environment
e, i.e., w̄† = w∗e . Since ‖w†e‖∞ < wsup, from the
KKT conditions above in (18) we have that λ†e = 0,

which implies that ∇w†eRe(w
†
e,w

†
−e) = 0. Using the

expression for gradient in equation (7), we have that

w†e +w†−e = w̄† = w∗e . This completes the proof.

We restate Theorem 2 for reader’s convenience.

Theorem 4. If Assumptions 1, 5, 6 hold, then the
ensemble predictor, w̄†, constructed from the Nash equi-
librium, (w†1,w

†
2), of Γc is equal to(

w∗1 � 1|w∗2 |≥|w∗1 | +w
∗
2 � 1|w∗1 |>|w∗2 |

)
1w∗1�w∗2≥0 (20)

Proof. Recall in Section 4.2, we divided the features
{1, . . . , n} into two sets U and V . Without loss of gener-
ality assume that the first k components in Xe belong
to U and the next n−k components to be in V . There-
fore, U = {1, . . . , k} and V = {k + 1, . . . , n}. Define
Xe+ = (Xe1, . . . , Xek) and Xe− = (Xe(k+1), . . . , Xen).
We divide the weights in we = (we1, . . . , wen) into two
parts where the weights associated with the first k
components, Xe+, are we+ = (we1, . . . , wek) and the
weights associated with the next n − k components,
Xe−, are we− = (we(k+1), . . . , wen). Similarly, we di-
vide the vector ρe defined in Section 4.1 into ρe+ and
ρe−.

Define Σe+ = Ee
[
Xe+X

T
e+] and define Σe− =

Ee
[
Xe−X

T
e−]. As a consequence of the Assumption 6,

we can simplify the expression for Σe as follows

Σe = diag
[
Σe+,Σe−

]
(21)

For each e ∈ {1, 2}, each feature component i ∈
{1, . . . , n} has a mean zero Ee

[
Xei

]
= 0. Therefore,

the variance in each feature component i ∈ {1, . . . , n}
is σ2

ei = Ee
[
X2
ei

]
. We can further simplify Σe−. Using

Assumption 6, we have that Σe− is a diagonal matrix,
which we write as

Σe− = diag[(σ2
em)nm=k+1]

]
(22)

We use equations (21) and (22) and the notation intro-
duced above to simplify the risk as follows.

Re(w1,w2) =

(w1 +w2)TΣe(w1 +w2)− ρT
e (w1 +w2) + Ee

[
Y 2
e

]
=

(w1+ +w2+)TΣe+(w1+ +w2+)− ρT
e+(w1+ +w2+)+

n∑
i=k+1

(
(w1i + w2i)

2σ2
ei − 2(w1i + w2i)ρei

)
+ Ee

[
Y 2
e

]
(23)

Recall that w∗e = Σ−1
e ρe (defined in Section 4.1). From

the above equations (21), (22) and Assumption 1, we
get

w∗e+ = Σ−1
e+ρe+

w∗e− =
[ρei
σ2
ei

]
i∈{k+1,...,n}

(24)

where w∗e+ is the vector of the first k components in
w∗e , w∗e− are the next n− k components in w∗e , ρei, is
the ith component of ρe and σ2

ei is the variance in Xei.

Recall that the first k components comprise the set U ,
which is defined as the set where the features of the least
squares coefficients are the same across environments,
i.e.,

w∗1+ = w∗2+ (25)

Define

Re+(w1+,w2+) = (w1+ +w2+)TΣe+(w1+ +w2+)−
ρT
e+(w1+ +w2+) + Ee

[
Y 2
e

]
(26)

For each i ∈ V = {k + 1, . . . , n} define

Rei(w1, w2) =
(
(w1i + w2i)

2 − 2(w1i + w2i)w
∗
ei

)
(27)

We use the above equations (26) and (27) to simplify
the risks as follows

min
we∈W

Re(w1,w2) = min
we+∈W+

Re+(w1+,w2+)+

n∑
i=k+1

σ2
ei min
|wei|≤wsup

Rei(w1i, w2i)
(28)

In the above W+ =
{
w | w ∈ Rk, ‖w‖∞ ≤ wsup

}
.

From the above expression in equation (28), we see
that the the optimization for environment e can be de-
composed into separate smaller minimizations, which
we analyze separately next. `∞ norm constraints al-
lows to make the problem in equation (28) separable
and for other norms such separability is not possible.
Henceforth, we will look at each smaller minimization
as a separate game between the environments.

Let us consider the first minimization in equation (28)

min
we+∈W1+

Re+(w1+,w2+) (29)

Let us minimize the objective in equation (29) without
imposing the constraint that w1+ ∈ W1+

Σe+(w1+ +w2+) = ρe+

(w1+ +w2+) = Σ−1
e+ρe+ = w∗e+ (From equation (24))

(30)
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Therefore, we have that if (w1+ +w2+) = w∗e+, then
environment e achieves the minimum risk possible and
cannot do any better. In fact, from equation (24)
since w∗1+ = w∗2+, if (w1+ +w2+) = w∗1+, then both
environments are at the minimum and cannot do any
better. Therefore, we know that all the elements in
the set C = {w1+,w2+ | w1+ ∈ W+, w1+ + w2+ =
w∗1+} form a NE of C-LRG. From Assumption 5, we
know that this set C is non-empty. Moreover, there
are no points outside this set C which form a NE.
If w1+ + w2+ 6= w∗1+, then the gradient will not be
zero for either of the environments and both would
prefer to move to a point where their gradients are
zero. Hence, in every NE, w1+ +w2+ = w∗1+. If we
use the expression in equation (6) and compute first k
components it returns vector w∗1+ (we use the condition
w∗1+ = w∗2+ to simplify the expression in equation (6)).
This shows that the expression in equation (6) correctly
characterizes the NE for the first k components that
make up the set U . We now move to the remaining
n− k components that make up the set V.

Consider a component i ∈ V = {k + 1, . . . , n}. Envi-
ronment e is interested in minimizing Rei defined in
equation (26). Let us consider the ith component of the
expression in equation (6) in Theorem 2 and rewrite
the expression in terms of scalars.

(
w∗1i1|w∗2i|≥|w∗1i| + w∗2i1|w∗1i|>|w∗2i|

)
1w∗1iw∗2i≥0 (31)

We divide the analysis into two cases. In the first
case, the signs of w∗1i and w∗2i disagree, which implies
1w∗1iw∗2i≥0 is zero. In the the second case, the signs of
w∗1i and w∗2i agree, which implies 1w∗1iw∗2i≥0 is one. Let
us start with the first case. Without loss of generality
say w∗1i < 0 and w∗2i > 0. Suppose w̄†i > 0, where w̄†i
is the ith component of the NE based predictor

w̄†i > 0 =⇒ w†1i + w†2i > 0

=⇒ w†1i > −w
†
2i (w†2i > −w

†
1i)

w†1i > −w
sup (w†2i > −w

sup)

(32)

Observe that

∂R1i(w1i, w
†
2i)

∂w1i

∣∣∣
w1i=w

†
1i

= 2(w̄†i − w
∗
1i) > 0

Since w†1i > −wsup
(
from equation (32)

)
, w†1i can be

decreased and improve the utility for environment 1,
which contradicts that w†1i is NE. Suppose w̄†i < 0,
then from symmetry we can show that one of the
environments will be able to increase the weight and
improve its utility.

Therefore, the only option that remains w̄†i = 0 =⇒
w†1i = −w†2i.

Observe that
∂R1i(w1i,w

†
2i)

∂w1i

∣∣
w1i=w

†
1i

= 2(−w∗1i) > 0 and

if w†1i > −wsup environment 1 will want to decrease

w†1i.

Observe that
∂R2i(w

†
1i,w2i)

∂w2i

∣∣
w2i=w

†
2i

= 2(−w∗2i) < 0 and

if w†2i < wsup environment 2 will want to increase w†2i.

Hence, the only solution left is for environment 1 to be
at−wsup and environment 2 to be at wsup. Environment
1’s (2’s) risk decreases (increases) as it moves closer to
its optimal point w∗1i (w∗2i). When environment 2 uses
wsup, environment 1’s best response is to use −wsup as
it brings the environment 1 the closest it can get to w∗1i.
Therefore, (wsup,−wsup) is a NE. This completes the
first case, i.e., when the coefficients have opposite signs
the coefficient of the NE based ensemble predictor for
that component is 0, which is what equation (6) states.

Next, consider the case when the signs of w∗1i and
w∗2i agree. Let us consider the case when both have
positive signs and the negative sign case will follow
from symmetry. Suppose 0 < w∗1i < w∗2i. From Lemma
1, we know that there are three scenarios possible.

In the first scenario, both w†1i and w†2i are on the same
side of the boundary, say both are at wsup.

∂R1i(w1i, w
†
2i)

∂w1i

∣∣
w1i=w

†
1i

= 2(2wsup − w∗1i)

∂R2i(w
†
1i, w2i)

∂w2i

∣∣
w2i=w

†
2i

= 2(2wsup − w∗2i)
(33)

From Assumption 5, 0 < w∗1i < w∗2i ≤ wsup. Thus
for both e ∈ {1, 2}, from equation (33) it follows that

decreasing w†ei from the current state would improve
the utility thus contradicting that they form a NE. The
other possibility is that the two are on the other sides

of the boundary, which makes
∂R1i(w1i,w

†
2i)

∂w1i

∣∣
w1i=w

†
1i

and
∂R2i(w

†
1i,w2i)

∂w2i

∣∣
w2i=w

†
2i

negative (from Assumption

5); thus prompting each player on the negative side of
the boundary to increase the weight and improve its
utility, which contradicts the fact that they form a NE.

The other possibility arising out of Lemma 2 is
w†1i = wsup and w†2i = w∗2i − wsup. In this case, the
∂R1i(w1i,w

†
2i)

∂w1i

∣∣
w1i=w

†
1i

is positive implying environment

1 can decrease and improve its utility. Thus this state
is not a NE.

Therefore, the only remaining possibility is w†2i =

wsup and w†1i = w∗1i − wsup. In this case, the
∂R2i(w

†
1i,w2i)

∂w2i

∣∣
w2i=w

†
2i

is negative, environment 2 can-

not increase the weight further as it is already at the
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boundary (playing wsup is a best response of environ-
ment 2 brings it closest to the desired w∗2i). Hence, this
state is a NE and the ensemble predictor is at w∗1i.

If we suppose, w∗2i < w∗1i < 0. In this case, we can
follow the exact same line of reasoning and arrive at
the conclusion that the only NE is w̄† = w∗1i.

We have analyzed all the possible cases when |w∗1i| <
|w∗2i| and both w∗1i and w∗2i have the same sign. This
completes the proof for the first term in the expression
in equation (6)

w∗1i1|w∗2i|≥|w∗1i|

The second term is same as the first term in equation
(6) with the roles of environments swapped. Therefore,
due to symmetry we do not need to work out the second
term separately. This completes the analysis for all the
cases in the equation (6) in Theorem 2.

7.4 Proposition 4

We restate Proposition 4 below.

Proposition 8. If Assumption 2 holds with αe = 0
and Θe an orthogonal matrix for each e ∈ {1, 2}, and
Assumptions 3, 4, 5 hold, then ‖w̄†−(γ, 0)‖ < ‖wERM−
(γ, 0)‖ holds for all wERM ∈ SERM. 3 Moreover, if all
the components of two vectors Θ1η1 and Θ2η2 have
opposite signs, then w̄† = (γ, 0).

Proof. We first show that the Assumptions made in the
above proposition imply that the Assumptions needed
for Theorem 2 to be true hold.

We show that Assumptions 2, 3 =⇒ Assumption 1
holds. Xe

1 is zero mean (from Assumption 2) and

Ee
[
Ye
]

= γTEe
[
X1
e

]
+ ηT

e Ee
[
He

]
+ Ee

[
εe
]

= 0

Ee
[
X2
e

]
= αeEe

[
Ye
]

+ ΘeEe
[
He

]
+ Ee

[
ζe
]

= 0

Thus Ee
[
Xe

]
= Ee

[
(X1

e ,X
2
e )
]

= 0

In the proof of Proposition 2, we had shown that when
the data is generated from SEM in Assumption 2

Σe = diag
[
Σe1,Σe2] = diag

[
Σe1,ΘeΘ

T
e + diag

[
σ2
ζe

]]
Since Θ is an orthogonal matrix we have

Σe = diag
[
Σe1, diag[σ2

ζe + 1q]
]

(34)

3Exception occurs over measure zero set over proba-
bilities π1. If least squares solution are strictly ordered,
i.e., ∀i ∈ {1, . . . , n}, 0 < w∗1i < w∗2i and π1 = 1, then
wERM = w̄† = w∗1 . In general, w∗1 ,w

∗
2 are not ordered and

π1 ∈ (0, 1), thus C-LRG improves over ERM.

Both Σe1 and diag[σ2
ζe

+1q] are positive definite as a re-
sult Σe is also positive definite. Therefore, Assumption
1 holds.

The expression for the solution to the least squares
optimal solution derived in equation (5) has two parts
winv
e and wvar

e . Recall the definition of sets U and V
from Section 4.2. The first p components corresponding
to winv

e =⇒ {1, . . . , p} ⊆ U . The next q components
corresponding to wvar

e =⇒ {p + 1, . . . , p + q} ⊇ V.
We showed above that Σe is a block diagonal matrix
and the block corresponding to the feature components
{p + 1, . . . , p + q} also equalling a diagonal matrix
diag[σ2

ζe
+ 1q]. Therefore, we can see that each feature

component in {p + 1, . . . , p + q} is uncorrelated with
any other feature component. Therefore, Assumption
6 also holds. Hence, all the Assumptions required for
Theorem 2 also hold. We write the expression for least
squares optimal solution in this case (from equation (5))

as w∗e = (winv
e ,wvar

e ) =
(
γ,
(
diag[σ2

ζe
+ 1q]

)−1

Θeηe

)
.

We divide the NE based ensemble predictor w̄† into
two halves: w†1 is the vector of first p coefficients of w̄†

and w†2 is the vector of next q coefficients of w̄†.

From Theorem 2 it follows that

w†1 = γ (35)

The next q components in the set {1, . . . , q} are com-
puted as follows. For k ∈ {1, . . . , q}, (p + k)th com-

ponent of w∗e is

[
Θeηe

]
k

σ2
ζe,k+1

, where
[
Θeηe

]
k

is the kth

component of Θeηe and σ2
ζe,k

is the kth component of

σ2
ζe

.

We first prove the latter part of the above proposition.
If Θ1η1 and Θ2η2 have opposite signs, then for each
k ∈ {1, . . . , q}, the sign of (p+ k)th component of w∗1
and w∗2 are opposite. From Theorem 2 it follows that

w̄†p+k = 0. This holds for all k ∈ {1, . . . , q} and as

a result we have w̄† =
(
γ,0

)
. Now we move to the

former part of the Proposition, which compares the NE
based ensemble predictor to ERM’s solution.

ERM solves the following optimization problem

min
w∈Rn×1

π1E1

[(
Y1−wTX1

)2]
+(1−π1)E2

[(
Y2−wTX2

)2]
(36)

By putting the gradient of the above to zero, we get(
π1Σ1 + (1− π1)Σ2

)
wERM = π1ρ1 + (1− π1)ρ2

wERM =
(
π1Σ1 + (1− π1)Σ2

)−1
(π1ρ1 + (1− π1)ρ2)

(37)

Substituting the expression for Σe from equation (34)
into equation (37) we get wERM equals
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(wERM
1 ,wERM

2 ) =
(
γ, (π1Θ1η1 + (1− π1)Θ2η2)� ξ

)
(38)

where ξ = 1q �
(
π1

(
σ2
ζ1

+ 1q
)

+ (1− π1)
(
σ2
ζ2

+ 1q
))

and a � b is elementwise division of the two vectors
a and b, and wERM

1 = γ and wERM
2 = (π1Θ1η1 + (1−

π1)Θ2η2)� ξ. For k ∈ {1, . . . , q}, the kth component
of wERM

2 is given as

π1

[
Θ1η1

]
k

+
(
1− π1)

[
Θ2η2

]
k

π1

(
σ2
ζ1,k

+ 1
)

+ (1− π1)
(
σ2
ζ2,k

+ 1
) (39)

Based on the ERM predictor (equation (38)) and NE-
based ensemble predictor (equation (35)) correctly es-
timate the causal coefficients γ, i.e., they match in
the first p coefficients. We focus on the latter q coeffi-
cients. The distance of ERM and NE based ensemble
predictors are written as ‖wERM − (γ,0)‖ = ‖wERM

2 ‖,
‖w̄† − (γ,0)‖ = ‖w̄†2‖. Hence, we only need to com-

pare the norm of wERM
2 and w̄†2. From Assumption

4, we know that wvar
1 6= wvar

2 , thus the two differ in
at least one component. Consider a component m,
where the two vectors wvar

1 and wvar
2 do not match.

For simplicity, let us write
[
Θeηe

]
m

= ϑe. Therefore,

ϑ1

σ2
ζ1,m+1

6= ϑ2

σ2
ζ2,m+1

.

There are two possiblities – i) the signs of ϑ1

σ2
ζ1,m+1

and

ϑ2

σ2
ζ2,m+1

do not match, and ii) the signs of ϑ1

σ2
ζ1,m+1

and ϑ2

σ2
ζ2,m+1

match. In case i), the magnitude of the

corresponding coefficient of NE based predictor is 0.
The magnitude for the ERM based predictor is given
as ∣∣∣ π1ϑ1 +

(
1− π1)ϑ2

π1

(
σ2
ζ1,m

+ 1
)

+ (1− π1)
(
σ2
ζ2,m

+ 1
) ∣∣∣ (40)

If π1ϑ1 +
(
1− π1)ϑ2 = 0 (π1 = ϑ2

ϑ2−ϑ1
), then the coeffi-

cient of ERM based solution has same magnitude as
NE based predictor, which is equal to zero. Therefore,
except for when π1 = ϑ2

ϑ2−ϑ1
, ERM is strictly worse

than NE based ensemble predictor.

In case ii), the the signs of ϑ1

σ2
ζ1,m+1

and ϑ2

σ2
ζ2,m+1

match.

Let us consider the case when both are positive. With-
out loss of generality assume that 0 ≤ ϑ1

σ2
ζ1,m+1

<

ϑ2

σ2
ζ2,m+1

. From Theorem 2, we know that the mag-

nitude of the NE based predictor is equal to ϑ1

σ2
ζ1,m+1

and the magnitude of ERM based predictor is

π1ϑ1 +
(
1− π1)ϑ2

π1

(
σ2
ζ1,m

+ 1
)

+ (1− π1)
(
σ2
ζ2,m

+ 1
) (41)

We take a difference of the magnitudes of the two and
get

π1ϑ1 +
(
1− π1)ϑ2

π1

(
σ2
ζ1,m

+ 1
)

+ (1− π1)
(
σ2
ζ2,m

+ 1
) − ϑ1

σ2
ζ1,m

+ 1(
1− π1)

(
ϑ2

(
σ2
ζ1,m

+ 1
)
− ϑ1

(
σ2
ζ2,m

+ 1
))(

π1

(
σ2
ζ1,m

+ 1
)

+ (1− π1)
(
σ2
ζ2,m

+ 1
))(

σ2
ζ1,m

+ 1
)

(42)

Since ϑ1

σ2
ζ1,m+1

< ϑ2

σ2
ζ2,m+1

it follows that if π1 ∈ [0, 1),

then the above difference in equation (42) is positive.
However, if π1 = 1, then the difference is zero. There-
fore, except for when π1 = 1, ERM is strictly worse
than NE based ensemble predictor.

Lastly, the analysis for the case when both coefficients
are negative also follows on exactly the above lines.
Without loss of generality consider the case, ϑ2

σ2
ζ2,m+1

<

ϑ1

σ2
ζ1,m+1

≤ 0. In this case, NE based predictor will take

the value ϑ1

σ2
ζ1,m+1

(follows from Theorem 2) and its

magnitude is − ϑ1

σ2
ζ1,m+1

. The magnitude of ERM based

predictor is

−
π1ϑ1 +

(
1− π1)ϑ2

π1

(
σ2
ζ1,m

+ 1
)

+ (1− π1)
(
σ2
ζ2,m

+ 1
) (43)

We take a difference of the magnitudes of the NE based
predictor and the ERM based predictor to get

(
1− π1)

(
ϑ1

(
σ2
ζ2,m

+ 1
)
− ϑ2

(
σ2
ζ1,m

+ 1
))(

π1

(
σ2
ζ1,m

+ 1
)

+ (1− π1)
(
σ2
ζ2,m

+ 1
))(

σ2
ζ1,m

+ 1
)

(44)

Since ϑ2

σ2
ζ2,m+1

< ϑ1

σ2
ζ1,m+1

it it follows that if π1 ∈ [0, 1),

then the above difference in equation (42) is positive.
However, if π1 = 1, then the difference is zero. There-
fore, except for when π1 = 1, ERM is strictly worse
than NE based ensemble predictor. This completes
the analysis for all the possible cases. For each compo-
nent where the least squares optimal solution differ, we
showed that ERM based predictor is worse than NE
based predictor except over a set of measure zero over
the probability π1. This completes the proof.

7.5 Theorem 3

We restate Theorem 3 below.
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Theorem 5. If Assumption 1, 5, 6 hold, then the
output of Algorithm 1, w̄+, is(

w∗1 � 1|w∗2 |≥|w∗1 | +w
∗
2 � 1|w∗1 |>|w∗2 |

)
1w∗1�w∗2≥0

Proof. From Theorem 2, we know that if Assumptions
1, 5, 6 hold, then the NE based ensemble predictor is
given as(
w∗1 � 1|w∗2 |≥|w∗1 | +w

∗
2 � 1|w∗1 |>|w∗2 |

)
1w∗1�w∗2≥0 (45)

In Algorithm 1, each environment plays the optimal
action given the action of the others. Hence, by best
responding to each other we hope the procedure would
converge to NE based ensemble predictor in equation
(45).

We write a dynamic which seems simpler than the
dynamic in Algorithm 1. However, we show that the
two are equivalent. We index the iteration by t. Define
wt
e as the predictor for environment e at the end of

iteration t. The ensemble predictor is given as w̄t =
wt

1 +wt
2. Each component of e’s predictor is given as

wt
e = (wte1, . . . , w

t
en) and for the other environment q ∈

{1, 2} \ {e} as wt
−e = (wt−e1, . . . , w

t
−en). Environment

e in its turn sees that the other environment is using a
predictorwt−1

−e ; environment e updates the predictor by

taking a step such that minwt
e∈W

∥∥wt
e +wt−1

−e −w∗e
∥∥2

,
i.e. the environment moves such that it gets closest
to the optimal least squares solution. We can simplify
this minimization as

min
wt

e∈W

∥∥wt
e +wt−1

−e −w∗e
∥∥2

=

n∑
i=1

min
|wt

ei|≤wsup
(wtei + wt−ei − w∗ei)2

(46)

For t = 0, wt
1 = 0 and wt

2 = 0. The dynamic based on
equation (46) is written as follows.

For t ≥ 1

wt
1 =

{
wt−1

1 t is even

ΠW [w∗1 −wt−1
2 ] t is odd

(47)

wt
2 =

{
wt−1

2 , t is odd

ΠW [w∗2 −wt−1
1 ] t is even

(48)

t = t+ 1

In the above equations (47), (48), ΠW represents the
projection on the set W = {w s.t.‖w‖∞ ≤ wsup}.

In each iteration, only one of the environment updates
the predictors. In the above dynamic, whenever an en-
vironment completes its turn to update the predictor, t

is incremented by one. Before showing the convergence
of this dynamic, we first need to establish that this
dynamic is equivalent to the one stated in Algorithm,
where when its the turn of environment e to update it
minimizes the following minwt

e∈W Re(w
t
e,w

t−1
−e ).

Equivalence of dynamic in equations (47) and
(48) to dynamic in Algorithm 1

Recall from Section 4.2 and proof of Theorem 2, that
we divide the feature components {1, . . . , n} into two
sets, the first k components are in U and the next n−k
components are in V. The two environments have the
same least squares coefficients for components in U but
have differing coefficients for points in V. For each
e ∈ {1, 2}, wt

e+ corresponds to the first k coefficient at
the end of iteration t and wt

e− corresponds to the next
n− k coefficients at the end of iteration t.

Recall the decomposition that we stated in equation
(28). To arrive at the equation (28) we used Assump-
tions 1 and 6. We continue to make these assumptions
in this theorem as well. Therefore, we can continue to
use the decomposition in equation (28). For environ-
ment 2 we can write

min
wt

2∈W
R2(wt−1

1 ,wt
2) =

= min
wt

2+∈W+

R2+(wt−1
1+ ,wt−1

2+ )+∑
i

σ2
2i min
|wt

2i|≤wsup
(wt2i + wt1i − w∗2i)2

(49)

A decomposition identical to above equation (49) also
holds for environment 1. From equation (46) and (49),
we gather that for latter n− k components, the update
rule in equations (47), (48) and the update rule in
Algorithm 1 are equivalent for both the environments.
We now show that both the rules are equivalent in the
first k components as well.

Consider iteration t = 1. If the environment 1 uses the
update rule in equation (47), then the ensemble predic-
tor is set to w∗1 (From Assumption w∗1 ∈ W is in the in-
terior, the projection will be the point itself). Note that
if environment 1 used minwt

1∈W R1(wt
1,w

t−1
2 ), then as

well it will move the ensemble predictor to w∗1 (since
w∗1 is the least squares optimal solution).

Consider iteration t = 2. Suppose the environment
2 uses the update rule in equation (48). Define
∆∗ = w∗2 − w∗1 and the ith component of ∆∗ as ∆∗i .
Given the environment 1 is at w∗1 the rule dictates that
environment 2 should update the predictor to ΠW [∆∗].
The first k components of ∆∗ would be zero as the
two environments agree in these coefficients. Therefore,
environment 2 will not move its predictor for the first
k components and continue to be at 0. After this the
two environments do not need to update the first k
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components as they have already converged. Suppose
the environment 2 uses the update rule from Algorithm
1. Consider the first k components in which both the
environments agree. Since environment 1 already is
using w∗1+, which is optimal for environment 2 as well,
environment 2 will not move its predictor for first k
components and continue to be at 0. After this the
two environments do not need to update the first k
components as they have already converged.

Thus so far we have established that both dynamics in
equations (47), (48) and the update rule in Algorithm 1
are equivalent. We have also shown the convergence in
the first k components. We now focus on establishing
the convergence for the next n − k components that
make up the set V.

Convergence of the dynamics in equations (47)
and (48). In the previous section, we showed that
dynamic in equations (47) and (48) are equivalent to
the dynamic in Algorithm 1. While we had shown the
convergence of the first k components in the set U ,
we will repeat the analysis for ease of exposition. In
this section, we begin by showing how the dynamic in
equations (47) and (48) plays out. Just for the sake of
clarity of exposition, in the dynamic we show below we
assume that the predictors of the environment continue
to be in the interior of the set W.

1. End of t = 1, w̄t = w∗1 , e = 1 plays wt
1 = w∗1 ,

e = 2 plays wt
2 = 0.

2. End of t = 2, w̄t = w∗2 , e = 1 plays wt
1 = w∗1 ,

e = 2 plays wt
2 = ∆∗.

3. End of t = 3, w̄t = w∗1 , e = 1 plays wt
1 = w∗1−∆∗,

e = 2 plays wt
2 = ∆∗.

4. End of t = 4, w̄t = w∗2 , e = 1 plays wt
1 = w∗1−∆∗,

e = 2 plays wt
2 = 2∆∗.

5. End of t = 5, w̄t = w∗1 , e = 1 plays wt
1 = w∗1 −

2∆∗, e = 2 plays wt
2 = 2∆∗.

6. End of t = 6, w̄t = w∗2 , e = 1 plays wt
1 = w∗1 −

2∆∗, e = 2 plays wt
2 = 3∆∗.

In the dynamic displayed above, we assumed that the
predictor wt

1 and wt
2 were in the interior just to illus-

trate that the two sequences wt
1 and wt

2 are monotonic.
Observe that if a certain component of ∆∗ say ∆∗i
is non-zero, the two sequences are strictly monotonic
in that component. The sequences cannot grow un-
bounded and at least one of them will first hit the
boundary at wsup or −wsup. Recall from the last sec-
tion, where we already showed that for the first k
components of ∆∗ associated with these U are zero

(from equation (25)). Hence, for the first k compo-
nents the the dynamic wt

1 and wt
2 converges at the

end of t = 1. Therefore, we now only need to focus on
the remaining n− k components comprising the set V.
Since the update rules in equation (47) and (48) are
separable for the different components, we only focus
on one of the components say i.

We divide our analysis based on if w∗1i and w∗2i have the
same sign or not. Suppose w∗1i and w∗2i have the same
sign. Let us consider the case when both are positive
(negative case follows from symmetry as the dynamic
starts at zero).

• Suppose 0 ≤ w∗1i < w∗2i. If 0 ≤ w∗1i < w∗2i is
plugged into the equation (6), we obtain w∗1i. Our
objective is to show convergence to w∗1i. In this
case, ∆∗i , which corresponds to the ith compo-
nent of ∆∗, is greater than zero. Observe from
the dynamic that environment 2 will first hit the
boundary in this case and since ∆∗i > 0, it will hit
the positive end, i.e., wsup. The best response of
environment 1 is to play ΠW [w∗1i − wsup]. Since
w∗1i > 0, we get that environment 1 uses the pre-
dictor w∗1i − wsup, the ensemble predictor takes
the value w∗1i. Environment 2 in the next step
continues to play ΠW [w∗2i−w∗1i+wsup] = wsup and
environment 1 continues to play w∗1i−wsup. Hence,
the predictors stop updating. Thus in this case
at convergence, the ensemble predictor achieves
the value that we wanted to prove w∗1i. Also, both
environments best respond to each other, which
implies that the state is a NE.

• Suppose 0 ≤ w∗2i < w∗1i. If 0 ≤ w∗2i < w∗1i is
plugged into the equation (6), we obtain w∗1i. Our
objective is to show convergence to w∗2i. Observe
from the dynamic that environment 1 will first hit
the boundary in this case and since ∆∗i < 0, it will
hit the positive end, i.e., wsup. The best response
of environment 2 is to play ΠW [w∗2i −wsup]. Since
w∗2i > 0, we get that environment 2 uses the pre-
dictor w∗2i−wsup and the ensemble predictor takes
the value w∗2i. Thus just like the case described
above both environments stop updating. Hence,
the state wsup, w∗2i − wsup is a NE and the final
ensemble predictor is at w∗2i, which is what we
wanted to prove.

Suppose w∗1i and w∗2i have the opposite sign.

• Consider the case when w∗1i < 0 < w∗2i. If w∗1i <
0 < w∗2i is plugged into the equation (6), we obtain
0. In this setting, environment 2 moves towards
the wsup and environment 1 moves towards −wsup.
Suppose environment 2 hits the boundary. In the
next step, the best response from environment 1
is computed as ΠW [w∗1i − wsup] = −wsup. Since
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both environments best respond to each other the
state (−wsup, wsup) is NE and the final ensemble
predictor is at 0, which is what we wanted to prove.
Hence, both the environment continue to stay at
the boundary. This is also the case if environment 1
hits the boundary first. The same analysis applies
to the case when w∗2i < 0 < w∗1i.

We focused on one of the components i and the
above analysis applies to all the components j ∈
{k + 1, .. . . . , n}. This completes the proof. Note that
the entire analysis is symmetric and it does not mat-
ter which environment moves first, the analysis also
extends to the case when initialization is not zero.

7.6 Proposition 5

We restate Proposition 5

Proposition 9. If Assumption 2 holds with αe = 0
and Θe an orthogonal matrix for each e ∈ {1, 2}, and
Assumptions 3, 4, 5 hold, then the output of Algorithm
1, w̄+ obeys ‖w̄+ − (γ, 0)‖ < ‖wERM − (γ, 0)‖ for all
wERM ∈ SERM except over a set of measure zero (see
footnote 2). Moreover, if all the components of vectors
Θ1η1 and Θ2η2 have opposite signs, then w̄+ = (γ, 0).

Proof. In the above proposition, we make the same set
of assumptions as in Proposition 4. In the proof of
Proposition 4, we showed that the set of Assumptions
in Proposition 4 imply that the Assumptions 1, 5, 6
hold. Since Assumptions 1, 5, 6 hold, from Theorem
3 it follows that the output of Algorithm 1 is equal to
the NE based ensemble predictor given by equation
(6). In Proposition 4, we have already shown that this
NE based ensemble predictor (equation (6)), which is
the output of Algorithm 1, is closer to (γ,0) than the
solution of ERM (except over a set of measure zero
defined in the proof of Proposition 4). We had also
shown that the NE based ensemble predictor is equal
(γ,0) when the signs of Θ1η1 and Θ2η2 are opposite.

This completes the proof.

7.7 Extensions

In this section, we discuss extensions and generaliza-
tions of the results presented in the main manuscript.

7.7.1 Other best response dynamics

In this section, we describe a simple signed gradient
descent based dynamic. The aim is to show that for
simple variations of the dynamic proposed in Algorithm
1 we continue to have convergence guarantees.

We define a signed gradient descent based version of
the dynamic in equation (47) and (48) with step length

β.

For t = 0, wt
1 = 0 and wt

2 = 0.

For t ≥ 1

wt
1 = ΠW

[
wt−1

1 + βsgn[w∗1 −wt−1
2 ]

]
(50)

wt
2 = ΠW

[
wt−1

2 + βsgn[w∗2 −wt−1
1 ]

]
(51)

w̄t = wt
1 +wt

2

t = t+ 1

In the above sgn is the component-wise sign function,
which takes a value 1 when the input is positive (in-
cluding zero) and −1 if the input is negative. w̄t is
the ensemble predictor at the end of iteration t, wt

e is
the predictor for environment e at the end of iteration
t. Suppose we want to get within ε (per component)
distance of the NE based predictor. Divide the compo-
nents into two sets E and F defined as follows. i ∈ E
if and only if the least squares solution are within ε
distance, i.e. |w∗1i − w∗2i| ≤ ε and i ∈ F if and only
if the least squares solution are separated by at least
epsilon i.e. |w∗1i − w∗2i| > ε.

Let β < ε. Let us analyze the dynamic for a component
i ∈ F . We divide the analysis into two cases – w∗1i and
w∗2i have the same sign, and w∗1i and w∗2i have opposite
signs. Let us start with same sign case with both w∗1i
and w∗2i positive (negative sign case follows from sym-
metry). Consider the case 0 < w∗1i < w∗2i. In this case
from the expression of NE in equation (6), we would
hope the dynamic can eventually achieve an ensemble
predictor that stays within ε distance of w∗1i. Since the
dynamic starts at 0 and sgn[w∗1i] = 1 and sgn[w∗2i] = 1,
the ensemble predictor w̄ti after some iterations will en-
ter the interval [w∗1i, w

∗
2i]. Once the ensemble predictor

enters the interval, the two predictors wt1i and wt2i will
push the predictor in opposite directions and since the
step length is the same the ensemble predictor will not
move. This would continue until environment 2 hits
the positive boundary wsup. Once the environment 2
hits the boundary it stops updating and environment 1
pushes the ensemble predictor towards w∗1i. Once the
predictor is within β distance from w∗1i it continues to
oscillate around w∗1i. Consider the case 0 < w∗2i < w∗1i,
the same analysis follows and dynamic eventually os-
cillates around w∗2i. Next, consider the case when w∗1i
and w∗2i have opposite signs. In this case from the
expression of NE in (6), we would hope the dynamic
can eventually achieve an ensemble predictor that stays
within ε distance of 0. In this case, since the predictors
start at zero, both environments will push in opposite
directions. Eventually, both environments hit opposite
ends of the boundary and stay there. This results in
ensemble predictor coefficient of zero.
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Now let us analyze the game for components in E . We
again carry out analysis based on the whether the signs
agree or not. Consider the case 0 < w∗1i < w∗2i. In
this case from the expression of NE in (6), we would
hope the dynamic can eventually achieve an ensemble
predictor that stays within ε distance of w∗1i. The
dynamic starts at 0 and sgn[w∗1i] = 1 and sgn[w∗2i] = 1,
the ensemble predictor w̄ti may or may not enter the
interval [w∗1i, w

∗
2i]. If it enters, then the analysis is

identical to the previous case when i ∈ F . If the
ensemble predictor does not enter the interval, then
it has to overshoot it and move to the right of the
interval, which implies in the next step it will be pulled
back to the left of the interval. This sets the ensemble
predictor in an oscillation around w∗1i. The analysis for
the case when w∗1i and w∗2i have opposite signs is the
same as the previous case.

7.7.2 Convergence when Assumption 6 does
not hold

In this section, we discuss can we still learn NE if
the Assumption 6 is relaxed? We would rely on the
results in [Zhou et al., 2017] for our discussion here.
In [Zhou et al., 2017], the authors introduced a no-
tion called variational stability. Consider the class
of concave games. It was shown that if the set of
Nash equilibria satisfy variational stability, then a
mirror descent based learning dynamic (described in
[Zhou et al., 2017]) converges to the NE. Next, we an-
alyze the variational stability for C-LRG.

Define the gradient of utility of the environment e
ve(w) = −∇we

Re(we,w−e), where recall that we is
action of environment e and w−e is the action of the
other environment, Re is the risk, and w = (we,w−e).
Let us recall a characterization of NE in terms of the
gradients ([Zhou et al., 2017]). Supposew† = (w†1,w

†
2)

is a NE of C-LRG. For every we ∈ W, we have

ve(w
†)T(we −w†e) ≤ 0 (52)

Next, we show how to relate the gradient at NE, ve(w
†),

to the gradient at any other point ve(w)

ve(w)

= Ee
[(
Ye −wT

1Xe −wT
2Xe

)
Xe

]
= Ee

[(
Ye − (w1 −w†1 +w†1)TXe−

(w2 −w†2 +w†2)TXe

)
Xe

]
ve(w) = ve(w

†)−Σe(w1 −w†1 +w2 −w†2)

ve(w) = ve(w
†)−Σe(w̄ − w̄†)

(53)

In the above w̄ = w1 +w2, w̄† = w†1 +w†2.

For establishing variational stability, we need to show
that for each w ∈ W × W and for each NE w† the
following inequality, i.e.,

∑
e ve(w)T(we − w†e) ≤ 0,

holds.

∑
e∈{1,2}

ve(w)T(we −w†e) =

∑
e∈{1,2}

ve(w
†)T(we −w†e)−

∑
e∈{1,2}

(w̄ − w̄†)TΣe(we −w†e)

=
∑

e∈{1,2}

ve(w
†)T(we −w†e)− (w̄ − w̄†)TΣ1(w̄ − w̄†)

− (w̄ − w̄†)T(Σ2 −Σ1)(w2 −w†2)

(54)

We begin by analyzing the case when Σ1 = Σ2. Sub-
stitute Σ1 = Σ2 in equation (54),

∑
e∈{1,2}

ve(w)T(we −w†e) =

∑
e∈{1,2}

ve(w
†)T(we −w†e)− (w̄ − w̄†)TΣ1(w̄ − w̄†)

If we use the condition in equation (52) along with
the fact that Σ1 is positive definite, then we get that∑
e∈{1,2} ve(w)T(we − w†e) ≤ 0, which implies that

the set of NE of C-LRG is variationally stable. We
now give an example of when Σ1 = Σ2 is satisfied.
Consider the SEM in Assumption 2. If between the
two environments the only parameters that vary are ηe
and the distribution of εe, and rest all other parameters
in the model are the same, then Σ1 = Σ2 is satisfied.

We now discuss what happens if we relax the assump-
tion, Σ1 = Σ2, made above.

Consider the eigenvalue decomposition of Σ2 −Σ1 =
ΩΛΩT, where since Σ2−Σ1 is a symmetric matrix we
know that Ω can be chosen as an orthogonal matrix
and Λ is a diagonal matrix of eigenvalues. Define the
smallest eigenvalue of Σ2 −Σ1 as λmin(Σ2 −Σ1).

Define a transformation of vector w under Ω as w̃ =
Ωw. Since Ω is orthogonal, ‖w̃‖ = ‖w‖. We now use
these relationships to simplify

(w1 −w†1)T(Σ2 −Σ1)(w2 −w†2) =

(w1 −w†1)TΩΛΩT(w2 −w†2)

= (w̃1 − w̃†1)Λ(w̃2 − w̃†2)

≥ λmin(Σ2 −Σ1)(w̃1 − w̃†1)T(w̃2 − w̃†2)

≥ −|λmin(Σ2 −Σ1)|‖(w̃1 − w̃†1)‖‖(w̃2 − w̃†2)‖

= −|λmin(Σ2 −Σ1)|‖(w1 −w†1)‖‖(w2 −w†2)‖

(55)
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In the last two inequalities in equation (55), we used
Cauchy-Schwarz inequality and the fact that norms do
not change under orthogonal transformations ‖w̃‖ =
‖w‖. Now let us bound the term (w̄ − w̄†)T(Σ2 −
Σ1)(w2 −w†2) in equation (54).

− (w̄ − w̄†)T(Σ2 −Σ1)(w2 −w†2)

= −(w2 −w†2)T(Σ2 −Σ1)(w2 −w†2)+

− (w1 −w†1)T(Σ2 −Σ1)(w2 −w†2)

≤ −λmin(Σ2 −Σ1)‖(w2 −w†2)‖2+

|λmin(Σ2 −Σ1)|‖(w1 −w†1)‖‖(w2 −w†2)‖

(56)

In the last inequality in equation (56), we used equation
(55). If Σ2 −Σ1 is positive semi-definite with lowest
eigenvalue of zero, then the term in equation (56) is
bounded above by zero. If we use this observation in
equation (54), the the condition for variational stability
is satisfied. Note that the entire analysis is symmetric
and we can state the same result for the matrix Σ1−Σ2.
Therefore, if one of the matrices Σ2 −Σ1 or Σ1 −Σ2,
is positive semi-definite with lowest eigenvalue of zero,
then we get variational stability for the NE. Therefore,
we can use the convergence results in [Zhou et al., 2017]
to guarantee that NE will be learned.

7.7.3 Multiple Environments

In the main body of the paper, we discussed the re-
sults when the data is gathered from two environments.
What happens if the data were gathered from multiple
(more than two) environments?

First let us start with the game U-LRG from Section 4.1.
The first result in Proposition 1 states that when least
squares optimal solution are not equal, then there is no
NE of U-LRG. When we move to multiple environments
using same proof techniques it can be shown that if
there is any two environments, which do not agree on
the least squares optimal solution, then no NE will
exist. For a NE to exist all environments will have to
have the same least squares optimal solution.

Next, we consider the game C-LRG from Section 4.2.
With multiple (more than two environments), we are
guaranteed that NE will exist. How does the Theorem
2 change for multiple environments? We extend the
Assumption 6 to state that any feature component that
does not have the same least squares coefficient across
all the environments is uncorrelated with the rest of
the features. Suppose the environments are indexed
from {1, . . . , r}. For this discussion, let us focus on
one of the feature components say i. Without loss of
generality, assume that these environments are ordered
in an increasing order w.r.t the optimal least squares

coefficient, i.e. if e, f ∈ {1, . . . , r} such that e ≤ f ,
then w∗ei ≤ w∗fi.

Let us assume that r is odd. Consider the median
environment indexed m = r+1

2 . Ensemble predictor’s
coefficient will be equal to the coefficient of the median
environment w̄†i = w∗mi. In this case in the NE, all
the environments with index e > m play wsup, all
the environments with index e < m play −wsup, and
median environment m plays w∗mi.

Let us assume that r is even. Consider the two me-
dian environments indexed m = r

2 and m+ 1. If w∗mi
and w∗(m+1)i have the same sign, then the NE based
ensemble predictor is equal to the coefficient with a
smaller absolute value. If w∗mi and w∗(m+1)i have the
same sign, and say 0 ≤ w∗mi ≤ w∗(m+1)i, then in NE
the environment m plays w∗mi − wsup and environment
m+1 plays wsup. If w∗mi and w∗(m+1)i have the opposite
sign, then the NE based ensemble predictor is equal to
zero. If w∗mi and w∗(m+1)i have the opposite sign, and
say w∗mi < 0 ≤ w∗(m+1)i, then in NE the environment
m plays −wsup and environment m+ 1 plays wsup. For
all the remaining environments other than m and m+1
their actions are described as — environments with
index e > m+ 1 play wsup, all the environments with
index e < m play −wsup.

In Proposition 4, we analyzed linear SEMs and showed
that NE based ensemble predictor are closer to the
OOD solutions than ERM. Proposition 4 relied on
Theorem 2, which we have shown can be appropriately
extended to multi-environment setting. Hence, by using
the same proof techniques used to prove Proposition
4 and the expression for NE that we discussed above
for multiple environments, we can show that the same
result extends to multiple environments.

In Theorem 3, we proved the convergence for BRD dy-
namics to NE. We can show convergence in this setup
as well using the same ideas discussed in Section 7.5 and
Section 7.7.1. We have shown that Theorem 2, Propo-
sition 4 and Theorem 3 extend to multi-environment
setting. We also know that Proposition 5 directly fol-
lows from Theorem 2, Proposition 4 and Theorem 3.
Therefore, Proposition 5 extends to multi-environment
setting.

7.7.4 Theory beyond Assumption 6 and 2

Independent component analysis (ICA)
[Hyvärinen and Oja, 2000] based feature extrac-
tion assumes that complex datasets such as images
are a transformation of (independent and identically
distributed) i.i.d. hidden features. Thus for complex
datasets we can break the analysis in two parts:
extract i.i.d. features and apply our linear method
on the extracted features. Suppose the observed data
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X comes from a linear transformation of hidden i.i.d.
features Z and is given as X = AZ, where A is a
linear transformation. Features Z take the place of X
in the model in Assumption 2. In such a case, X need
not follow Assumption 6. If we use linear ICA on X,
then ideally, one hopes to recover A (or a permutation
or scaled version of it), and extract Z and apply our
approach on Z.

7.8 Supplement for Experiments

7.8.1 Computing Environment

The experiments were done on 2.3 GHZ Intel Core i9
processor with 32 GB memory (2400 MHz DDR4). The
codes can be found at https://github.com/IBM/OoD
that would allow the reader to both reproduce the
results and use the model class to train their own
models to build NE based ensemble predictors.

7.8.2 Model, Hyperparameter, Training
details

We use linear models for all the methods. We carried
out 10 trials for all the experiments and show the
average performance in Figure 3. In the experiments
for the 10 dimensional case (p = q = 5) shown in Figure
3, we use a bound of wsup = 2. In Figure 2, we had
shown that provided the solution is contained in the
search space, i.e., realizability assumption (Assumption
5) is satisfied, then the choice of the bound does not
impact the solution provided the number of training
steps are sufficiently large.

We use a stochastic gradient descent based best re-
sponse dynamic to learn the NE; this dynamic is very
similar to the one described in Section 7.7.1. For each
environment e ∈ {1, 2} say the loss for the current
batch at the end of iteration t is R̂e(w

t
1,w

t
2) (sample

mean estimate of the loss over the current batch). For
each e ∈ {1, 2}, say wt

e is the model used by environ-
ment e at the end of iteration t. The two environ-
ments alternate to take turns to update the model,
i.e. in odd iterations t environment 1 updates the
model, and even iterations t environment 2 updates the
model. Each environment in its turn takes a step based
on gradient of its loss over the batch w.r.t its model
parameters. In its turn the environment 1 updates
wt

1 = ΠW [wt−1
1 − β∇wt−1

1
R̂1(wt−1

1 ,wt−1
2 )], while the

environment 2 does not update the model, wt
2 = wt

2−1,
and then t is incremented by 1. In the next turn, the
same procedure is repeated with the roles of environ-
ment 1 and 2 reversed, i.e., environment 2 updates
and environment 1 does not. We continue this cycle of
updates until a fixed number of epochs. In our experi-
ments, we set β = 0.005, the batch size was set to 128
and the total number of epochs were set to 200 (each

epoch is equal to the size of the training data divide
by the batch size).

For the implementation of IRM, we needed to change
the cross-validation procedure in the implementa-
tion provided by [Arjovsky et al., 2019]. The cross-
validation procedure in requires access to data from
a separate validation environment with a different
distribution. Since we only use two environments,
we use the cross-validation procedure called the
train-domain validation set procedure (defined in
[Gulrajani and Lopez-Paz, 2020]), which requires us
to split each train environment into a train por-
tion and a validation portion. It finally requires to
combine all the validation splits and use them as
one validation split. We use a 4:1 split. Besides
this change in cross-validation procedure, the rest of
the implementation comes from https://github.com/

facebookresearch/InvariantRiskMinimization/.

7.9 Further details on Figure 3

Below we provide tables (Table 4, 5, 6, 7) containing
numerical values and the standard deviation associated
with model estimation error shown in Figure 3. ICP
can often be conservative in accepting a covariate as a
direct cause, which is the reason we see in some rows
the entry against ICP is 5.0± 0.0; it does not accept
any covariate as cause.

7.10 Extra experiments

In this section, we repeat the experiments shown in
Figure 3 for a 100 dimensional setup with 1000 training
samples. In Table 3, we show the results for the exper-
iments. We find our approach is consistently better.
It is not possible to compare with ICP owing to the
computational intractability of the procedure for this
setup.

7.11 Details for colored MNIST experiments

7.12 Colored MNIST Digits

We use the exact same environment as in
[Arjovsky et al., 2019]. [Arjovsky et al., 2019]
propose to create an environment for training to
classify digits in MNIST digits data 4, where the
images in MNIST are now colored in such a way that
the colors spuriously correlate with the labels. The
task is to classify whether the digit is less than 5
(not including 5) or more than 5. There are three
environments (two training containing 30,000 points
each, one test containing 10,000 points) We add noise

4https://www.tensorflow.org/api_docs/python/tf/
keras/datasets/mnist/load_data

https://github.com/IBM/OoD
https://github.com/facebookresearch/InvariantRiskMinimization/
https://github.com/facebookresearch/InvariantRiskMinimization/
https://www.tensorflow.org/api_docs/python/tf/keras/datasets/mnist/load_data
https://www.tensorflow.org/api_docs/python/tf/keras/datasets/mnist/load_data
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Setting ERM IRM LRG C-LRG

F-HET 12.37 10.75 12.32 4.92

P-HET 13.31 11.24 13.27 5.78

F-HOM 45.01 41.79 45.73 1.92

P-HOM 45.49 42.21 46.19 3.43

Table 3: Comparisons across different linear SEMs for
number of training samples = 1000 and feature dimension
100

to the preliminary label (ỹ = 0 if digit is between
0-4 and ỹ = 1 if the digit is between 5-9) by flipping
it with 25 percent probability to construct the final
labels. We sample the color id z by flipping the final
labels with probability pe, where pe is 0.2 in the first
environment, 0.1 in the second environment, and 0.9
in the third environment. The third environment
is the testing environment. We color the digit red
if z = 1 or green if z = 0. The results reported in
Table 3 are averaged over 10 random pairs of training
environments.

Architecture for our method: Each training envi-
ronment corresponds to a player and there is an indi-
vidual model that is assigned to each environment. We
assume that all the environments use the same architec-
ture described as follows. The model used is a simple
multilayer perceptron with following parameters.

• Input layer: Input batch (batch, len,wid, depth) →
Flatten

• Layer 1: Fully connected layer, output size = 390,
activation = ELU, Dropout = 0.75

• Layer 2: Fully connected layer, output size = 390,
activation = ELU, Dropout = 0.75

• Output layer: Fully connected layer, output size
= 2

Other details: We use Adam optimizer with a learn-
ing rate of 5e− 4. We use a batch size of 256. We use
a warm start phase as described in [Ahuja et al., 2020]
of length 100. We use `∞ constraint of 0.1. For F-IRM
game [Ahuja et al., 2020], we use the same architecture
that is described above with all the same parameters
(except we do not have `∞ constraints in F-IRM game).

For IRM, we use the same architecture and optimizer
parameters as described in [Arjovsky et al., 2019].

Method Samples Error

IRM 20 2, 72± 0.53

ICP 20 4.85± 0.10

ERM 20 2.82± 0.49

C-LRG 20 7.96± 0.67

IRM 100 0.96± 0.17

ICP 100 3.46± 0.37

ERM 100 1.16± 0.06

C-LRG 100 7.98± 0.59

IRM 250 0.59± 0.10

ICP 250 0.42± 0.21

ERM 250 1.12± 0.05

C-LRG 250 1.11± 0.05

IRM 500 0.90± 0.09

ICP 500 0.01± 0.001

ERM 500 1.17± 0.03

C-LRG 500 0.65± 0.04

IRM 750 0.54± 0.10

ICP 750 0.005± 0.0001

ERM 750 1.09± 0.03

C-LRG 750 0.42± 0.02

IRM 1000 0.51± 0.11

ICP 1000 0.002± 0.0003

ERM 1000 1.12± 0.03

C-LRG 1000 0.43± 0.02

Table 4: Comparisons for F-HET
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Method Samples Error

IRM 20 2.48± 0.34

ICP 20 5.00± 0.00

ERM 20 3.59± 0.51

C-LRG 20 9.31± 0.87

IRM 100 1.28± 0.20

ICP 100 3.49± 0.56

ERM 100 1.37± 0.10

C-LRG 100 9.86± 1.08

IRM 250 0.95± 0.16

ICP 250 2.33± 0.69

ERM 250 1.22± 0.07

C-LRG 250 1.23± 0.08

IRM 500 1.01± 0.11

ICP 500 3.01± 0.77

ERM 500 1.33± 0.09

C-LRG 500 0.89± 0.09

IRM 750 0.85± 0.15

ICP 750 2.01± 0.77

ERM 750 1.18± 0.05

C-LRG 750 0.53± 0.04

IRM 1000 0.88± 0.14

ICP 1000 2.50± 0.79

ERM 1000 1.19± 0.05

C-LRG 1000 0.55± 0.03

Table 5: Comparisons for P-HET

Method Samples Error

IRM 20 3.89± 0.50

ICP 20 5.02± 0.02

ERM 20 4.82± 0.57

C-LRG 20 6.14± 0.66

IRM 100 3.06± 0.12

ICP 100 7.91± 0.46

ERM 100 4.35± 0.12

C-LRG 100 4.22± 0.55

IRM 250 2.83± 0.06

ICP 250 7.95± 0.47

ERM 250 4.29± 0.12

C-LRG 250 3.52± 0.24

IRM 500 3.21± 0.09

ICP 500 6.50± 0.58

ERM 500 4.45± 0.05

C-LRG 500 0.38± 0.05

IRM 750 2.99± 0.04

ICP 750 5.00± 0.00

ERM 750 4.47± 0.04

C-LRG 750 0.05± 0.008

IRM 1000 3.04± 0.06

ICP 1000 5.00± 0.00

ERM 1000 4.51± 0.07

C-LRG 1000 0.03± 0.003

Table 6: Comparisons for F-HOM
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Method Samples Error

IRM 20 4.03± 0.41

ICP 20 5.38± 0.14

ERM 20 4.57± 0.69

C-LRG 20 8.03± 0.56

IRM 100 3.39± 0.32

ICP 100 6.55± 0.52

ERM 100 4.25± 0.17

C-LRG 100 6.24± 0.77

IRM 250 2.95± 0.09

ICP 250 5.00± 0.00

ERM 250 4.10± 0.18

C-LRG 250 3.27± 0.26

IRM 500 3.02± 0.09

ICP 500 5.00± 0.00

ERM 500 4.54± 0.13

C-LRG 500 0.56± 0.09

IRM 750 2.81± 0.10

ICP 750 5.00± 0.00

ERM 750 4.39± 0.09

C-LRG 750 0.08± 0.009

IRM 1000 2.88± 0.06

ICP 1000 5.00± 0.00

ERM 1000 4.35± 0.12

C-LRG 1000 0.05± 0.009

Table 7: Comparisons for P-HOM
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