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Abstract

Recently, invariant risk minimization (IRM)
[Arjovsky et al., 2019] was proposed as
a promising solution to address out-of-
distribution (OOD) generalization. In
[Ahuja et al., 2020], it was shown that
solving for the Nash equilibria of a new class
of “ensemble-games” is equivalent to solving
IRM. In this work, we extend the framework
in [Ahuja et al., 2020] for linear regressions
by projecting the ensemble-game on an /£
ball. We show that such projections help
achieve non-trivial OOD guarantees despite
not achieving perfect invariance. For linear
models with confounders, we prove that
Nash equilibria of these games are closer to
the ideal OOD solutions than the standard
empirical risk minimization (ERM) and
we also provide learning algorithms that
provably converge to these Nash Equilibria.
Empirical comparisons of the proposed
approach with the state-of-the-art show
consistent gains in achieving OOD solutions
in several settings involving anti-causal
variables and confounders.

1 Introduction

Recent years have witnessed a surge in examples
highlighting vulnerabilities of machine learning mod-
els [Geirhos et al., 2020]. In an alarming study
[DeGrave et al., 2020], it was shown how models
trained to detect COVID-19 from chest radiographs
used spurious factors such as the source of the data
rather than the lung pathology [DeGrave et al., 2020].
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In another commonly cited example [Beery et al., 2018]
trained a convolutional neural network (CNN) to clas-
sify camels from cows and found the model to rely
on the background color (green pastures for cows and
desert for camels) to carry out classification.

Recently, [Arjovsky et al., 2019] proposed a framework
called invariant risk minimization (IRM) to address
the problem of models inheriting spurious correlations.
They showed that when data is gathered from multi-
ple environments, one can learn to exploit invariant
causal relationships, rather than relying on varying
spurious relationships, thus learning robust predictors.
The authors used the invariance principle based on
causality [Pearl, 1995] to construct powerful objects
called “invariant predictors”. An invariant predictor
loosely speaking is a predictor that is simultaneously
optimal across all the training environments under a
shared representation. In [Arjovsky et al., 2019], it was
shown that for linear models with confounders and/or
anti-causal variables, learning ideal invariant predic-
tors translates to learning solutions with ideal out-of-
distribution (OOD) generalization behavior. However,
building efficient algorithms guaranteed to learn these
invariant predictors is still a challenge.

The algorithm in [Arjovsky et al., 2019] is based on
minimizing a risk function comprising of the standard
risk and a penalty term that tries to approximately en-
sure that predictors learned are invariant. The penalty
is non-convex even for linear models and thus the algo-
rithm is not guaranteed to arrive at invariant predictors.
Another recent work [Ahuja et al., 2020], proposed a
framework called invariant risk minimization games
(IRM-games) and showed that solving for the Nash
equilibria (NE) of a special class of “ensemble-games”
is equivalent to solving IRM for many settings. The
algorithm in [Ahuja et al., 2020] has no convergence
guarantees to the NE of the ensemble-game. To sum-
marize, building algorithms that are guaranteed to con-
verge to predictors with non-trivial OOD generalization
is unsolved even for linear models with confounders
and/or anti-causal variables.
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In this work, we take important steps towards this
highly sought after goal. As such, we formulate an
ensemble-game that is constrained to be in the £, ball.
Although this construction might seem to be surpris-
ing at first, we show that these constrained ensemble-
game based predictors have a good OOD behavior
even though that they may not be the exact invari-
ant predictors. We provide efficient algorithms that
are guaranteed to learn these predictors in many set-
tings. To the best of our knowledge, our algorithms are
the first for which we can guarantee both convergence
and better OOD behavior than standard empirical risk
minimization. We carry out empirical comparisons in
the settings proposed in [Arjovsky et al., 2019], where
the data is generated from models that include both
causal and anti-causal variables as well as confounders
in some cases. These comparisons of our approach
with the state-of-the-art depict its promise in achieving
OOD solutions in these setups. This demonstrates that
searching over the NE of constrained ensemble-games
is a principled alternative to searching over invariant
predictors as is done in IRM.

2 Related Work

IRM [Arjovsky et al., 2019] has its roots in the the-
ory of causality [Pearl, 1995]. A variable y is caused
by a set of non-spurious actual causal factors wpy(y)
if and only if in all environments where gy has
not been intervened on, the conditional probabil-
ity P(y|Tpacy)) remains invariant. This is called
the modularity condition [Bareinboim et al., 2012].
Related and similar notions are the independent
causal mechanism principle [Scholkopf et al., 2012
Janzing and Scholkopf, 2010, [Janzing et al., 2012] and
the dnvariant causal prediction principle (ICP)
[Peters et al., 2016|, [Heinze-Deml et al., 2018|]. These
principles imply that if all the environments (train and
test) are modeled by interventions that do not affect the
causal mechanism of target variable y, then a classifier
trained on the transformation that involves the causal
factors (®(x) = xpa(y)) to predict y is an invariant
predictor, which is robust to unseen interventions.

In general, for finite sets of environments, there
may be other invariant predictors. If one has
information about the causal Bayesian network
structure, one can find invariant predictors that
are maximally predictive using conditional inde-
pendence tests and other graph-theoretic tools
[Magliacane et al., 2018,  [Subbaswamy et al., 2019].
The above works select subsets of features, primarily
using conditional independence tests, that make the
optimal classifier trained on the selected features invari-
ant. In IRM [Arjovsky et al., 2019|, the authors give
an optimization-based reformulation of this invariance

that facilitates searching over transformations in a con-
tinuous space. Following the original work IRM from
[Arjovsky et al., 2019], there have been several interest-
ing works — [Teney et al., 2020, Krueger et al., 2020,
Chang et al., 2020, Koyama and Yamaguchi, 2020,
Mahajan et al., 2020] is an incomplete representative
list — that build new methods inspired from IRM to
address OOD generalization. In these works, similar
to IRM, the algorithms are not provably guaranteed to
converge to predictors with desirable OOD behavior.

3 Background

3.1 Nash Equilibrium and Concave Games

A standard normal form game is written as a tuple
Q= (N, {u; tien, {Si}tien), where N is a finite set of
players. Player i € N takes actions from a strategy
set S;. The utility of player i is u; : S — R, where
we write the joint set of actions of all the players as
S = I;enS;. The joint strategy of all the players is
given as s € S, the strategy of player ¢ is s; and the
strategy of the rest of players is s_; = (s;/) £i

Definition 1. A strategy st € S is said to be a pure
strateqy Nash equilibrium (NE) if it satisfies

ui(sh, s ) > wi(k,s',), vk € Si,Vie N

NE defines a state where each player is using the best
possible strategy in response to the rest of the players.
A natural question to ask is when does a pure strategy
NE exist. In the seminal work of [Debreu, 1952] it was
shown that for a special class of games called concave
games such a NE always exists.

Definition 2. A game Q is called a concave game if
for eachie S

e S; is a compact, conver subset of R™
o u;(8;,8_;) is continuous in S_;
o u;(8;,8_;) is continuous and concave in s; .

Theorem 1. [Debreu, 1959] For any concave game Q
a pure strategy Nash equilibrium st always exists.

In this work, we only study pure strategy NE and use
the terms pure strategy NE and NE interchangeably.

3.2 Invariant Risk Minimization & Invariant
Risk Minimization Games

We are given a collection of training datasets D =
{Dc}ece,, gathered from a set of environments &,
where D, = {x!,y!}!'c, is the dataset gathered from
environment ¢ € &, and n, is the number of points
in environment e. The feature value for data point

i is X € X and the corresponding label is y! € ),
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where X C R™ and ¥ C R. Each point (zi,%!) in
environment e is drawn i.i.d from a distribution P,.
Define a predictor f : X — R. The goal of IRM is to use
these collection of datasets D to construct a predictor
f that performs well across many unseen environments
Eall, where &y O &. Define the risk achieved by f in
environment e as Re(f) = E.[¢(f(X.),Ye)], where ¢
is the square loss when f(X.) is the predicted value
and Y, is the corresponding label, (X.,Y.) ~ P, and
the expectation E, is defined with respect to (w.r.t.)
the distribution of points in environment e.

Invariant predictor and IRM optimization: An
invariant predictor is composed of two parts a represen-
tation ® € RY*™ and a predictor w € R¥!. We say
that a data representation @ elicits an invariant predic-
tor w'® across the set of environments &, if there is a
predictor w that achieves the minimum risk for all the
environments w € argmingcpaxi Re (W' ®), Ve € &,.
IRM may be phrased as the following constrained opti-
mization problem:

min Re(w'®
PERIX" weRIXL Z e(w )

e€Ey (1)
s.t. w € argmin R, (@' ®), Ve € &,

‘lIJERdX 1

If w'® satisfies the constraints above, then it is
an invariant predictor across the training environ-
ments &,. Define the set of invariant predictors w'®
satisfying the constraints in as S"V. Informally
stated, the main idea behind the above optimiza-
tion is inspired from invariance principles in causal-
ity [Bareinboim et al., 2012][Pearl, 2009]. Each envi-
ronment can be understood as an intervention. By
learning an invariant predictor the learner hopes to
identify a representation ® that transforms the ob-
served features into the causal features and the optimal
model trained on causal representations are likely to
be same (invariant) across the environments provided
we do not intervene on the label itself. These invariant
models can be shown to have a good out-of-distribution
performance. Next, we briefly describe IRM-games.

Ensemble-game: Each environment e is endowed
with its own predictor w, € R?*!, Define an ensemble
predictor w € R¥*! given as w = qug” wy; for the
rest of this work a bar on top of vector represents an
ensemble predictor. We require all the environments
to use this ensemble w. We want to solve the following
new optimization problem.

min Y R (w%)
PeRIXn weRdx1

e€&yy

s.t. w, € argmin Re(

W, ERIXL

[we+ 3 wqf@), Ve € &
qegtr\{e}

For a fixed representation ®, the constraints in the
above optimization represent the NE of a game
with each environment e as a player with actions
w,.. Environment e selects w,. to maximize its utility

.
—R. < [ﬁ)e—l—z#e ’lIJq} <I>> . Define the set of ensemble-

game predictors w'®, i.e. the predictors that satisfy
the constraints in as SE6. In [Ahuja et al., 2020]
it was shown that the set of ensemble S¢ = SV, Hav-
ing briefly reviewed IRM and IRM-games (we presented
them with linear models but these works are more gen-
eral), we are now ready to build our framework.

4 Linear Regression Games

4.1 Unconstrained Linear Regression Games

The data is gathered from a set of two environments,
Er = {1,2}. E| Each data point (X, Y;) in envi-
ronment e is sampled from P.. Each environment
e € {1,2} is a player that wants to select a predictor
w, € R™™! such that it minimizes

Re (w1, ws) = E. [(Ye Wl X, — nge)z} 2)

where E. is expectation w.r.t P,. We write the
above as a two player game represented by a tuple
I = ({12}, {Re}ecqi,2), R"*!). We refer to I as a un-
constrained linear regression game (U-LRG). A Nash
equilibrium w! = (w!, w}) of U-LRG is a solution to
'wI € argmin [E; [(Yl — d)lTXl — w;’TXl)Q}
w1 RN X1
w) € argmin B | (Y2 — ] X, - 0] X5)”]
Wy RN X1
The above two-player U-LRG is a natural extension of
linear regressions and we start by analyzing the NE
of the above game. Before going further, the above
game can be understood as fixing ® to identity in the
ensemble-game defined in the previous section.

For each e € {1, 2}, define the mean of features p, =
E.[X.], Z. =E, [XEX;'-] and the correlation between
the feature X, and the label Y, as p. = E, [XeYe]

Assumption 1. Regularity condition. For each
e € {1,2}, pe = 0 and 3. is positive definite.

The above regularity conditions are fairly standard and
the mean zero condition can be relaxed by introducing
intercepts in the model. When p. = 0, 3. is the
covariance matrix. For each e € {1,2}, define w} =
S 1pe, where X! is the inverse of ¥.. w} is the
least squares optimal solution for environment e, i.e.,

it solves mingernx1 E. {(Ye — 'LI;TXE)Q}.

!Discussion on multiple environments is in the supple-
ment.
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Proposition 1. If Assumption[] holds and if the least
squares optimal solution in the two environments are

o cqual, i.c., w = w}, then the set {(w], wl) | wl+
wg = wi} describes all the pure strategy Nash
equilibrium of U-LRG, T.

e not equal, i.e., wi # w3, then U-LRG, T, has no
pure strategy Nash equilibrium.

We provide brief proof sketches here and all the detailed
proofs are in the Appendix.

Proof sketch: Consider the case when the least
squares optimal solution is different for the two en-
vironments. Also, assume that the NE of the U-LRG
exists. In the NE, the ensemble predictor used will
not be the least squares optimal predictor for at least
one of the environments. If this is the case, then such
an environment can always update its predictor to im-
prove its loss. This contradicts the fact that the two
environments are using predictors that form the NE.
Therefore, NE cannot exist. O

From the above proposition, it follows that agreement
between the environments on least squares optimal
solution is both necessary and sufficient for the exis-
tence of NE of U-LRG. Next, we describe the fam-
ily of linear structural equation models (SEMs) in
[Arjovsky et al., 2019] and show how the two cases,
w] = w;, and w] # w3 naturally arise.

4.1.1 Nash Equilibria for Linear SEMs

In this section, we consider linear SEMs from
[Arjovsky et al., 2019] and study the NE of U-LRG.

Assumption 2. Linear SEM with confounders
and anti-causal variables (Figure (1)) For each e €
{1,2}, (X.,Y.) is generated from the following SEM

Y, ~y'X} +n/H.+e.,

i (4)

Xe — aeYVe + GeHe + Ce
The feature vector is X, = (X}, X?). H, € R® is a
confounding random variable, where each component
of H, is an i.i.d draw from a distribution with zero
mean and unit variance. H,. affects both the labels
Y. through weights n. € R® and a subset of features
X2 € RY through weights ©, € RI*%. ¢, € R is
independent zero mean noise in the label generation.
Y. affects a subset of features X2 with weight a. € RY,
C. € R? is an independent zero mean noise vector
affecting X2. X! € R? are the causal features drawn
from a distribution with zero mean and affect the label
through a weight v € RP, which is invariant across the
environments.

The above model captures many different settings. If
a. = 0 and O, # 0, then features X? appear cor-

Figure 1: SEM from Assumption 2. We show the
link between Y, and X2 with a dotted line because in
our theoretical analysis (Proposition we assume
that the edge does not exist but in the experiments
we compare in the more general setting where such an
edge exists.

related with the label due to the confounder H.. If
ae # 0 and ©, = 0, then features X2 are correlated
with the label but they are effects or anti-causal. If
both a, # 0,0, # 0, then we are in a hybrid of the
above two settings. In all of the above settings it can
be shown that relying on X2 to make predictions can
lead to failures under distribution shifts (modeled by
interventions). From [Arjovsky et al., 2019], we know
that for the above family of models the ideal OOD
predictor is ('7, 0) as it performs well across many dis-
tribution shifts (modeled by interventions). Hence, the
goal is to learn (‘y, 0).

No confounders & mno anti-causal variables
(wy = w3): Consider the SEM in Assumption
For each environment e € {1,2}, assume e, = 0 and
©®, = 0, i.e. no confounding and no anti-causal vari-
ables. This setting captures the standard covariate
shifts [Gretton et al., 2009], where it is assumed that
P (Y| X, = @) is invariant across environments, here
we assume E.(Y.| X, = &) = v"z is invariant across
environments. The least squares optimal solution for
each environment is w} = (7, 0), which implies that
w] = wj. From Proposition [1| we know that a NE
exists (any two predictors adding to wj form an NE).
In this setting, different methods — empirical risk mini-
mization (ERM), IRM, IRM-games, and methods de-
signed for covariate shifts such as sample reweighting —
should perform well.

Confounders only (w] # wj): Consider the SEM
in Assumption For each environment e € {1,2},
assume a, = 0, O, # 0, i.e. confounders only setting.
Define 3., = E, [XelXelT} and define the variance

for the noise vector ¢ as 0 = E.[C. © (], where ©
represents element-wise product between two vectors.

Assumption 3. Regularity condition for linear
SEM in Assumption[d. For each environment e €
{1,2}, X1 is positive definite and each element of the
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vector age s positive.

Assumption [3]is equivalent to Assumption [I] for SEM
in Assumption [2] (it ensures X, is positive definite).

Proposition 2. If Assumption [ holds with o = 0
for each e € {1,2}, and Assumption@ holds, then the
least squares optimal solution for environment e is

w; = (Wi, w) = (v, (©.0] +disglo]) ©.n.)
)

Proof sketch: Recall that the least squares optimal
solution for environment e is w? = £_1p,.. We use the
structure of the SEM in Assumption [2] and Assump-
tion [3] to simplify X, and p. to arrive at the above
expression. O

inv
€

-1
(@e@z + diag[a%J) ®.nc. Observe that the first

half w!" is invariant, i.e., it does not depend on the
environment, while w}* may vary as it depends on the
parameters specific to the environment e.g., ., n.. In
general, wy*" # wy? (e.g., s = ¢, O, is identity I, 0'26
is one 1,4, n1 # n2) and as a result wi # w3. In such
a case, from Proposition [I} we know that NE does not
exist. ERM and other techniques such as domain adap-
tation [Ajakan et al., 2014 [Ben-David et al., 2007,
Glorot et al., 2011, |Ganin et al., 2016], robust op-
timization [Mohri et al., 2019, [Hoffman et al., 2018
Lee and Raginsky, 2018, [Duchi et al., 2016], would
tend to learn a model which tends to exploit infor-
mation from the spuriously correlated X2 thus placing
a non-zero weight on the second half corresponding to
the features X2 and not recovering (v, 0).

We divide w} into two halves w.V = v and w)* =

IRM based methods are designed to tackle these prob-
lems. These works try to learn representations that
filter out causal features, X!, with invariant coeffi-
cients, w", from spurious features, X2, with variant
coeflicients w!® and learn a classifier on top resulting
in the invariant predictor (v, 0). However, the current
algorithms that search for these representations in IRM
and IRM-games are based on gradient descent over non-
convex losses and non-trivial best response dynamics
respectively, both of which are not guaranteed to con-
verge to the ideal OOD predictor (v, 0). We formally
state the assumption underlying these methods, which
we also use later.

Assumption 4. Spurious features have varying
coefficents across environments. wy" # wy"

4.2 Constrained Linear Regression Games

In U-LRG, T, the utility of environment 1 (2) is
—Rl(wl,wg)(—Rg(wl,wz)). For each environment

e € {1,2}, —R. is continous and concave in w.. For
each e in the game I'; the set of actions it can take
is in R™*!, which is not a compact set. If the set of
actions for each environment were compact and con-
vex, then we can use Theorem [l to guarantee that
a NE always exists. Let us constraint the predictors
to be in the set W = {w, | [|we[o < w™P}, where
II - oo is the € norm and 0 < w™P < co. We de-
fine the constrained linear regression game (C-LRG) as
Fc = (gtra {7Re}e€5tra W)

Proposition 3. A pure strategy Nash equilibrium al-
ways exists for C-LRG, T'..

Proof sketch: W is a closed and bounded subset in
the Euclidean space, which implies it is also a compact
set. W is also a convex set as £, norm is convex. From
Definition [2|, C-LRG, T'., is concave. Therefore from
Theorem [1} it follows that a NE always exists for I'.. [J

Unlike the game I', a NE always exists for the game

.. Let wI,w; be an NE of I'. and let w' be the
wh = wl +
w; In the next theorem, we analyze the properties of

wi, 'w; but before that we state some assumptions.

corresponding ensemble predictor, i.e.

Assumption 5. Realizability. For each e € {1,2}
the least squares optimal solution w} € W.

We write the feature vector in environment e as X, =
(Xe1, ..., Xen) and the least squares optimal solution
in environment e as w} = (We1, ..., Wen). Divide the
features indexed {1,...,n} into two sets U and V. U
is defined as: ¢ € U if and only if the weight associated
with i*" component in the least squares solution is
equal in the two environments, i.e., wj;, = w3;. V is
defined as: ¢ € V if and only if the weight associated
with 7" component in the least squares solution is not
equal in the two environments, i.e., wj, # ws,. For
an example of these sets, consider the least squares
solution to the confounded only SEM in equation
under Assumption , wV =WV =y = U=
{1,...,p}, and Wy £ wy = V ={p+1,...,p+q}.

Assumption 6. Features with wvarying coeffi-
cients across environments are uncorrelated.
For each © € V the corresponding feature X; is un-
correlated with every other feature j € {1,... ,n}\{i},
i.e., E[XeiXej] = E[Xei]E[Xej].

The above assumption says that any feature component
whose least squares optimal solution coefficient varies
across environments is not correlated with the rest of
the features. We use the above assumption to derive
an analytical expression for the NE of I'. next.

For a vector a, |a| represents the vector of absolute
values of all the elements. Element-wise product of
two vectors a and b is written as @ ® b. Define an
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indicator function 14>p; it carries out an element-wise
comparison of @ and b and it outputs a vector of ones
and zeros, where a one at component 7 indicates that
it" component of a, a;, is greater than or equal to
the i*" component of b, b;. Recall that the ensemble

predictor constructed from NE is w! = w{ + w;

Theorem 2. If Assumptions [1], [3, [6 hold, then the
ensemble predictor, w!, constructed from the Nash equi-
librium, (w!,w}), of T is equal to

(w’f O Lz | >fawy| + Wy © 1|w;\>\w;|)1wf®w520 (6)

Proof sketch: In order to prove the above theorem,
we first establish an intermediate result in the form of a
lemma. In the lemma, we show that if the least squares
optimal solution in the two environments are different,
i.e., wi # w;, then the NE predictor for at least one
of the environments w] is at the boundary of the con-
straint set W. We use Karush-Kuhn-Tucker (KKT)
conditions [Boyd and Vandenberghe, 2004] for subdif-
ferentiable convex functions to arrive at this lemma.

Building on this lemma, we use the Assumption [f] and
the /s, norm constraint to arrive at a component-wise
separability for feature components in set V (defined in
Assumption @ This separability enables us to analyze
the NE independently in a component-wise fashion. We
discuss two main cases in which the component-wise
analysis of NE is divided. Say we are looking at one
of the components k € V. The least squares optimal
coefficient for the component % are wy, and w3, for the
two environments. Consider the case when 0 < w7, <
ws,. In this case, the wik = —w™ 4w, and w;k =
w'P form the NE. In this state, the first environment
has no incentive to deviate as the total weight for
component k is wj,, which is the optimal choice for
environment 1 for component k. Since the second
environment’s optimal weight is larger than the first
environment, it has an incentive to increase its weight
but it cannot as it is already using the largest weight
possible w*'P. Consider another case when wj, <0 <
wyy. In this case, the wJ{k = —w*™P and w;k = wP
corresponds to the NE. In this state, the total weight for
component k is 0, environment 1 will want to decrease
the weight further to push it closer to w}, but it cannot
as it is already using the smallest weight possible —w*P.
Similarly, environment 2 wants to increase the weight
but it cannot as it is already using the largest weight
possible w*P.

O
Casewise analysis of NE in equation @

e wi = w3: Similar to Proposition {('wi[, wl) | wl e
W, w) € W, w] +w] = w}} is the set of NE of C-LRG

o wi # wj: We analyze this case under two categories

O Opposite sign coefficients: If the i*” compo-
nent of wj and wj have opposite signs, then
the i** component of the ensemble predictor,
w', constructed from the NE of T, is zero, i.e.,
w:-r = I:].ru,f@w;zo]i = 0. In this case, the coeffi-
cient of the environments’ predictors in the NE,
wL and w;i, have exact opposite signs and both are
at the boundary one at w'P and other at —ws"P.
This case shows that when the features have a
large variation in their least squares coefficients
across environments, they can be spurious (see
Proposition [4]) and the ensemble predictor filters
them by assigning a zero weight to them.

0O Same sign coefficients: If the i** component of
w; and w} have same signs, then the i*" compo-
nent of ensemble predictor, w', constructed from
the NE of T, is set to the least squares coefficient
with a smaller absolute value, i.e., ’LIII = wy;, where
|wi;| < |ws;|. Suppose 0 < wj;, < w};, the coeffi-
cient of the environments’ predictors in the NE,

wL and w; have opposite signs, i.e., w; = wP

and wL- = w] — w™P. This shows that ensemble
predictor is conservative and selects the smaller
least squares coefficient. This property is useful to
identifying predictors that are robust (see Propo-
sition . Lastly, only when the least square coeffi-
cients are the same, i.e., wj;, = w;,, the coefficient
of the environments’ predictors in the NE can be
in the interior, i.e., |wl,| < w* and |wl,| < w*p.

4.2.1 Nash Equilibria for Linear SEMs

Suppose for each environment e € {1,2} the data is
generated from SEM in Assumption We study if
the NE of C-LRG, T'., achieves or gets close to the
ideal OOD predictor (v,0). We compare the ensemble
predictors @' constructed from the NE of T, to the
solutions of ERM (Theorem [2] enables this comparison).
In ERM, the data from both the environments is com-
bined and the overall least squares loss is minimized.
Define the probability that a point is from environment
e as T (my = 1 — ). The set of ERM solutions for all
distributions, {my,m2}, is SERM given as

moE (Y- X.)"] |
e€{1,2}

{'w |71 € [0,1], w € argmin

weRN X1

Proposition 4. If Assumption[d holds with ae = 0
and O, an orthogonal matriz for each e € {1,2}, and
Assumptions@@hold, then ||’ —(~,0)| < ||wERM—
(7,0)|| holds for all wERM € SERM 2| Moreover, if all

2Exception occurs over measure zero set over proba-
bilities 1. If least squares solution are strictly ordered,
ie., Vi € {1,...,n},0 < wl; < wy; and m1 = 1, then
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the components of two vectors O1mn; and Osmy have
opposite signs, then w! = (~,0).

Proof sketch: The assumptions in the above proposi-
tion imply that Assumptions [6] hold. Therefore,
we can use Theorem [2] to derive the expression for the
NE based ensemble predictor. From Proposition [2] we
can derive the expression for the ERM based predictor.
We use these expressions to compare the distance of
the NE based ensemble predictor and the ERM based
predictor from the ideal OOD predictor to arrive at
the above result O

From the first part of the above we learn that for many
confounder only models (e, = 0, ©, an orthogonal
matrix), the ensemble predictor constructed from the
NE is closer to the ideal OOD solution than ERM.
For the second part, set @, = I, where I, is identity
matrix. Suppose the signs of all the components of 7,
and 7)o disagree. As a result, the signs of latter half of
least squares solution w!?" (in equation ) disagree.
From Theorem [2], we know that if the signs of the
coefficients in least squares solution disagree, then the
corresponding coefficient in the ensemble predictor is
zero, which implies w! = (v, 0).

Remark. In Proposition [d] besides the regularity con-
ditions, the main assumption is ©, is orthogonal. This
assumption ensures that the the spurious features X?
are uncorrelated (Assumption @ For confounder only
models this seems reasonable. However, in the models
involving anti-causal variables, i.e., a, # 0, the spuri-
ous features can be correlated and one may wonder how
does the ensemble predictor behave in such setups? In
experiments, we show that ensemble predictors perform
well in these settings as well. Extending the theory to
anti-causal models is a part of future work.

Insights from Theorem [2, Proposition [4]

Suppose the data comes from the SEM in Assumption
For this SEM, [Arjovsky et al., 2019] showed that if
the number of environments grow linearly in the total
number of features, then the solution to non-convex
IRM optimization recovers the ideal OOD predictor.
We showed that for many confounder only SEMs (., =
0 and ©,, orthogonal) NE based ensemble predictor gets
closer to the OOD predictor than ERM and sometimes
recovers it exactly with just two environments, while
no such guarantees exist for IRM. Next, we show how
to learn these NE based ensemble predictor.

4.3 Learning NE of C-LRG

In this section, we show how we can use best response
dynamics (BRD) [Fudenberg et al., 1998] to learn the

wEM t = w}. In general, w}, w} are not ordered and

=w
m € (0,1), thus C-LRG improves over ERM.

Algorithm 1: Best response based learning

Initialize: w; =0, w3 =0,p=0
while w{f > 0 or w§® > 0 do
wiur — 11)1, ,lI)ELIT — ,11';2
W1 = Milgy, ey Ry (w1, W2)
wo = mlnw2ew R2 (wl, wo
diff _ H,Lbcur — W H diff _ H,Lbcur — W H
wy = 1 1}, wg ™ = |[[W3 2
end
Output: w' = w; + W,

NE. Each environment takes its turn and finds the best
possible model given the choice made by the other en-
vironment. This procedure (Algorithm [1]) is allowed to
run until the environments stop updating their models.
In the next theorem, we make the same set of As-
sumptions as in Theorem [2] and show that Algorithm
converges to the NE derived in Theorem

Theorem 3. If Assumption [1 [5, [f] hold, then the
output of Algorithm[1], w*, is

* *
(w1 O Ly |>|wy] + W2 © 1|w;|>|w;\)1w;@wgzo

Proof sketch. We illustrate the dynamic of one of the
cases to provide some insight into the convergence. Con-
sider the ¢ component of the predictors wy; and Ws;
from Algorithm[l] Suppose w}; > w}; and |wi;| > |w3;].
The two environments push the ensemble predictor,
wy; + Wo;, in opposite directions during their turns,
with the first environment increasing its weight, wy;,
and the second environment decreasing its weight, wo;.
Eventually, the environment with a higher absolute
value (e = 1 since |wj;| > |ws;|) reaches the bound-
ary (@1; = w*P) and cannot move any further due to
the constraint. The other environment (e = 2) best
responds. It either hits the other end of the boundary
(g; = —w®P), in which case the weight of the ensemble
for component 7 is zero, or gets close to the other bound-
ary while staying in the interior (wq; = w3; — w*P), in
which case the weight of the ensemble for component i
is w3;. O
BRD a sequence of convex minimizations. In
Algorithm [T} we assumed that at each time step each
environment can do an exact minimization operation.
The minimization for each environment is a simple
least squares regression, which is a convex quadratic
minimization problem. There can be several ways of
solving it — gradient descent for R. and solving for
gradient of R, equals zero directly, which is a linear
system of equations. We provide a simple bound for
the total number of convex minimizations (or turns for
each environment) in Algorithm [[|next. For each i € V
(defined in Section , compute the distance between
the least square coefficients in the two environments
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|wi; — w3;| and find the least distance over the set

V given as Amin = min;ey |wi; — w};| (following the

definition of V this distance is positive). The bound
2w™P

on number of minimizations is X—.
min

4.3.1 Learning NE of C-LRG: Linear SEMs

Suppose the data is generated from SEM in Assumption
Next, we show the final result that the NE based
predictor, which we proved in Proposition [ is closer
to the OOD solution, is achieved by Algorithm

Proposition 5. If Assumption [ holds with o = 0
and O, an orthogonal matriz for each e € {1,2}, and
Assumptions[3, [{} [3] hold, then the output of Algorithm
@ obeys [ @+ — (4,0)]| < [wEM — (,0)| for al
wERM ¢ SERM cacept over a set of measure zero (see
footnote 2). Moreover, if all the components of vectors
©17m1 and Oam2 have opposite signs, then wT = (v,0).

We use Theorem [Blto arive at the above result. We have
shown through Theorem [2] Proposition [d Theorem [3]
and Proposition[f|that the NE based ensemble predictor
of I'. has good OOD properties and it can be learned by
solving a sequence of convex quadratic minimizations.

Extensions: In the supplement, we extend the Theo-
rem [3] to other BRD that are commonly used. We also
discuss how to extend the theory to settings beyond
Assumption 6. The entire analysis is for linear SEMs.
In the experiments section, we show how the method
performs when we use non-linear models and analysis
for non-linear models is left to future work.
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Figure 2: a) C-LRG (w*® = 2), b) U-LRG, ¢) Reo-LRG ,
d) C-LRG (w™ = 5)
5 Experiments

5.1 Linear SEM experiments

In this section, we first run the regression experiments
described in [Arjovsky et al., 2019]. We use the SEM

H Method Solution  Error H
Oracle (1.0,0.0) 0.0
U-LRG (0.34,0.67)  0.88
C-LRG (w™ =2) (0.95,0.05) 0.005
C-LRG (w™P =5) (0.95,0.04) 0.005
Reo-LRG (0.33,0.65)  0.87
R2-LRG (0.33,0.63)  0.83
ERM (0.34,0.67)  0.88
IRM (0.63,0.44)  0.33
ICP (0.0,0.0) 1.0

Table 1: Comparing variants of LRG, IRM, ICP, and ERM.

in Assumption [2] with following configurations.

e v is a vector of ones with p dimensions, 1,, which
makes the ideal OOD model (1p, Oq). Each component
of the confounder H, is drawn i.i.d. from N(0,0%; ).
om, = 0.2, op, = 2.0. We consider two configurations
for ®, and n.. i) O, = 0,71, = 0, thus there is full
observability (F) as there are no confounding effects,
ii) each component of ®, and 7. is drawn i.i.d. from
N(0,1) thus there is partial observability (P) as there
are confounding effects.

e Each component of e is drawn i.i.d from N(0,1).
ge ~ N(0, U?p) and each component of the vector (.
is drawn from A/(0, 028). We consider two settings for
the noise variances — Homoskedastic (HOM) o, = 0.2
and o, = 2.0, o¢;, = 0¢, = 1.0 and Heteroskedastic
(HET) o¢, = 0.2 and o¢, = 2.0, 0., = 0, = 1.0.

From the above, we gather that there are four possible
combination of settings in which comparisons will be
carried out — F-HOM, P-HOM, F-HET, P-HET. We use
the following benchmarks in our comparison. IRM from
[Arjovsky et al., 2019], ICP from [Peters et al., 2015],
and standard ERM. Note in each of the cases we use
a linear model. The code for our experiments can
be found at https://github.com/IBM/00D. All other
implementation details can be found in the supplement.
The performance is measured in terms of the model
estimation error, i.e., the square of the distance from
the ideal model (1,,0q).

Before we discuss a comparison in all these settings, we
look at a two dimensional experiment where p=¢q =1
and the parameters are set to F-HOM. We carry out
this comparison to illustrate several points. Firstly,
we want to show why is /o, constraint very important.
Secondly, we want to show that the works when «. is
non-zero, i.e., X2 is anti-causal (in the theory we had
assumed o, = 0). We compare with following variants
of the linear regression game (LRG) i) no constraints,
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Figure 3: We compare across four settings: a) F-HET, b) P-HET, ¢) F-HOM and d) P-HOM.

H Method Test accuracy H
Oracle 75
ERM 17.1 +0.60
IRM [Arjovsky et al., 2019] 66.90 + 2.50
F-IRM game [Ahuja et al., 2020] 65.21 + 1.56
Ours 66.99 +1.37

Table 2: Comparing test accuracies on colored MNIST.

which is the game U-LRG (Section , ii) regularize
each R, with £ penalty (Roo-LRG), and iii) regularize
each R, with ¢5 penalty (R2-LRG). In Table we show
the estimated model against the respective method and
the estimation error. Observe that C-LRG was able to
outperform other variants of LRG. Moreover, C-LRG
performed better than the other existing methods as
well. wys (wes) are the coefficients that model 1 (2)
associates with feature 2, which is spuriously correlated.
We plot the trajectories of the coefficients wis (wa2) of
the models of each of the environments for the spurious
features as the best response dynamics based training
proceeds in Figure [2l Observe how the /., constrained
models saturate on opposite ends of the boundary and
as a result they cancel the spurious factors out. In
contrast for other models, we do not see such an effect.
Lastly, see if we choose a larger bound w™'P = 5 the
coefficients reach the boundary they just take more
steps than w®'P = 2.

Next, we move to a more elaborate comparison for
the 10 dimensional setting from [Arjovsky et al., 2019]

(we also show results for 100 dimensional setting in
supplement). In Figure , , we show the model
estimation error for F-HET and P-HET settings. In
Figure [3f, B, we show the model estimation error as
a function of the training samples for F-HOM and P-
HOM settings. Observe that in each of the settings
C-LRG performs better than the rest or is close to the
best when the number of samples is more than 400.

5.2 Colored MNIST experiments

The entire discussion so far has been focused on linear
SEMs. We now to move non-linear setups and carry
out the colored MNIST (CMNIST) classification ex-
periment from [Arjovsky et al., 2019]. In CMNIST the
task is to classify the digits while ensuring the model
does not rely on the background color. We use the
ensemble-model construction from [Ahuja et al., 2020].
Each environment uses its own neural network (NN)
and the ensemble model averages the logits from the
different NNs. We use an £, constraint on the weights
of the last layer of the NN. In Table [2] we show the
comparisons of the different methods in terms of the
test accuracy. We defer other details to the supplement.

6 Conclusion

In this work, we developed a new game-theoretic ap-
proach to learn OOD solutions for linear regressions.
To the best of our knowledge, we have provided the
first algorithms for which we can guarantee both con-
vergence and better OOD behavior than standard em-
pirical risk minimization. Experimentally too we see
the promise of our approach as it is either competitive
or outperforms the state-of-the-art by a margin.
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