
Probabilistic Sequential Matrix Factorization

Supplementary Material

A PRELIMINARIES

In this section, we list some linear algebra properties related to Kronecker products, which will be used in proofs.

We denote the Kronecker product ⊗. Let A be of dimension m× r and B be of dimension r × n; then Harville
(1997),

A⊗B =

a11B · · · a1rB
...

. . .
...

am1B · · · amrB

 . (A.1)

For matrices A,B and X, it holds that

vec(AXB) = (B> ⊗A)vec(X). (A.2)

We can particularize this formula for an r × 1 vector x as

Ax = vec(Ax) = (x> ⊗ Id)vec(A). (A.3)

Kronecker product has the following mixed product property Harville (1997)

(A⊗B)(C ⊗D) = (AC)⊗ (BD), (A.4)

and the inversion property Harville (1997)

(A⊗B)−1 = A−1 ⊗B−1. (A.5)

B PROOF OF PROPOSITION 1

We adapt the proof in Akyildiz and Míguez (2019). We first note that for a Gaussian prior p̃(c|y1:k−1) =
N (c; ck−1, Lk−1) and likelihood of the form p(yk|y1:k−1, c) = N (yk;Hkc,Gk), we can write the posterior analyti-
cally p̃(c|y1:k) = N (c; ck, Lk) where (see, e.g., Bishop (2006))

ck = ck−1 + Lk−1H
>
k (HkLk−1H

>
k +Gk)−1(yk −Hkck−1), (B.1)

Lk = Lk−1 − Lk−1H
>
k (HkLk−1H

>
k +Gk)−1HkLk−1. (B.2)

In order to obtain an efficient matrix-variate update rule using this vector-form update, we first rewrite the
likelihood as

p̃(yk|c, y1:k−1) = N (yk;Hkc,Gk) (B.3)

where Hk = µ̄>k ⊗ Id and Gk = ηk ⊗ Id. We note that, we have L0 = V0 ⊗ Id and we assume as an induction
hypothesis that Lk−1 = Vk−1 ⊗ Id. We start by showing that the update (B.2) can be greatly simplified using the
special structure we impose. By the mixed product property (A.4) and the inversion property (A.5) we obtain[

HkLk−1H
>
k +Gk

]−1
=
[
(µ̄>k ⊗ Id)(Vk−1 ⊗ Id)(µ̄k ⊗ Id) + ηk ⊗ Id

]−1
= (µ̄>k Vk−1µ̄k + ηk)−1 ⊗ Id (B.4)

and therefore,

Lk = (Vk−1 ⊗ Id)− (Vk−1µ̄k ⊗ Id)× ((µ̄>k Vk−1µ̄k + ηk)−1 ⊗ Id)× (µ̄>k Vk−1 ⊗ Id). (B.5)

Akyildiz, Van den Burg, Damoulas, Steel

One more use of the mixed product property (A.4) yields

Lk =

(
Vk−1 −

Vk−1µ̄kµ̄
>
k Vk−1

µ̄>k Vk−1µ̄k + ηk

)
⊗ Id. (B.6)

Thus, we have Lk = Vk ⊗ Id where,

Vk = Vk−1 −
Vk−1µ̄kµ̄

>
k Vk−1

µ̄>k Vk−1µ̄k + ηk
. (B.7)

We have shown that the sequence (Lk)k≥1 preserves the Kronecker structure. Next, we substitute Lk−1 = Vk−1⊗Id,
Hk = µ̄>k ⊗ Id and Gk = ηk ⊗ Id into (B.1) and we obtain

ck = ck−1 + (Vk−1 ⊗ Id)(µ̄k ⊗ Id)×
(
(µ̄>k Vk−1µ̄k + ηk)−1 ⊗ Id

)
× (yk − (µ̄>k ⊗ Id)ck−1). (B.8)

The use of the mixed product property (A.4) leaves us with

ck = ck−1 + (Vk−1µ̄k ⊗ Id)
(
(µ̄>k Vk−1µ̄k + ηk)⊗ Id

)−1 × (yk − (µ̄>k ⊗ Id)ck−1). (B.9)

Using (A.5) and again (A.4) yields

ck = ck−1+

[
Vk−1µ̄k

µ̄>k Vk−1µ̄k + ηk
⊗ Id

]
× (yk − (µ̄>k ⊗ Id)ck−1). (B.10)

Using (A.3), we get

ck = ck−1 +

[
Vk−1µ̄k

µ̄>k Vk−1µ̄k + ηk
⊗ Id

]
(yk − Ck−1µ̄k). (B.11)

We now note that (yk − Ck−1µ̄k) and Vk−1µ̄k
µ̄>k Vk−1µ̄k+ηk

are vectors. Hence, rewriting the above expression as

ck = ck−1 +

[
vec

(
Vk−1µ̄k

µ̄>k Vk−1µ̄k + ηk

)
⊗ Id

]
× vec(yk − Ck−1µ̄k), (B.12)

we can apply (A.3) and obtain

ck = ck−1 + vec

(
(yk − Ck−1µ̄k)µ̄>k V

>
k−1

µ̄>k Vk−1µ̄k + ηk

)
. (B.13)

Hence up to a reshaping operation, we have the update rule (20) and conclude the proof. �

C PROOF OF PROPOSITION 2

Recall that we have a posterior of the form at time k − 1

p(c|y1:k−1) = N (c; ck−1, Vk−1 ⊗ Id), (C.1)

and we are given the likelihood

p(yk|c, xk) = N (yk; (xk ⊗ Id)c,Rk). (C.2)

We are interested in computing

p(yk|y1:k−1, xk) =

∫
p(c|y1:k−1)p(yk|c, xk) dc. (C.3)

This integral is analytically tractable since both distributions are Gaussian and it is given by Bishop (2006)

p(yk|y1:k−1, xk) = N (yk; (x>k ⊗ Id)ck, Rk + (x>k ⊗ Id)(Vk−1 ⊗ Id)(xk ⊗ Id)). (C.4)

Using the mixed product property (A.4), one obtains

p(yk|y1:k−1, xk) = N (yk;Ck−1xk, Rk + x>k Vk−1xk ⊗ Id). (C.5)

Probabilistic Sequential Matrix Factorization

D DERIVATION OF THE NEGATIVE LOG-LIKELIHOOD

We obtain the marginal likelihood as

p̃θ(yk|y1:k−1) =

∫
p̃(yk|y1:k−1, c)p̃(c|y1:k−1) dc (D.1)

= N (yk;Cµ̄k, ηk ⊗ Id)N (c; ck−1, Vk−1 ⊗ Id) (D.2)

= N (yk; (µ̄>k ⊗ Id)c, ηk ⊗ Id)N (c; ck−1, Vk−1 ⊗ Id) (D.3)

= N (yk; (µ̄>k ⊗ Id)ck−1, (µ̄
>
k Vk−1µ̄k + ηk)⊗ Id) (D.4)

= N
(
yk;Ck−1fθ(µk−1),

(
‖fθ(µk−1)‖2Vk−1

+ ηk

)
⊗ Id

)
. (D.5)

where in the last line we have used the fact that µ̄k = fθ(µk−1) and properties from Supp. A. It is then
straightforward to show that

− log p̃θ(yk | y1:k−1) = − log
[
(2π)−d/2 · |(‖fθ(µk−1)‖2Vk−1

+ ηk)⊗ Id|−1/2 (D.6)

· exp

(
− 1

2 (yk − Ck−1fθ(µk−1))>
(
‖fθ(µk−1)‖2Vk−1

+ ηk)⊗ Id
)−1

(yk − Ck−1fθ(µk−1)

)]
(D.7)

which simplifies to

− log p̃θ(yk | y1:k−1) =
d

2
log(2π) +

d

2
log(‖fθ(µk−1)‖2Vk−1

+ ηk) + 1
2

‖yk − Ck−1fθ(µk−1)‖2

‖fθ(µk−1)‖2Vk−1
+ ηk

. (D.8)

E THE PROBABILISTIC MODEL TO HANDLE MISSING DATA

To obtain update rules that can explicitly handle missing data, we only need to modify the likelihood. When we
receive an observation vector with missing entries, we model it as zk = mk � yk where mk ∈ {0, 1}d is a mask
vector that contains zeros for missing entries and ones otherwise. We note that zk = Mkyk where Mk = diag(mk),
which results in the likelihood p(zk|c, xk) = N (zk;MkCxk,MkRkM

>
k). The update rules for PSMF and the

robust model, rPSMF, can be easily re-derived using this likelihood and are essentially identical to Algorithm 1
with masks. Here we discuss the case of PSMF with missing values, rPSMF with missing values is discussed in
Supp. F.

We define the probabilistic model with missing data as

p(C) =MN (C;C0, Id, V0), (E.1)
p(x0) = N (x0;µ0, P0), (E.2)

pθ(xk|xk−1) = N (xk; fθ(xk−1), Qk), (E.3)

p(zk|xk, C) = N (zk;MkCxk,MkRkM
>
k). (E.4)

This model can explicitly handle the missing data when (Mk)k≥1 (the missing data patterns) are given. The
update rules for this model are defined using masks and are similar to the full data case. In what follows, we
derive the update rules for this model by explicitly handling the masks and placing them into our updates formally.
For the missing-data case, however, we need a minor approximation in the covariance update rule in order to
keep the method efficient. Assume that we are given p̃(c|z1:k−1) = N (c; ck−1, Vk−1 ⊗ Id) and the likelihood

p̃(zk|c, z1:k−1) = N (zk;MkCµ̄k, ηk ⊗ Id) (E.5)

where

ηk =
Tr(MkRkM

>
k +MkCk−1P̄kC

>
k−1M

>
k)

m
. (E.6)

In the sequel, we derive the update rules corresponding to the our method with missing data. The derivation
relies on the proof of Prop. 1. We note that using (A.2), we can obtain the likelihood

p̃(zk|c, z1:k−1) = N (zk;Hkc, ηk ⊗ Id) (E.7)

Akyildiz, Van den Burg, Damoulas, Steel

where c = vec(C) and Hk = µ̄>k ⊗Mk. Deriving the posterior in the same way as in the proof of Prop. 1, and
using the approximation µ̄>k Vk−1µ̄k ⊗Mk ≈ µ̄>k Vk−1µ̄k ⊗ Id, leaves us with the covariance update in the form

Pk = Vk−1 ⊗ Id −
Vk−1µ̄kµ̄

>
k Vk−1

µ̄>k Vk−1µ̄k + ηk
⊗Mk. (E.8)

Unlike the previous case, this covariance does not simplify to a form Pk = Vk ⊗ Id easily. For this reason, we
approximate it as

Pk ≈ Vk ⊗ Id, (E.9)

where Vk is in the same form of missing-data free updates. To update the mean, we proceed in a similar way as
in the proof of Prop. 1 as well. Straightforward calculations lead to the update

Ck = Ck−1 +
(zk −MkCk−1µ̄k)µ̄>k Vk−1

µ̄>k Vk−1µ̄k + ηk
, for k ≥ 1. (E.10)

To update xk, once we fix Ck−1, everything straightforwardly follows by replacing Ck−1 by MkCk−1 in the update
rules for (xk)k≥1. Finally, the negative log-likelihood p̃θ(zk|z1:k−1) can be derived similarly to the non-missing
case in Sec. 3.2.5, and equals

− log p̃θ(zk|z1:k−1)
c
= 1

2

d∑
j=1

log ujk + 1
2 (zk −MkCk−1fθ(µk−1))>U−1

k (zk −MkCk−1fθ(µk−1)), (E.11)

where c
= denotes equality up to constants that do not depend on θ and Uk = ‖fθ(µk−1)‖2Vk−1

⊗Mk + ηk ⊗ Id is a
d-dimensional diagonal matrix with elements ujk for j = 1, . . . , d.

F THE ROBUST MODEL

Recall that the model definitions for robust PSMF are as follows

p(s) = IG(s;λ0/2, λ0/2) (F.1)
p(C | s) =MN (C;C0, Id, sV0)), (F.2)
p(x0 | s) = N (x0;µ0, sP0), (F.3)

pθ(xk |xk−1, s) = N (xk; fθ(xk−1), sQ0), (F.4)
p(yk |xk, C, s) = N (yk;Cxk, sR0), (F.5)

Before we present the derivation, we recall the following definitions.
Definition 1 (Inverse-Gamma Distribution). The inverse-gamma distribution is given by

IG(s;α, β) =
βα

Γ(α)

(
1

s

)α+1

exp (−β/s) (F.6)

for α, β > 0, and with Γ(·) the Gamma function.
Definition 2 (Multivariate t Distribution). For y ∈ Rd the multivariate t distribution with λ degrees of freedom
is

T (y;µ,Σ, λ) =
1

(πλ)d/2|Σ|1/2
Γ((λ+ d)/2)

Γ(λ/2)

(
1 +

∆2

λ

)−(λ+d)/2

(F.7)

where ∆2 = (y − µ)>Σ−1(y − µ).

Since we again assume the model to be Markovian, we extend the conditional independence and Markov properties
(see, e.g., Särkkä, 2013) to the case with a scale variable
Property 1 (Conditional independence). The measurement yk given the coefficient xk and scale variable s, is
conditionally independent of past measurements and coefficients

p(yk |x1:k, y1:k−1, s) = p(yk |xk, s). (F.8)

Probabilistic Sequential Matrix Factorization

Property 2 (Markov property of coefficients). When conditioning on s the coefficients xk form a Markov
sequence, such that

p(xk |x1:k−1, y1:k−1, s) = p(xk |xk−1, s). (F.9)

We also present the following lemma’s used in the derivation.

Lemma 1. For y ∈ Rd with p(y | s) = N (y;µ,Σ) and p(s) = IG(s;α, β) we have

p(y) =
1

(2πβ)d/2|Σ|1/2
Γ(α+ d/2)

Γ(α)

(
1 +

∆2

2β

)−(α+d/2)

(F.10)

p(s|y) = IG(s;α+ d/2, β + 1
2∆2). (F.11)

In particular, if α = β = λ/2 then p(y) = T (y;µ,Σ, λ).

Lemma 2. If p(s) = IG(s;α, β) and ω = β/α, then ω · p(ωs) = IG(s;α, α).

Proof.

β

α
p

(
β

α
s

)
=
β

α

βα

Γ(α)

(
α

βs

)α+1

exp

(
−βα
βs

)
=

αα

Γ(α)

(
1

s

)α+1

exp
(
−α
s

)
= IG(s;α, α). (F.12)

�

Lemma 3. For a partitioned random variable y = [ya, yb]
> with ya ∈ Rda and yb ∈ Rdb that follows a multivariate

t distribution given by

p(y) = p(ya, yb) = T
([
ya
yb

]
;

[
µa
µb

]
,

[
Σaa Σab
Σ>ab Σbb

]
, λ

)
, (F.13)

the marginal and conditional densities are given by

p(yb) = T (yb;µb,Σbb, λ) (F.14)
p(ya | yb) = T (ya;µa|b,Σa|b, λa|b), (F.15)

with

λa|b = λ+ db (F.16)

µa|b = µa + ΣabΣ
−1
bb (yb − µb) (F.17)

Σa|b =
λ+ (yb − µb)>Σ−1

bb (yb − µb)
λ+ db

(
Σaa − ΣabΣ

−1
bb Σ>ab

)
. (F.18)

Proof. See Roth (2012) for a derivation. �

To derive inference in the robust model, we start from k = 1 and show how we perform filtering for an entire
iteration. While this makes the description longer, we believe it to be more informative for the reader. We begin
with prediction of x1 given no history (y1:0 = ∅). The predictive distribution of x1 is then

p̃(x1 | y1:0, s) =

∫
p(x1 |x0, s)p(x0 | y1:0, s) dx0 (F.19)

p̃(x1 | s) =

∫
p(x1 |x0, s)p(x0 | s) dx0 (F.20)

=

∫
N (x1; fθ(x0), sQ0)N (x0;µ0, sP0) dx0 (F.21)

= N (x1; fθ(µ0), s(Q0 + F1P0F
>
1)), (F.22)

Akyildiz, Van den Burg, Damoulas, Steel

where F1 is defined as in the main text. Writing µ̄1 = fθ(µ0) and P̄1 = Q0 + F1P0F
>
1 we get p̃(x1 | s) =

N (x1; µ̄1, sP̄1). Next, we move to the dictionary update. We first have

p̃(y1 | c, y1:0, s) =

∫
p(y1 | c, x1, s)p(x1 | y1:0, s) dx1 (F.23)

p̃(y1 | c, s) =

∫
p(y1 | c, x1, s)p(x1 | s) dx1 (F.24)

=

∫
N (y1;Cx1, sR0)N (x1; µ̄1, sP̄1) dx1 (F.25)

= N (y1;Cµ̄1, s(R0 + CP̄1C
>)). (F.26)

As in PSMF, we use the approximation CP̄1C
> ≈ η1 ⊗ Id where η1 = Tr(R0 + C0P̄1C

>
0)/d. We write this as

p̃(y1 | c, s) = N (y1;H1c, sG1) with H1 = µ̄>1 ⊗ Id and G1 = η1 ⊗ Id. We again assume p̃(c | y1:0, s) = N (c; c0, sL0)
using L0 = V0 ⊗ Id, such that

p̃(c, y1 | y1:0, s) = p̃(y1 | c, y1:0, s)p̃(c | y1:0, s) (F.27)
p̃(c, y1 | s) = p̃(y1 | c, s)p̃(c | s) (F.28)

= N (y1;H1c, sG1)N (c; c0, sL0) (F.29)

= N
([

c
y1

]
;

[
c0
H1c0

]
, s

[
L0 L0H

>
1

H1L0 H1L0H
>
1 +G1

])
(F.30)

Integrating out s in this expression gives

p̃(c, y1) = T
([

c
y1

]
;

[
c0
H1c0

]
,

[
L0 L0H

>
1

H1L0 H1L0H
>
1 +G1

]
, λ0

)
(F.31)

Conditioning on y1 and using Lemma 3 yields p̃(c | y1) = T (c; c1, L1, λ0 + d) with

c1 = c0 + L0H
>
1

[
H1L0H

>
1 +G1

]−1
(y1 −H1c0) (F.32)

L1 = φ1

(
L0H

>
1

[
H1L0H

>
1 +G1

]−1
H1L0

)
(F.33)

ϕ1 =
λ0 + (y1 −H1c0)>

[
H1L0H

>
1 +G1

]−1
(y1 −H1c0)

λ0 + d
. (F.34)

This is the robust PSMF dictionary update. We see that the mean is updated as in PSMF by comparing
to (B.1), and that the covariance update has an additional multiplicative factor ϕ1. These expressions can be
simplified by plugging in the definitions of L0, H1, and G1, as in Supp. B. Observe that p̃(c | y1) can no longer be
written as an infinite scale mixture with scale variable s, as they now differ in degrees of freedom. We will revisit
this point below.

For the coefficient update we proceed analogously. First, note that

p̃(y1 |x0:1, s) =

∫
p(y1 | c, x0:1, s)p(c | y1:0, s) dc (F.35)

p̃(y1 |x1, s) =

∫
p(y1 | c, x1, s)p(c | s) dc (F.36)

=

∫
N (y1; (x>1 ⊗ Id)c, sR0)N (c; c0, sL0) dc (F.37)

= N (y1; (x>1 ⊗ Id)c0, s(R0 + x>1 V0x1 ⊗ Id)) (F.38)

As in the main text, we use the approximation x>1 V0x1 ≈ µ̄>1 V0µ̄1 and introduce

R̄0 = R0 + µ̄>1 V0µ̄1, (F.39)

Probabilistic Sequential Matrix Factorization

such that p̃(y1 |x1, s) = N (y1;C0x1, sR̄0). We then find the joint distribution between x1 and y1 as follows

p̃(x1, y1 | y1:0, s) = p̃(y1 | y1:0, x1, s)p̃(x1 | y1:0, s) (F.40)
p̃(x1, y1 | s) = p̃(y1 |x1, s)p̃(x1 | s) (F.41)

= N (y1;C0x1, sR̄0)N (x1; µ̄1, sP̄1) (F.42)

= N
([
x1

y1

]
;

[
µ̄1

C0µ̄1

]
, s

[
P̄1 P̄1C

>
0

C0P̄1 C0P̄1C
>
0 + R̄0

])
. (F.43)

Integrating out s in this expression gives

p̃(x1, y1) = T
([
x1

y1

]
;

[
µ̄1

C0µ̄1

]
,

[
P̄1 P̄1C

>
0

C0P̄1 C0P̄1C
>
0 + R̄0

]
, λ0

)
. (F.44)

Conditioning on y1 and using Lemma 3 gives p(x1 | y1) = T (x1;µ1, P1, λ0 + d) with

µ1 = µ̄1 + P̄1C
>
0

[
C0P̄1C

>
0 + R̄0

]−1
(y1 − C0µ̄1) (F.45)

P1 = ω1

(
P̄1 − P̄1C

>
0

[
C0P̄1C

>
0 + R̄0

]−1
C0P̄1

)
(F.46)

ω1 =
λ0 + (y1 − C0µ̄1)>

[
C0P̄1C

>
0 + R̄0

]−1
(y1 − C0µ̄1)

λ0 + d
. (F.47)

This is the robust PSMF coefficient update. Again we see that the mean update for µ1 is the same
as in vanilla PSMF, while the covariance update has an additional multiplicative factor ω1. By introducing
∆2

1 = (y1 − C0µ̄1)>
[
C0P̄1C

>
0 + R̄0

]−1
(y1 − C0µ̄1) we can simplify this factor to ω1 = (λ0 + ∆2

1)/(λ0 + d).

Finally, we can compute the posterior of the scale variable, s, using Bayes’ theorem,

p̃(s | y1) =
p̃(y1 | s)p(s)

p̃(y1)
. (F.48)

We can obtain p̃(y1 | s) from (F.43), which yields

p̃(y1 | s) = N (y1;C0µ̄1, s(C0P̄1C
>
0 + R̄0)). (F.49)

Integrating out s gives p̃(y1) = T (y1;C0µ̄1, C0P̄1C
>
0 + R̄0, λ0). Thus, by Lemma 1 we have

p̃(s | y1) = IG(s; (λ0 + d)/2, (λ0 + ∆2
1)/2). (F.50)

Having now observed y1, we proceed with the next iteration. Note that from the coefficient update we have
obtained p(x1 | y1) = T (x1;µ1, P1, λ0 + d). We can write this as a infinite scale mixture by defining u ∼
IG(u; (λ0 + d)/2, (λ0 + d)/2) and introducing p(x1 | y1, u) = N (x1;µ1, uP1). The model definitions give the
coefficient dynamics in terms of s, as p(x2 |x1, s) = N (x2; fθ(x1), sQ0). This can be written in terms of u by a
simple change of variables u = ω−1

1 s and using Lemma 2 and (F.50), since

p̃(x2 |x1, y1) =

∫
p(x2 |x1, s)p(s | y1) ds (F.51)

=

∫
N (x2; fθ(x1), sQ0)IG(s; (λ0 + d)/2, (λ0 + ∆2

1)/2) ds (F.52)

=

∫
N (x2; fθ(x1), u · ω1Q0)IG(u; (λ0 + d)/2, (λ0 + d)/2) du (F.53)

where we find p(x2 |x1, u) = N (x2; fθ(x1), u · ω1Q0). We then have that

p̃(x2 | y1, u) =

∫
p̃(x2 |x1, u)p̃(x1 | y1, u) dx1 (F.54)

=

∫
N (x2; fθ(x1), u · ω1Q0)N (x1;µ1, uP1) dx1, (F.55)

Akyildiz, Van den Burg, Damoulas, Steel

which we recognize to be analogous to (F.21). This expression also reveals how the noise covariance Q0 is updated,
as we may simply define Q1 = ω1Q0. This gives p̃(x2 | y1, u) = N (x2; µ̄2, uP̄2) with µ̄2 and P̄2 analogous to µ̄1

and P̄1 above.

Similar reasoning can be applied to obtain the predictive distribution of y2. From the dictionary update we
have obtained p̃(c | y1) = T (c; c1, L1, λ0 + d), which we can also write as a scale mixture with u as p̃(c | y1, u) =
N (c; c1, uL1). The model definition gives p(y2 |x2, C, s) = N (y2;Cx2, sR0). Again writing this in terms of u by
using the change of variables u = ω−1

1 s and Lemma 2 and (F.50), yields p(y2 |x2, C, u) = N (y2;Cx2, u · ω1R0).
Combining these expressions gives

p̃(y2 | c, y1, u) =

∫
p̃(y2 |x2, C, u)p̃(c | y1, u) dc =

∫
N (y2; (x>2 ⊗ Id)c, u · ω1R0)N (c; c1, uL1) dc, (F.56)

which is analogous to (F.37). We also see that we can define R1 = ω1R0 to update the measurement noise
covariance.

We observe in the above derivation that after completing an entire iteration we have obtained a new scale variable
u ∼ IG(u; (λ0 + d)/2, (λ0 + d)/2), and that we have found update rules for the noise covariances Q and R. This
procedure is repeated at every step, and we can define appropriate notation for this process by setting s0 = s
and s1 = u, and generally have scale variables sk ∼ IG(sk;λk/2, λk/2) with λk = λk−1 + d. Thus, sk = ω−1

k sk−1

with ωk = (λk−1 + ∆2
k)/(λk−1 + d), which corresponds to Tronarp et al. (2019). The noise covariances are clearly

updated as Qk = ωkQk−1 and Rk = ωkRk−1. Algorithm 2 summarizes the steps of robust PSMF, including steps
for parameter estimation using both the iterative and recursive approaches.

For completeness, we give the approximate negative marginal likelihood p̃θ(yk | y1:k−1), similar to Sec. 3.2.5. It
follows that

p̃θ(yk | y1:k−1) =

∫∫
p̃(yk | y1:k−1, c, sk−1)p̃(c | y1:k−1, sk−1) dcdsk−1 (F.57)

=

∫∫
N (yk;Hkc, sk−1Gk)N (c; ck−1, sk−1Lk−1) dcdsk−1 (F.58)

=

∫
N (yk;Hkck−1, sk−1(HkLk−1H

>
k +Gk)) dsk−1 (F.59)

= T (yk;Hkck−1, HkLk−1H
>
k +Gk, λk−1) (F.60)

With Hkck−1 = Ck−1µ̄k and HkLk−1H
>
k + Gk = (µ̄>k Vk−1µ̄k + ηk) ⊗ Id where µ̄k = fθ(µk−1), we find after a

brief algebraic exercise that

− log p̃θ(yk | y1:k−1)
c
=
d

2
log
(
‖fθ(µk−1)‖2Vk−1

+ ηk

)
(F.61)

+

(
λk−1 + d

2

)
log

1 +
‖yk − Ck−1fθ(µk−1)‖2

λk−1

(
‖fθ(µk−1)‖2Vk−1

+ ηk

)
 (F.62)

where c
= again denotes equality up to terms independent of θ. Finally, we note that handling missing values in

rPSMF is straightforward and follows the same reasoning as for PSMF in Supp. E.

G ADDITIONAL DETAILS FOR THE EXPERIMENTS

G.1 Experiment 1

Optimization In this experiment, we have used the Adam optimizer Kingma and Ba (2015). In particular,
instead of implementing the gradient step (26), we replace it with the Adam optimizer. In order to do so, we
define the gradient as gi = ∇ log p̃θ(y1:n)

∣∣∣
θ=θi−1

. Upon computing the gradient gi, we first compute the running
averages

mi = β1mi−1 + (1− β1)gi (G.1)
vi = β2vi−1 + (1− β2)(gi � gi), (G.2)

Probabilistic Sequential Matrix Factorization

Algorithm 2 Iterative and recursive rPSMF
1: Initialize γ, θ0, C0, V0, µ0, P0, Q0, R0.
2: for i ≥ 1 do
3: C0 = CT , µ0 = µT , P0 = PT , V0 = VT .
4: for 1 ≤ k ≤ T do
5: Predictive mean of xk: µ̄k = fθi−1(µk−1) or µ̄k = fθk−1(µk−1)
6: Predictive covariance of xk

P̄k = FkPk−1F
>
k +Qk−1, where Fk =

∂f(x)

∂x

∣∣∣
x=µ̄k−1

7: Compute scaling factor for the dictionary update

ϕk =
λk−1

λk−1 + d
+

(yk − Ck−1µ̄k)>(yk − Ck−1µ̄k)

(λk−1 + d)(µ̄>k Vk−1µ̄k + ηk)

where ηk = Tr(Ck−1P̄kC
>
k−1 +Rk−1)/d.

8: Mean and covariance updates of the dictionary

Ck = Ck−1 +
(yk − Ck−1µ̄k)µ̄>k V

>
k−1

µ̄>k Vk−1µ̄k + ηk
and Vk = ϕk

(
Vk−1 −

Vk−1µ̄kµ̄
>
k Vk−1

µ̄>k Vk−1µ̄k + ηk

)
9: Compute scaling factor for the coefficient update

ωk =
λk−1 + (yk − Ck−1µ̄k)>S−1

k (yk − Ck−1µ̄k)

λk−1 + d

where Sk = Ck−1P̄kC
>
k−1 + R̄k−1 and R̄k−1 = Rk−1 + µ̄>k Vk−1µ̄k ⊗ Id.

10: Mean and covariance updates of coefficients

µk = µ̄k + P̄kC
>
k−1S

−1
k (yk − Ck−1µ̄k) and Pk = ωk(P̄k − P̄kC>k−1S

−1
k Ck−1P̄k)

11: Update noise covariances: Qk = ωkQk−1 and Rk = ωkRk−1

12: Update degrees of freedom: λk = λk−1 + d.
13: Parameter update: θk = θk−1 + γ∇ log p̃θ(yk|y1:k−1)

∣∣
θ=θk−1

. recursive version

14: Parameter update: θi = θi−1 + γ
∑T
k=1∇ log p̃θ(yk|y1:k−1)

∣∣
θ=θi−1

. . iterative version

which is then corrected as

m̂i =
mi

1− βi1
(G.3)

v̂i =
vi

1− βi2
. (G.4)

Finally the parameter update is computed as

θi = ProjΘ

(
θi−1 + γ

m̂i√
v̂i + ε

)
, (G.5)

where Proj denotes the projection operator which constrains the parameter to stay positive in each dimension
where Θ = R+ × · · · × R+ ⊂ R6 which is implemented by simple max operators. We choose the standard
parameterization with γ = 10−3, β1 = 0.9, β2 = 0.999 and ε = 10−8.

In these experiments we use an observed time series of length 500 and a series of unobserved future data of length
250. Fig. 1 corresponds to the figure in the main text, but additionally shows how the underlying subspace is
recovered and how the Frobenius norm between the reconstructed data and the true data decreases with the
number of iterations. Fig. 2 shows a similar result for the PSMF method on normally-distributed data.

Akyildiz, Van den Burg, Damoulas, Steel

(a) Observed time series (blue) with unobserved future
data (yellow) and the reconstruction (red).

(b) True (blue) and predicted (red) subspace.

100 101 102

Iterations

50

100

150

200

Fr
ob

en
iu

s
no

rm

(c) Reconstruction error ‖Y − CX‖2F .

Figure 1: Fitting rPSMF on synthetic data with t-distributed noise. Figure (a) illustrates the fit to the observed
and unobserved measurements. Figure (b) contains the true and reconstructed subspace, and (c) shows the
reconstruction error over outer iterations of the iterative algorithm.

(a) Observed time series (blue) with unobserved future
data (yellow) and the reconstruction (red).

(b) True (blue) and predicted (red) subspace.

100 101 102

Iterations

0

50

100

150

200

Fr
ob

en
iu

s
no

rm

(c) Reconstruction error ‖Y − CX‖2F .

Figure 2: Fitting PSMF on synthetic data with normally distributed noise. Figure (a) illustrates the fit to the
observed and unobserved measurements. Figure (b) contains the true and reconstructed subspace, and (c) shows
the reconstruction error over outer iterations of the iterative algorithm.

G.2 Experiment 2

G.2.1 Data generation and the experimental setup

We generate periodic time series using pendulum differential equations as the true subspace. For this experiment,
we generate d = 20 dimensional data where d2 = 3 of them undergo a structural change. In order to test the
method, we generate 1000 synthetic datasets. One such dataset is given in Fig. 3. We generate data with n = 1200
and use the data after the data point n0 = 400 to estimate changepoints, as PSMF has to converge to a stable
regime before it can be used to detect changepoints. The true changepoint is at nc = 601.

G.2.2 The GP subspace model

In this subsection, we provide the details of the discretization of the Matérn-3/2 SDE. Particularly, we consider
the SDE Särkkä et al. (2013)

dxi(t)

dt
= Fxi(t) +

[
0
1

]
wi(t) (G.6)

Probabilistic Sequential Matrix Factorization

0

10

20

-20

-10

0

-10

0

10

0

10

20

-20

-10

0

-20

-10

0

10

0

5

10

-10

-5

0

5

-100

-50

0

-10

-5

0

5

-10

-5

0

-100

-50

0

-20

-10

0

10

0

20

40

-10

0

10

20

-20

-10

0

10

-10

0

10

-40

-20

0

-20

-10

0

-5

0

5

10

Figure 3: One instance of the 1000 different synthetic datasets used in Sec. 4.3. The dimensions which exhibit a
structural change can be seen in black. The data contain outliers and the true changepoint can be seen as marked
by the vertical red line.

where xi(t) = [xi(t), dxi(t)/ dt] and κ =
√

2ν/` and

F =

[
0 1
−κ2 −2κ

]
. (G.7)

Given a step-size γ, the SDE (G.6) can be written as a linear dynamical system

xi,k = Aixi,k−1 +Q
1/2
i ui,k (G.8)

where Ai = expm(γF) where expm denotes the matrix exponential and Qi = P∞ −AiP∞A>i and

P∞ =

[
σ2 0
0 3σ2/`2

]
. (G.9)

Finally, we construct our dynamical system as

xk = Axk−1 +Q1/2uk (G.10)

where xk = [x1,k, . . . , xr,k]> ∈ R2r and

A = Ir ⊗Ai and Q = Ir ⊗Qi. (G.11)

Using these system matrices, we define Hi = [1, 0] and H = Ir ⊗Hi and finally define the probabilistic model

p(C) =MN (C;C0, Id, V0), (G.12)
p(x0) = N (x0;µ0, P0), (G.13)

p(xk|xk−1) = N (xk;Axk−1, Q), (G.14)
p(yk|xk, C) = N (yk;CHxk, R). (G.15)

Inference in this model can be done via a simple modification of the Algorithm 1 where H matrix is involved in
the computations. Fig. 4 illustrates the learned GP features r = 4 and two change points.

Akyildiz, Van den Burg, Damoulas, Steel

400 500 600 700 800 900 1000 1100 1200

-15

-10

-5

0

5

10

15

Figure 4: An illustration of the learned GP features vs. true changepoints for r = 4 and two changepoints.

G.3 Experiment 3

All experiments where run on a Linux machine with an AMD Ryzen 5 3600 processor and 32GB of memory.
Additional results on different missing percentages are shown in Table 4 and Table 5. We again observe excellent
imputation performance of the proposed methods.

Table 4: Imputation error and runtime on several datasets using 20% and 40% missing values, averaged over 100
random repetitions. An asterisk marks offline methods.

(a) 20% missing data

Imputation RMSE Runtime (s)

NO2 PM10 PM25 S&P500 Gas NO2 PM10 PM25 S&P500 Gas

PSMF 5.52
(0.10)

7.26
(0.38)

3.42
(0.52)

9.95
(1.93)

4.19
(0.57)

2.71 2.59 1.92 9.42 101.16

rPSMF 5.53
(0.14)

7.47
(0.46)

3.40
(0.52)

9.29
(1.41)

4.56
(0.51)

2.91 2.73 2.03 13.98 122.57

MLE-SMF 11.03
(0.51)

9.46
(0.37)

4.81
(0.63)

30.23
(1.02)

87.12
(14.84)

2.48 2.39 1.71 9.52 92.09

TMF 7.60
(0.14)

7.95
(0.30)

4.43
(0.50)

34.96
(1.00)

73.70
(8.85)

1.03 0.97 0.72 4.19 35.35

PMF* 10.47
(0.08)

10.46
(0.26)

3.97
(0.48)

40.07
(1.80)

23.54
(0.06)

2.14 1.90 0.68 3.12 31.78

BPMF* 9.03
(0.18)

8.39
(0.28)

3.61
(0.49)

27.36
(0.93)

17.70
(0.17)

3.11 4.48 3.05 4.15 92.50

(b) 40% missing data

Imputation RMSE Runtime (s)

NO2 PM10 PM25 S&P500 Gas NO2 PM10 PM25 S&P500 Gas

PSMF 6.06
(0.18)

7.72
(0.28)

3.77
(0.23)

13.87
(3.06)

8.75
(1.63)

2.77 2.62 1.92 9.12 100.68

rPSMF 5.96
(0.27)

7.68
(0.57)

3.67
(0.29)

12.36
(4.39)

9.03
(2.28)

2.92 2.77 2.02 13.30 109.38

MLE-SMF 11.30
(0.49)

9.55
(0.30)

4.93
(0.31)

30.14
(0.80)

125.54
(26.65)

2.54 2.38 1.70 9.59 85.11

TMF 7.90
(0.12)

8.27
(0.21)

4.86
(0.31)

34.78
(0.76)

66.27
(10.60)

0.98 0.97 0.73 4.13 32.01

PMF* 10.54
(0.05)

10.53
(0.15)

4.11
(0.13)

41.53
(1.81)

24.12
(0.06)

1.73 1.51 0.54 2.43 24.75

BPMF* 9.46
(0.21)

8.64
(0.18)

3.72
(0.12)

27.91
(0.64)

19.10
(0.37)

4.26 4.07 2.92 3.16 82.44

H CONVERGENCE DISCUSSION

To gain insights in the convergence of our method, we have designed a simplified setup where the latent state
trajectory is a one-dimensional random walk and observations are four-dimensional, and we have simulated a
dataset consisting of size 1,000 where C ∈ R4. We run the KF with the ground-truth value C?. We also run the
iterative PSMF which also estimates C as well as the hidden states. We have computed the distance between the
sequence of optimal (Gaussian) filters constructed by the KF and the filters of the iterative PSMF in terms of the

Probabilistic Sequential Matrix Factorization

Table 5: Average coverage proportion of the missing data by the 2σ uncertainty bars of the posterior predictive
estimates for 20% and 40% missing values, averaged over 100 repetitions.

(a) 20% missing data

NO2 PM10 PM25 S&P500 Gas

PSMF 0.79 0.79 0.93 0.85 0.93
rPSMF 0.89 0.92 0.91 0.86 0.90
MLE-SMF 0.46 0.59 0.83 0.51 0.61

(b) 40% missing data

NO2 PM10 PM25 S&P500 Gas

PSMF 0.71 0.73 0.89 0.78 0.83
rPSMF 0.79 0.84 0.81 0.79 0.79
MLE-SMF 0.40 0.53 0.77 0.44 0.49

10
0

10
2

10
4

Iterations

(a)

10
-1

10
0

A
v
e

ra
g

e
d

 W
a

s
s
e

rs
te

in
 d

is
ta

n
c
e

10
0

10
2

10
4

Iterations

(b)

10
0

10
1

0 100 200 300 400 500 600 700 800 900 1000

Time Index

(c)

-1

0

1

2

3

4

Optimal filter mean estimate

Approximate filter mean estimate

Figure 5: (a) Convergence of the approximate posterior and true posterior (with true C?) in averaged Wasserstein
distance for iterative PSMF. (b) Convergence of the mean Ck to C?. (c) Filter estimates given by the iterative
PSMF and the optimal filter.

averaged Wasserstein distance over the path:

W 2(t) :=
1

t

t∑
k=1

W2(p?(xk|y1:k), p̃(xk|y1:k)). (H.1)

We observe that the distance between the optimal and approximate filters over the entire path is uniformly
bounded (see Fig. 5(a)). We also observe that Ck → C? for this case, see Fig. 5(b) and show the mean estimates
are sufficiently close (Fig. 5(c)).

More precisely, we simulate the following state-space model

p(x0) = N (x0;µ0, P0), (H.2)
p(xk|xk−1) = N (xk;xk−1, Q), (H.3)
p(yk|xk, C?) = N (yk;C?xk, R), (H.4)

where C? ∈ R4 and xk ∈ R, which leads to yk ∈ R4. In this case, the identifability problem is alleviated since C?
is a vector and we can test empirically whether the posterior provided by the PSMF for the states p(xk|y1:k)
converges to the true posterior of the states p?(xk|y1:k).

Note that, the PSMF provides the filtering distribution of states as a Gaussian

p̃(xk|y1:k) = N (xk;µk, Pk) (H.5)

where µk, Pk are defined within Algorithm 1. Since the data is generated from the model using C?, we also
compute the optimal Kalman filter with C? which we denote as p?(xk|y1:k). In order to test the convergence

Akyildiz, Van den Burg, Damoulas, Steel

between the approximate filter provided by the PSMF p̃(xk|y1:k) and the true filter p?(xk|y1:k), we use the
Wasserstein-2 distance which is defined as

W2(µ, ν) = inf
Γ∈C(µ,ν)

∫∫
‖x− y‖2Γ(dx, dy) (H.6)

where C(µ, ν) is the set of couplings whose marginals are µ and ν respectively. This Wasserstein-2 distance can
be computed in closed form for two Gaussians, e.g., for µ = N (µ1,Σ1) and ν = N (µ2,Σ2), we have

W2(µ, ν)2 = ‖µ1 − µ2‖2 + Tr(Σ1 + Σ2 − 2(Σ
1/2
2 Σ1Σ

1/2
2)1/2). (H.7)

Hence, for a given sequence of filters (p̃(xk|y1:k))k≥1 and (p?(xk|y1:k))k≥1, we define the averaged Wasserstein
distance for time t as

W 2(t) =
1

t

t∑
k=1

W2(p̃(xk|y1:k), p?(xk|y1:k)). (H.8)

One can see from Fig. 5 that limt→∞W 2(t) <∞ which implies that a convergence result can be proven for our
method. We leave this exciting direction to future work.

I ADDITIONAL RESULTS FOR RECURSIVE PSMF

Figure 6: Recursive PSMF. Observed time
series (blue) with unobserved future data (yel-
low) and the reconstruction from the model
(red).

In this section, we present an additional result using recursive
PSMF to demonstrate the scalability of our method in a purely
streaming setting.

Using the same setting of Sec. 4.1, we use a longer sequence
(n = 4000) with an additional prediction sequence of length 800.
This presents a challenging setting as we do not iterate over
data and the algorithm observes the training data only once (i.e.
the streaming setting). As can be seen from Fig. 6, recursive
PSMF learns the underlying dynamics and has a successful
out-of-sample prediction performance, even with a relatively
long sequence into the future. This demonstrates the recursive
version of our method can be used in a setting where iterating
over data multiple times is impractical.

	PRELIMINARIES
	PROOF OF PROPOSITION 1
	PROOF OF PROPOSITION 2
	DERIVATION OF THE NEGATIVE LOG-LIKELIHOOD
	THE PROBABILISTIC MODEL TO HANDLE MISSING DATA
	THE ROBUST MODEL
	ADDITIONAL DETAILS FOR THE EXPERIMENTS
	Experiment 1
	Experiment 2
	Data generation and the experimental setup
	The GP subspace model

	Experiment 3

	CONVERGENCE DISCUSSION
	ADDITIONAL RESULTS FOR RECURSIVE PSMF

