Supplementary Material

A PRELIMINARIES

In this section, we list some linear algebra properties related to Kronecker products, which will be used in proofs.
We denote the Kronecker product \otimes. Let A be of dimension $m \times r$ and B be of dimension $r \times n$; then Harville (1997),

$$
A \otimes B=\left[\begin{array}{ccc}
a_{11} B & \cdots & a_{1 r} B \tag{A.1}\\
\vdots & \ddots & \vdots \\
a_{m 1} B & \cdots & a_{m r} B
\end{array}\right]
$$

For matrices A, B and X, it holds that

$$
\begin{equation*}
\operatorname{vec}(A X B)=\left(B^{\top} \otimes A\right) \operatorname{vec}(X) \tag{A.2}
\end{equation*}
$$

We can particularize this formula for an $r \times 1$ vector x as

$$
\begin{equation*}
A x=\operatorname{vec}(A x)=\left(x^{\top} \otimes I_{d}\right) \operatorname{vec}(A) \tag{A.3}
\end{equation*}
$$

Kronecker product has the following mixed product property Harville (1997)

$$
\begin{equation*}
(A \otimes B)(C \otimes D)=(A C) \otimes(B D) \tag{A.4}
\end{equation*}
$$

and the inversion property Harville (1997)

$$
\begin{equation*}
(A \otimes B)^{-1}=A^{-1} \otimes B^{-1} \tag{A.5}
\end{equation*}
$$

B PROOF OF PROPOSITION 1

We adapt the proof in Akyildiz and Míguez (2019). We first note that for a Gaussian prior $\tilde{p}\left(c \mid y_{1: k-1}\right)=$ $\mathcal{N}\left(c ; c_{k-1}, L_{k-1}\right)$ and likelihood of the form $p\left(y_{k} \mid y_{1: k-1}, c\right)=\mathcal{N}\left(y_{k} ; H_{k} c, G_{k}\right)$, we can write the posterior analytically $\tilde{p}\left(c \mid y_{1: k}\right)=\mathcal{N}\left(c ; c_{k}, L_{k}\right)$ where (see, e.g., Bishop (2006))

$$
\begin{align*}
c_{k} & =c_{k-1}+L_{k-1} H_{k}^{\top}\left(H_{k} L_{k-1} H_{k}^{\top}+G_{k}\right)^{-1}\left(y_{k}-H_{k} c_{k-1}\right) \tag{B.1}\\
L_{k} & =L_{k-1}-L_{k-1} H_{k}^{\top}\left(H_{k} L_{k-1} H_{k}^{\top}+G_{k}\right)^{-1} H_{k} L_{k-1} \tag{B.2}
\end{align*}
$$

In order to obtain an efficient matrix-variate update rule using this vector-form update, we first rewrite the likelihood as

$$
\begin{equation*}
\tilde{p}\left(y_{k} \mid c, y_{1: k-1}\right)=\mathcal{N}\left(y_{k} ; H_{k} c, G_{k}\right) \tag{B.3}
\end{equation*}
$$

where $H_{k}=\bar{\mu}_{k}^{\top} \otimes I_{d}$ and $G_{k}=\eta_{k} \otimes I_{d}$. We note that, we have $L_{0}=V_{0} \otimes I_{d}$ and we assume as an induction hypothesis that $L_{k-1}=V_{k-1} \otimes I_{d}$. We start by showing that the update (B.2) can be greatly simplified using the special structure we impose. By the mixed product property (A.4) and the inversion property (A.5) we obtain

$$
\begin{equation*}
\left[H_{k} L_{k-1} H_{k}^{\top}+G_{k}\right]^{-1}=\left[\left(\bar{\mu}_{k}^{\top} \otimes I_{d}\right)\left(V_{k-1} \otimes I_{d}\right)\left(\bar{\mu}_{k} \otimes I_{d}\right)+\eta_{k} \otimes I_{d}\right]^{-1}=\left(\bar{\mu}_{k}^{\top} V_{k-1} \bar{\mu}_{k}+\eta_{k}\right)^{-1} \otimes I_{d} \tag{B.4}
\end{equation*}
$$

and therefore,

$$
\begin{equation*}
L_{k}=\left(V_{k-1} \otimes I_{d}\right)-\left(V_{k-1} \bar{\mu}_{k} \otimes I_{d}\right) \times\left(\left(\bar{\mu}_{k}^{\top} V_{k-1} \bar{\mu}_{k}+\eta_{k}\right)^{-1} \otimes I_{d}\right) \times\left(\bar{\mu}_{k}^{\top} V_{k-1} \otimes I_{d}\right) \tag{B.5}
\end{equation*}
$$

One more use of the mixed product property (A.4) yields

$$
\begin{equation*}
L_{k}=\left(V_{k-1}-\frac{V_{k-1} \bar{\mu}_{k} \bar{\mu}_{k}^{\top} V_{k-1}}{\bar{\mu}_{k}^{\top} V_{k-1} \bar{\mu}_{k}+\eta_{k}}\right) \otimes I_{d} \tag{B.6}
\end{equation*}
$$

Thus, we have $L_{k}=V_{k} \otimes I_{d}$ where,

$$
\begin{equation*}
V_{k}=V_{k-1}-\frac{V_{k-1} \bar{\mu}_{k} \bar{\mu}_{k}^{\top} V_{k-1}}{\bar{\mu}_{k}^{\top} V_{k-1} \bar{\mu}_{k}+\eta_{k}} \tag{B.7}
\end{equation*}
$$

We have shown that the sequence $\left(L_{k}\right)_{k \geq 1}$ preserves the Kronecker structure. Next, we substitute $L_{k-1}=V_{k-1} \otimes I_{d}$, $H_{k}=\bar{\mu}_{k}^{\top} \otimes I_{d}$ and $G_{k}=\eta_{k} \otimes I_{d}$ into (B.1) and we obtain

$$
\begin{equation*}
c_{k}=c_{k-1}+\left(V_{k-1} \otimes I_{d}\right)\left(\bar{\mu}_{k} \otimes I_{d}\right) \times\left(\left(\bar{\mu}_{k}^{\top} V_{k-1} \bar{\mu}_{k}+\eta_{k}\right)^{-1} \otimes I_{d}\right) \times\left(y_{k}-\left(\bar{\mu}_{k}^{\top} \otimes I_{d}\right) c_{k-1}\right) \tag{B.8}
\end{equation*}
$$

The use of the mixed product property (A.4) leaves us with

$$
\begin{equation*}
c_{k}=c_{k-1}+\left(V_{k-1} \bar{\mu}_{k} \otimes I_{d}\right)\left(\left(\bar{\mu}_{k}^{\top} V_{k-1} \bar{\mu}_{k}+\eta_{k}\right) \otimes I_{d}\right)^{-1} \times\left(y_{k}-\left(\bar{\mu}_{k}^{\top} \otimes I_{d}\right) c_{k-1}\right) \tag{B.9}
\end{equation*}
$$

Using (A.5) and again (A.4) yields

$$
\begin{equation*}
c_{k}=c_{k-1}+\left[\frac{V_{k-1} \bar{\mu}_{k}}{\bar{\mu}_{k}^{\top} V_{k-1} \bar{\mu}_{k}+\eta_{k}} \otimes I_{d}\right] \times\left(y_{k}-\left(\bar{\mu}_{k}^{\top} \otimes I_{d}\right) c_{k-1}\right) \tag{B.10}
\end{equation*}
$$

Using (A.3), we get

$$
\begin{equation*}
c_{k}=c_{k-1}+\left[\frac{V_{k-1} \bar{\mu}_{k}}{\bar{\mu}_{k}^{\top} V_{k-1} \bar{\mu}_{k}+\eta_{k}} \otimes I_{d}\right]\left(y_{k}-C_{k-1} \bar{\mu}_{k}\right) . \tag{B.11}
\end{equation*}
$$

We now note that $\left(y_{k}-C_{k-1} \bar{\mu}_{k}\right)$ and $\frac{V_{k-1} \bar{\mu}_{k}}{\bar{\mu}_{k}^{\top} V_{k-1} \bar{\mu}_{k}+\eta_{k}}$ are vectors. Hence, rewriting the above expression as

$$
\begin{equation*}
c_{k}=c_{k-1}+\left[\operatorname{vec}\left(\frac{V_{k-1} \bar{\mu}_{k}}{\bar{\mu}_{k}^{\top} V_{k-1} \bar{\mu}_{k}+\eta_{k}}\right) \otimes I_{d}\right] \times \operatorname{vec}\left(y_{k}-C_{k-1} \bar{\mu}_{k}\right) \tag{B.12}
\end{equation*}
$$

we can apply (A.3) and obtain

$$
\begin{equation*}
c_{k}=c_{k-1}+\operatorname{vec}\left(\frac{\left(y_{k}-C_{k-1} \bar{\mu}_{k}\right) \bar{\mu}_{k}^{\top} V_{k-1}^{\top}}{\bar{\mu}_{k}^{\top} V_{k-1} \bar{\mu}_{k}+\eta_{k}}\right) \tag{B.13}
\end{equation*}
$$

Hence up to a reshaping operation, we have the update rule (20) and conclude the proof.

C PROOF OF PROPOSITION 2

Recall that we have a posterior of the form at time $k-1$

$$
\begin{equation*}
p\left(c \mid y_{1: k-1}\right)=\mathcal{N}\left(c ; c_{k-1}, V_{k-1} \otimes I_{d}\right) \tag{C.1}
\end{equation*}
$$

and we are given the likelihood

$$
\begin{equation*}
p\left(y_{k} \mid c, x_{k}\right)=\mathcal{N}\left(y_{k} ;\left(x_{k} \otimes I_{d}\right) c, R_{k}\right) \tag{C.2}
\end{equation*}
$$

We are interested in computing

$$
\begin{equation*}
p\left(y_{k} \mid y_{1: k-1}, x_{k}\right)=\int p\left(c \mid y_{1: k-1}\right) p\left(y_{k} \mid c, x_{k}\right) \mathrm{d} c . \tag{C.3}
\end{equation*}
$$

This integral is analytically tractable since both distributions are Gaussian and it is given by Bishop (2006)

$$
\begin{equation*}
p\left(y_{k} \mid y_{1: k-1}, x_{k}\right)=\mathcal{N}\left(y_{k} ;\left(x_{k}^{\top} \otimes I_{d}\right) c_{k}, R_{k}+\left(x_{k}^{\top} \otimes I_{d}\right)\left(V_{k-1} \otimes I_{d}\right)\left(x_{k} \otimes I_{d}\right)\right) \tag{C.4}
\end{equation*}
$$

Using the mixed product property (A.4), one obtains

$$
\begin{equation*}
p\left(y_{k} \mid y_{1: k-1}, x_{k}\right)=\mathcal{N}\left(y_{k} ; C_{k-1} x_{k}, R_{k}+x_{k}^{\top} V_{k-1} x_{k} \otimes I_{d}\right) \tag{C.5}
\end{equation*}
$$

D DERIVATION OF THE NEGATIVE LOG-LIKELIHOOD

We obtain the marginal likelihood as

$$
\begin{align*}
\tilde{p}_{\theta}\left(y_{k} \mid y_{1: k-1}\right) & =\int \tilde{p}\left(y_{k} \mid y_{1: k-1}, c\right) \tilde{p}\left(c \mid y_{1: k-1}\right) \mathrm{d} c \tag{D.1}\\
& =\mathcal{N}\left(y_{k} ; C \bar{\mu}_{k}, \eta_{k} \otimes I_{d}\right) \mathcal{N}\left(c ; c_{k-1}, V_{k-1} \otimes I_{d}\right) \tag{D.2}\\
& =\mathcal{N}\left(y_{k} ;\left(\bar{\mu}_{k}^{\top} \otimes I_{d}\right) c, \eta_{k} \otimes I_{d}\right) \mathcal{N}\left(c ; c_{k-1}, V_{k-1} \otimes I_{d}\right) \tag{D.3}\\
& =\mathcal{N}\left(y_{k} ;\left(\bar{\mu}_{k}^{\top} \otimes I_{d}\right) c_{k-1},\left(\bar{\mu}_{k}^{\top} V_{k-1} \bar{\mu}_{k}+\eta_{k}\right) \otimes I_{d}\right) \tag{D.4}\\
& =\mathcal{N}\left(y_{k} ; C_{k-1} f_{\theta}\left(\mu_{k-1}\right),\left(\left\|f_{\theta}\left(\mu_{k-1}\right)\right\|_{V_{k-1}}^{2}+\eta_{k}\right) \otimes I_{d}\right) \tag{D.5}
\end{align*}
$$

where in the last line we have used the fact that $\bar{\mu}_{k}=f_{\theta}\left(\mu_{k-1}\right)$ and properties from Supp. A. It is then straightforward to show that

$$
\begin{align*}
& -\log \tilde{p}_{\theta}\left(y_{k} \mid y_{1: k-1}\right)=-\log \left[(2 \pi)^{-d / 2} \cdot\left|\left(\left\|f_{\theta}\left(\mu_{k-1}\right)\right\|_{V_{k-1}}^{2}+\eta_{k}\right) \otimes I_{d}\right|^{-1 / 2}\right. \tag{D.6}\\
& \left.\quad \cdot \exp \left(-\frac{1}{2}\left(y_{k}-C_{k-1} f_{\theta}\left(\mu_{k-1}\right)\right)^{\top}\left(\left\|f_{\theta}\left(\mu_{k-1}\right)\right\|_{V_{k-1}}^{2}+\eta_{k}\right) \otimes I_{d}\right)^{-1}\left(y_{k}-C_{k-1} f_{\theta}\left(\mu_{k-1}\right)\right)\right] \tag{D.7}
\end{align*}
$$

which simplifies to

$$
\begin{equation*}
-\log \tilde{p}_{\theta}\left(y_{k} \mid y_{1: k-1}\right)=\frac{d}{2} \log (2 \pi)+\frac{d}{2} \log \left(\left\|f_{\theta}\left(\mu_{k-1}\right)\right\|_{V_{k-1}}^{2}+\eta_{k}\right)+\frac{1}{2} \frac{\left\|y_{k}-C_{k-1} f_{\theta}\left(\mu_{k-1}\right)\right\|^{2}}{\left\|f_{\theta}\left(\mu_{k-1}\right)\right\|_{V_{k-1}}^{2}+\eta_{k}} \tag{D.8}
\end{equation*}
$$

E THE PROBABILISTIC MODEL TO HANDLE MISSING DATA

To obtain update rules that can explicitly handle missing data, we only need to modify the likelihood. When we receive an observation vector with missing entries, we model it as $z_{k}=m_{k} \odot y_{k}$ where $m_{k} \in\{0,1\}^{d}$ is a mask vector that contains zeros for missing entries and ones otherwise. We note that $z_{k}=M_{k} y_{k}$ where $M_{k}=\operatorname{diag}\left(m_{k}\right)$, which results in the likelihood $p\left(z_{k} \mid c, x_{k}\right)=\mathcal{N}\left(z_{k} ; M_{k} C x_{k}, M_{k} R_{k} M_{k}^{\top}\right)$. The update rules for PSMF and the robust model, rPSMF, can be easily re-derived using this likelihood and are essentially identical to Algorithm 1 with masks. Here we discuss the case of PSMF with missing values, rPSMF with missing values is discussed in Supp. F.

We define the probabilistic model with missing data as

$$
\begin{align*}
p(C) & =\mathcal{M} \mathcal{N}\left(C ; C_{0}, I_{d}, V_{0}\right) \tag{E.1}\\
p\left(x_{0}\right) & =\mathcal{N}\left(x_{0} ; \mu_{0}, P_{0}\right), \tag{E.2}\\
p_{\theta}\left(x_{k} \mid x_{k-1}\right) & =\mathcal{N}\left(x_{k} ; f_{\theta}\left(x_{k-1}\right), Q_{k}\right) \tag{E.3}\\
p\left(z_{k} \mid x_{k}, C\right) & =\mathcal{N}\left(z_{k} ; M_{k} C x_{k}, M_{k} R_{k} M_{k}^{\top}\right) . \tag{E.4}
\end{align*}
$$

This model can explicitly handle the missing data when $\left(M_{k}\right)_{k \geq 1}$ (the missing data patterns) are given. The update rules for this model are defined using masks and are similar to the full data case. In what follows, we derive the update rules for this model by explicitly handling the masks and placing them into our updates formally. For the missing-data case, however, we need a minor approximation in the covariance update rule in order to keep the method efficient. Assume that we are given $\tilde{p}\left(c \mid z_{1: k-1}\right)=\mathcal{N}\left(c ; c_{k-1}, V_{k-1} \otimes I_{d}\right)$ and the likelihood

$$
\begin{equation*}
\tilde{p}\left(z_{k} \mid c, z_{1: k-1}\right)=\mathcal{N}\left(z_{k} ; M_{k} C \bar{\mu}_{k}, \eta_{k} \otimes I_{d}\right) \tag{E.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta_{k}=\frac{\operatorname{Tr}\left(M_{k} R_{k} M_{k}^{\top}+M_{k} C_{k-1} \bar{P}_{k} C_{k-1}^{\top} M_{k}^{\top}\right)}{m} \tag{E.6}
\end{equation*}
$$

In the sequel, we derive the update rules corresponding to the our method with missing data. The derivation relies on the proof of Prop. 1. We note that using (A.2), we can obtain the likelihood

$$
\begin{equation*}
\tilde{p}\left(z_{k} \mid c, z_{1: k-1}\right)=\mathcal{N}\left(z_{k} ; H_{k} c, \eta_{k} \otimes I_{d}\right) \tag{E.7}
\end{equation*}
$$

where $c=\operatorname{vec}(C)$ and $H_{k}=\bar{\mu}_{k}^{\top} \otimes M_{k}$. Deriving the posterior in the same way as in the proof of Prop. 1, and using the approximation $\bar{\mu}_{k}^{\top} V_{k-1} \bar{\mu}_{k} \otimes M_{k} \approx \bar{\mu}_{k}^{\top} V_{k-1} \bar{\mu}_{k} \otimes I_{d}$, leaves us with the covariance update in the form

$$
\begin{equation*}
P_{k}=V_{k-1} \otimes I_{d}-\frac{V_{k-1} \bar{\mu}_{k} \bar{\mu}_{k}^{\top} V_{k-1}}{\bar{\mu}_{k}^{\top} V_{k-1} \bar{\mu}_{k}+\eta_{k}} \otimes M_{k} \tag{E.8}
\end{equation*}
$$

Unlike the previous case, this covariance does not simplify to a form $P_{k}=V_{k} \otimes I_{d}$ easily. For this reason, we approximate it as

$$
\begin{equation*}
P_{k} \approx V_{k} \otimes I_{d} \tag{E.9}
\end{equation*}
$$

where V_{k} is in the same form of missing-data free updates. To update the mean, we proceed in a similar way as in the proof of Prop. 1 as well. Straightforward calculations lead to the update

$$
\begin{equation*}
C_{k}=C_{k-1}+\frac{\left(z_{k}-M_{k} C_{k-1} \bar{\mu}_{k}\right) \bar{\mu}_{k}^{\top} V_{k-1}}{\bar{\mu}_{k}^{\top} V_{k-1} \bar{\mu}_{k}+\eta_{k}}, \quad \text { for } k \geq 1 \tag{E.10}
\end{equation*}
$$

To update x_{k}, once we fix C_{k-1}, everything straightforwardly follows by replacing C_{k-1} by $M_{k} C_{k-1}$ in the update rules for $\left(x_{k}\right)_{k \geq 1}$. Finally, the negative \log-likelihood $\tilde{p}_{\theta}\left(z_{k} \mid z_{1: k-1}\right)$ can be derived similarly to the non-missing case in Sec. 3.2.5, and equals

$$
\begin{equation*}
-\log \tilde{p}_{\theta}\left(z_{k} \mid z_{1: k-1}\right) \stackrel{c}{=} \frac{1}{2} \sum_{j=1}^{d} \log u_{j k}+\frac{1}{2}\left(z_{k}-M_{k} C_{k-1} f_{\theta}\left(\mu_{k-1}\right)\right)^{\top} U_{k}^{-1}\left(z_{k}-M_{k} C_{k-1} f_{\theta}\left(\mu_{k-1}\right)\right) \tag{E.11}
\end{equation*}
$$

where $\stackrel{c}{=}$ denotes equality up to constants that do not depend on θ and $U_{k}=\left\|f_{\theta}\left(\mu_{k-1}\right)\right\|_{V_{k-1}}^{2} \otimes M_{k}+\eta_{k} \otimes I_{d}$ is a d-dimensional diagonal matrix with elements $u_{j k}$ for $j=1, \ldots, d$.

F THE ROBUST MODEL

Recall that the model definitions for robust PSMF are as follows

$$
\begin{align*}
p(s) & =\mathcal{I} \mathcal{G}\left(s ; \lambda_{0} / 2, \lambda_{0} / 2\right) \tag{F.1}\\
p(C \mid s) & \left.=\mathcal{M} \mathcal{N}\left(C ; C_{0}, I_{d}, s V_{0}\right)\right) \tag{F.2}\\
p\left(x_{0} \mid s\right) & =\mathcal{N}\left(x_{0} ; \mu_{0}, s P_{0}\right) \tag{F.3}\\
p_{\theta}\left(x_{k} \mid x_{k-1}, s\right) & =\mathcal{N}\left(x_{k} ; f_{\theta}\left(x_{k-1}\right), s Q_{0}\right), \tag{F.4}\\
p\left(y_{k} \mid x_{k}, C, s\right) & =\mathcal{N}\left(y_{k} ; C x_{k}, s R_{0}\right) \tag{F.5}
\end{align*}
$$

Before we present the derivation, we recall the following definitions.
Definition 1 (Inverse-Gamma Distribution). The inverse-gamma distribution is given by

$$
\begin{equation*}
\mathcal{I} \mathcal{G}(s ; \alpha, \beta)=\frac{\beta^{\alpha}}{\Gamma(\alpha)}\left(\frac{1}{s}\right)^{\alpha+1} \exp (-\beta / s) \tag{F.6}
\end{equation*}
$$

for $\alpha, \beta>0$, and with $\Gamma(\cdot)$ the Gamma function.
Definition 2 (Multivariate t Distribution). For $y \in \mathbb{R}^{d}$ the multivariate t distribution with λ degrees of freedom is

$$
\begin{equation*}
\mathcal{T}(y ; \mu, \Sigma, \lambda)=\frac{1}{(\pi \lambda)^{d / 2}|\Sigma|^{1 / 2}} \frac{\Gamma((\lambda+d) / 2)}{\Gamma(\lambda / 2)}\left(1+\frac{\Delta^{2}}{\lambda}\right)^{-(\lambda+d) / 2} \tag{F.7}
\end{equation*}
$$

where $\Delta^{2}=(y-\mu)^{\top} \Sigma^{-1}(y-\mu)$.
Since we again assume the model to be Markovian, we extend the conditional independence and Markov properties (see, e.g., Särkkä, 2013) to the case with a scale variable
Property 1 (Conditional independence). The measurement y_{k} given the coefficient x_{k} and scale variable s, is conditionally independent of past measurements and coefficients

$$
\begin{equation*}
p\left(y_{k} \mid x_{1: k}, y_{1: k-1}, s\right)=p\left(y_{k} \mid x_{k}, s\right) . \tag{F.8}
\end{equation*}
$$

Property 2 (Markov property of coefficients). When conditioning on s the coefficients x_{k} form a Markov sequence, such that

$$
\begin{equation*}
p\left(x_{k} \mid x_{1: k-1}, y_{1: k-1}, s\right)=p\left(x_{k} \mid x_{k-1}, s\right) \tag{F.9}
\end{equation*}
$$

We also present the following lemma's used in the derivation.
Lemma 1. For $y \in \mathbb{R}^{d}$ with $p(y \mid s)=\mathcal{N}(y ; \mu, \Sigma)$ and $p(s)=\mathcal{I} \mathcal{G}(s ; \alpha, \beta)$ we have

$$
\begin{align*}
p(y) & =\frac{1}{(2 \pi \beta)^{d / 2}|\Sigma|^{1 / 2}} \frac{\Gamma(\alpha+d / 2)}{\Gamma(\alpha)}\left(1+\frac{\Delta^{2}}{2 \beta}\right)^{-(\alpha+d / 2)} \tag{F.10}\\
p(s \mid y) & =\mathcal{I} \mathcal{G}\left(s ; \alpha+d / 2, \beta+\frac{1}{2} \Delta^{2}\right) \tag{F.11}
\end{align*}
$$

In particular, if $\alpha=\beta=\lambda / 2$ then $p(y)=\mathcal{T}(y ; \mu, \Sigma, \lambda)$.
Lemma 2. If $p(s)=\mathcal{I G}(s ; \alpha, \beta)$ and $\omega=\beta / \alpha$, then $\omega \cdot p(\omega s)=\mathcal{I} \mathcal{G}(s ; \alpha, \alpha)$.

Proof.

$$
\begin{equation*}
\frac{\beta}{\alpha} p\left(\frac{\beta}{\alpha} s\right)=\frac{\beta}{\alpha} \frac{\beta^{\alpha}}{\Gamma(\alpha)}\left(\frac{\alpha}{\beta s}\right)^{\alpha+1} \exp \left(-\frac{\beta \alpha}{\beta s}\right)=\frac{\alpha^{\alpha}}{\Gamma(\alpha)}\left(\frac{1}{s}\right)^{\alpha+1} \exp \left(-\frac{\alpha}{s}\right)=\mathcal{I} \mathcal{G}(s ; \alpha, \alpha) \tag{F.12}
\end{equation*}
$$

Lemma 3. For a partitioned random variable $y=\left[y_{a}, y_{b}\right]^{\top}$ with $y_{a} \in \mathbb{R}^{d_{a}}$ and $y_{b} \in \mathbb{R}^{d_{b}}$ that follows a multivariate t distribution given by

$$
p(y)=p\left(y_{a}, y_{b}\right)=\mathcal{T}\left(\left[\begin{array}{l}
y_{a} \tag{F.13}\\
y_{b}
\end{array}\right] ;\left[\begin{array}{l}
\mu_{a} \\
\mu_{b}
\end{array}\right],\left[\begin{array}{cc}
\Sigma_{a a} & \Sigma_{a b} \\
\Sigma_{a b}^{\top} & \Sigma_{b b}
\end{array}\right], \lambda\right)
$$

the marginal and conditional densities are given by

$$
\begin{align*}
p\left(y_{b}\right) & =\mathcal{T}\left(y_{b} ; \mu_{b}, \Sigma_{b b}, \lambda\right) \tag{F.14}\\
p\left(y_{a} \mid y_{b}\right) & =\mathcal{T}\left(y_{a} ; \mu_{a \mid b}, \Sigma_{a \mid b}, \lambda_{a \mid b}\right) \tag{F.15}
\end{align*}
$$

with

$$
\begin{align*}
& \lambda_{a \mid b}=\lambda+d_{b} \tag{F.16}\\
& \mu_{a \mid b}=\mu_{a}+\Sigma_{a b} \Sigma_{b b}^{-1}\left(y_{b}-\mu_{b}\right) \tag{F.17}\\
& \Sigma_{a \mid b}=\frac{\lambda+\left(y_{b}-\mu_{b}\right)^{\top} \Sigma_{b b}^{-1}\left(y_{b}-\mu_{b}\right)}{\lambda+d_{b}}\left(\Sigma_{a a}-\Sigma_{a b} \Sigma_{b b}^{-1} \Sigma_{a b}^{\top}\right) . \tag{F.18}
\end{align*}
$$

Proof. See Roth (2012) for a derivation.

To derive inference in the robust model, we start from $k=1$ and show how we perform filtering for an entire iteration. While this makes the description longer, we believe it to be more informative for the reader. We begin with prediction of x_{1} given no history $\left(y_{1: 0}=\emptyset\right)$. The predictive distribution of x_{1} is then

$$
\begin{align*}
\tilde{p}\left(x_{1} \mid y_{1: 0}, s\right) & =\int p\left(x_{1} \mid x_{0}, s\right) p\left(x_{0} \mid y_{1: 0}, s\right) \mathrm{d} x_{0} \tag{F.19}\\
\tilde{p}\left(x_{1} \mid s\right) & =\int p\left(x_{1} \mid x_{0}, s\right) p\left(x_{0} \mid s\right) \mathrm{d} x_{0} \tag{F.20}\\
& =\int \mathcal{N}\left(x_{1} ; f_{\theta}\left(x_{0}\right), s Q_{0}\right) \mathcal{N}\left(x_{0} ; \mu_{0}, s P_{0}\right) \mathrm{d} x_{0} \tag{F.21}\\
& =\mathcal{N}\left(x_{1} ; f_{\theta}\left(\mu_{0}\right), s\left(Q_{0}+F_{1} P_{0} F_{1}^{\top}\right)\right) \tag{F.22}
\end{align*}
$$

where F_{1} is defined as in the main text. Writing $\bar{\mu}_{1}=f_{\theta}\left(\mu_{0}\right)$ and $\bar{P}_{1}=Q_{0}+F_{1} P_{0} F_{1}^{\top}$ we get $\tilde{p}\left(x_{1} \mid s\right)=$ $\mathcal{N}\left(x_{1} ; \bar{\mu}_{1}, s \bar{P}_{1}\right)$. Next, we move to the dictionary update. We first have

$$
\begin{align*}
\tilde{p}\left(y_{1} \mid c, y_{1: 0}, s\right) & =\int p\left(y_{1} \mid c, x_{1}, s\right) p\left(x_{1} \mid y_{1: 0}, s\right) \mathrm{d} x_{1} \tag{F.23}\\
\tilde{p}\left(y_{1} \mid c, s\right) & =\int p\left(y_{1} \mid c, x_{1}, s\right) p\left(x_{1} \mid s\right) \mathrm{d} x_{1} \tag{F.24}\\
& =\int \mathcal{N}\left(y_{1} ; C x_{1}, s R_{0}\right) \mathcal{N}\left(x_{1} ; \bar{\mu}_{1}, s \bar{P}_{1}\right) \mathrm{d} x_{1} \tag{F.25}\\
& =\mathcal{N}\left(y_{1} ; C \bar{\mu}_{1}, s\left(R_{0}+C \bar{P}_{1} C^{\top}\right)\right) . \tag{F.26}
\end{align*}
$$

As in PSMF, we use the approximation $C \bar{P}_{1} C^{\top} \approx \eta_{1} \otimes I_{d}$ where $\eta_{1}=\operatorname{Tr}\left(R_{0}+C_{0} \bar{P}_{1} C_{0}^{\top}\right) / d$. We write this as $\tilde{p}\left(y_{1} \mid c, s\right)=\mathcal{N}\left(y_{1} ; H_{1} c, s G_{1}\right)$ with $H_{1}=\bar{\mu}_{1}^{\top} \otimes I_{d}$ and $G_{1}=\eta_{1} \otimes I_{d}$. We again assume $\tilde{p}\left(c \mid y_{1: 0}, s\right)=\mathcal{N}\left(c ; c_{0}, s L_{0}\right)$ using $L_{0}=V_{0} \otimes I_{d}$, such that

$$
\begin{align*}
\tilde{p}\left(c, y_{1} \mid y_{1: 0}, s\right) & =\tilde{p}\left(y_{1} \mid c, y_{1: 0}, s\right) \tilde{p}\left(c \mid y_{1: 0}, s\right) \tag{F.27}\\
\tilde{p}\left(c, y_{1} \mid s\right) & =\tilde{p}\left(y_{1} \mid c, s\right) \tilde{p}(c \mid s) \tag{F.28}\\
& =\mathcal{N}\left(y_{1} ; H_{1} c, s G_{1}\right) \mathcal{N}\left(c ; c_{0}, s L_{0}\right) \tag{F.29}\\
& =\mathcal{N}\left(\left[\begin{array}{c}
c \\
y_{1}
\end{array}\right] ;\left[\begin{array}{c}
c_{0} \\
H_{1} c_{0}
\end{array}\right], s\left[\begin{array}{cc}
L_{0} & L_{0} H_{1}^{\top} \\
H_{1} L_{0} & H_{1} L_{0} H_{1}^{\top}+G_{1}
\end{array}\right]\right) \tag{F.30}
\end{align*}
$$

Integrating out s in this expression gives

$$
\tilde{p}\left(c, y_{1}\right)=\mathcal{T}\left(\left[\begin{array}{c}
c \tag{F.31}\\
y_{1}
\end{array}\right] ;\left[\begin{array}{c}
c_{0} \\
H_{1} c_{0}
\end{array}\right],\left[\begin{array}{cc}
L_{0} & L_{0} H_{1}^{\top} \\
H_{1} L_{0} & H_{1} L_{0} H_{1}^{\top}+G_{1}
\end{array}\right], \lambda_{0}\right)
$$

Conditioning on y_{1} and using Lemma 3 yields $\tilde{p}\left(c \mid y_{1}\right)=\mathcal{T}\left(c ; c_{1}, L_{1}, \lambda_{0}+d\right)$ with

$$
\begin{align*}
& c_{1}=c_{0}+L_{0} H_{1}^{\top}\left[H_{1} L_{0} H_{1}^{\top}+G_{1}\right]^{-1}\left(y_{1}-H_{1} c_{0}\right) \tag{F.32}\\
& L_{1}=\phi_{1}\left(L_{0} H_{1}^{\top}\left[H_{1} L_{0} H_{1}^{\top}+G_{1}\right]^{-1} H_{1} L_{0}\right) \tag{F.33}\\
& \varphi_{1}=\frac{\lambda_{0}+\left(y_{1}-H_{1} c_{0}\right)^{\top}\left[H_{1} L_{0} H_{1}^{\top}+G_{1}\right]^{-1}\left(y_{1}-H_{1} c_{0}\right)}{\lambda_{0}+d} . \tag{F.34}
\end{align*}
$$

This is the robust PSMF dictionary update. We see that the mean is updated as in PSMF by comparing to (B.1), and that the covariance update has an additional multiplicative factor φ_{1}. These expressions can be simplified by plugging in the definitions of L_{0}, H_{1}, and G_{1}, as in Supp. B. Observe that $\tilde{p}\left(c \mid y_{1}\right)$ can no longer be written as an infinite scale mixture with scale variable s, as they now differ in degrees of freedom. We will revisit this point below.

For the coefficient update we proceed analogously. First, note that

$$
\begin{align*}
\tilde{p}\left(y_{1} \mid x_{0: 1}, s\right) & =\int p\left(y_{1} \mid c, x_{0: 1}, s\right) p\left(c \mid y_{1: 0}, s\right) \mathrm{d} c \tag{F.35}\\
\tilde{p}\left(y_{1} \mid x_{1}, s\right) & =\int p\left(y_{1} \mid c, x_{1}, s\right) p(c \mid s) \mathrm{d} c \tag{F.36}\\
& =\int \mathcal{N}\left(y_{1} ;\left(x_{1}^{\top} \otimes I_{d}\right) c, s R_{0}\right) \mathcal{N}\left(c ; c_{0}, s L_{0}\right) \mathrm{d} c \tag{F.37}\\
& =\mathcal{N}\left(y_{1} ;\left(x_{1}^{\top} \otimes I_{d}\right) c_{0}, s\left(R_{0}+x_{1}^{\top} V_{0} x_{1} \otimes I_{d}\right)\right) \tag{F.38}
\end{align*}
$$

As in the main text, we use the approximation $x_{1}^{\top} V_{0} x_{1} \approx \bar{\mu}_{1}^{\top} V_{0} \bar{\mu}_{1}$ and introduce

$$
\begin{equation*}
\bar{R}_{0}=R_{0}+\bar{\mu}_{1}^{\top} V_{0} \bar{\mu}_{1}, \tag{F.39}
\end{equation*}
$$

such that $\tilde{p}\left(y_{1} \mid x_{1}, s\right)=\mathcal{N}\left(y_{1} ; C_{0} x_{1}, s \bar{R}_{0}\right)$. We then find the joint distribution between x_{1} and y_{1} as follows

$$
\begin{align*}
\tilde{p}\left(x_{1}, y_{1} \mid y_{1: 0}, s\right) & =\tilde{p}\left(y_{1} \mid y_{1: 0}, x_{1}, s\right) \tilde{p}\left(x_{1} \mid y_{1: 0}, s\right) \tag{F.40}\\
\tilde{p}\left(x_{1}, y_{1} \mid s\right) & =\tilde{p}\left(y_{1} \mid x_{1}, s\right) \tilde{p}\left(x_{1} \mid s\right) \tag{F.41}\\
& =\mathcal{N}\left(y_{1} ; C_{0} x_{1}, s \bar{R}_{0}\right) \mathcal{N}\left(x_{1} ; \bar{\mu}_{1}, s \bar{P}_{1}\right) \tag{F.42}\\
& =\mathcal{N}\left(\left[\begin{array}{c}
x_{1} \\
y_{1}
\end{array}\right] ;\left[\begin{array}{c}
\bar{\mu}_{1} \\
C_{0} \bar{\mu}_{1}
\end{array}\right], s\left[\begin{array}{cc}
\bar{P}_{1} & \bar{P}_{1} C_{0}^{\top} \\
C_{0} \bar{P}_{1} & C_{0} \bar{P}_{1} C_{0}^{\top}+\bar{R}_{0}
\end{array}\right]\right) . \tag{F.43}
\end{align*}
$$

Integrating out s in this expression gives

$$
\tilde{p}\left(x_{1}, y_{1}\right)=\mathcal{T}\left(\left[\begin{array}{c}
x_{1} \tag{F.44}\\
y_{1}
\end{array}\right] ;\left[\begin{array}{c}
\bar{\mu}_{1} \\
C_{0} \bar{\mu}_{1}
\end{array}\right],\left[\begin{array}{cc}
\bar{P}_{1} & \bar{P}_{1} C_{0}^{\top} \\
C_{0} \bar{P}_{1} & C_{0} \bar{P}_{1} C_{0}^{\top}+\bar{R}_{0}
\end{array}\right], \lambda_{0}\right) .
$$

Conditioning on y_{1} and using Lemma 3 gives $p\left(x_{1} \mid y_{1}\right)=\mathcal{T}\left(x_{1} ; \mu_{1}, P_{1}, \lambda_{0}+d\right)$ with

$$
\begin{align*}
& \mu_{1}=\bar{\mu}_{1}+\bar{P}_{1} C_{0}^{\top}\left[C_{0} \bar{P}_{1} C_{0}^{\top}+\bar{R}_{0}\right]^{-1}\left(y_{1}-C_{0} \bar{\mu}_{1}\right) \tag{F.45}\\
& P_{1}=\omega_{1}\left(\bar{P}_{1}-\bar{P}_{1} C_{0}^{\top}\left[C_{0} \bar{P}_{1} C_{0}^{\top}+\bar{R}_{0}\right]^{-1} C_{0} \bar{P}_{1}\right) \tag{F.46}\\
& \omega_{1}=\frac{\lambda_{0}+\left(y_{1}-C_{0} \bar{\mu}_{1}\right)^{\top}\left[C_{0} \bar{P}_{1} C_{0}^{\top}+\bar{R}_{0}\right]^{-1}\left(y_{1}-C_{0} \bar{\mu}_{1}\right)}{\lambda_{0}+d} . \tag{F.47}
\end{align*}
$$

This is the robust PSMF coefficient update. Again we see that the mean update for μ_{1} is the same as in vanilla PSMF, while the covariance update has an additional multiplicative factor ω_{1}. By introducing $\Delta_{1}^{2}=\left(y_{1}-C_{0} \bar{\mu}_{1}\right)^{\top}\left[C_{0} \bar{P}_{1} C_{0}^{\top}+\bar{R}_{0}\right]^{-1}\left(y_{1}-C_{0} \bar{\mu}_{1}\right)$ we can simplify this factor to $\omega_{1}=\left(\lambda_{0}+\Delta_{1}^{2}\right) /\left(\lambda_{0}+d\right)$.
Finally, we can compute the posterior of the scale variable, s, using Bayes' theorem,

$$
\begin{equation*}
\tilde{p}\left(s \mid y_{1}\right)=\frac{\tilde{p}\left(y_{1} \mid s\right) p(s)}{\tilde{p}\left(y_{1}\right)} . \tag{F.48}
\end{equation*}
$$

We can obtain $\tilde{p}\left(y_{1} \mid s\right)$ from (F.43), which yields

$$
\begin{equation*}
\tilde{p}\left(y_{1} \mid s\right)=\mathcal{N}\left(y_{1} ; C_{0} \bar{\mu}_{1}, s\left(C_{0} \bar{P}_{1} C_{0}^{\top}+\bar{R}_{0}\right)\right) . \tag{F.49}
\end{equation*}
$$

Integrating out s gives $\tilde{p}\left(y_{1}\right)=\mathcal{T}\left(y_{1} ; C_{0} \bar{\mu}_{1}, C_{0} \bar{P}_{1} C_{0}^{\top}+\bar{R}_{0}, \lambda_{0}\right)$. Thus, by Lemma 1 we have

$$
\begin{equation*}
\tilde{p}\left(s \mid y_{1}\right)=\mathcal{I G}\left(s ;\left(\lambda_{0}+d\right) / 2,\left(\lambda_{0}+\Delta_{1}^{2}\right) / 2\right) . \tag{F.50}
\end{equation*}
$$

Having now observed y_{1}, we proceed with the next iteration. Note that from the coefficient update we have obtained $p\left(x_{1} \mid y_{1}\right)=\mathcal{T}\left(x_{1} ; \mu_{1}, P_{1}, \lambda_{0}+d\right)$. We can write this as a infinite scale mixture by defining $u \sim$ $\mathcal{I G}\left(u ;\left(\lambda_{0}+d\right) / 2,\left(\lambda_{0}+d\right) / 2\right)$ and introducing $p\left(x_{1} \mid y_{1}, u\right)=\mathcal{N}\left(x_{1} ; \mu_{1}, u P_{1}\right)$. The model definitions give the coefficient dynamics in terms of s, as $p\left(x_{2} \mid x_{1}, s\right)=\mathcal{N}\left(x_{2} ; f_{\theta}\left(x_{1}\right), s Q_{0}\right)$. This can be written in terms of u by a simple change of variables $u=\omega_{1}^{-1} s$ and using Lemma 2 and (F.50), since

$$
\begin{align*}
\tilde{p}\left(x_{2} \mid x_{1}, y_{1}\right) & =\int p\left(x_{2} \mid x_{1}, s\right) p\left(s \mid y_{1}\right) \mathrm{d} s \tag{F.51}\\
& =\int \mathcal{N}\left(x_{2} ; f_{\theta}\left(x_{1}\right), s Q_{0}\right) \mathcal{I G}\left(s ;\left(\lambda_{0}+d\right) / 2,\left(\lambda_{0}+\Delta_{1}^{2}\right) / 2\right) \mathrm{d} s \tag{F.52}\\
& =\int \mathcal{N}\left(x_{2} ; f_{\theta}\left(x_{1}\right), u \cdot \omega_{1} Q_{0}\right) \mathcal{I G}\left(u ;\left(\lambda_{0}+d\right) / 2,\left(\lambda_{0}+d\right) / 2\right) \mathrm{d} u \tag{F.53}
\end{align*}
$$

where we find $p\left(x_{2} \mid x_{1}, u\right)=\mathcal{N}\left(x_{2} ; f_{\theta}\left(x_{1}\right), u \cdot \omega_{1} Q_{0}\right)$. We then have that

$$
\begin{align*}
\tilde{p}\left(x_{2} \mid y_{1}, u\right) & =\int \tilde{p}\left(x_{2} \mid x_{1}, u\right) \tilde{p}\left(x_{1} \mid y_{1}, u\right) \mathrm{d} x_{1} \tag{F.54}\\
& =\int \mathcal{N}\left(x_{2} ; f_{\theta}\left(x_{1}\right), u \cdot \omega_{1} Q_{0}\right) \mathcal{N}\left(x_{1} ; \mu_{1}, u P_{1}\right) \mathrm{d} x_{1} \tag{F.55}
\end{align*}
$$

which we recognize to be analogous to (F.21). This expression also reveals how the noise covariance Q_{0} is updated, as we may simply define $Q_{1}=\omega_{1} Q_{0}$. This gives $\tilde{p}\left(x_{2} \mid y_{1}, u\right)=\mathcal{N}\left(x_{2} ; \bar{\mu}_{2}, u \bar{P}_{2}\right)$ with $\bar{\mu}_{2}$ and \bar{P}_{2} analogous to $\bar{\mu}_{1}$ and \bar{P}_{1} above.

Similar reasoning can be applied to obtain the predictive distribution of y_{2}. From the dictionary update we have obtained $\tilde{p}\left(c \mid y_{1}\right)=\mathcal{T}\left(c ; c_{1}, L_{1}, \lambda_{0}+d\right)$, which we can also write as a scale mixture with u as $\tilde{p}\left(c \mid y_{1}, u\right)=$ $\mathcal{N}\left(c ; c_{1}, u L_{1}\right)$. The model definition gives $p\left(y_{2} \mid x_{2}, C, s\right)=\mathcal{N}\left(y_{2} ; C x_{2}, s R_{0}\right)$. Again writing this in terms of u by using the change of variables $u=\omega_{1}^{-1} s$ and Lemma 2 and (F.50), yields $p\left(y_{2} \mid x_{2}, C, u\right)=\mathcal{N}\left(y_{2} ; C x_{2}, u \cdot \omega_{1} R_{0}\right)$. Combining these expressions gives

$$
\begin{equation*}
\tilde{p}\left(y_{2} \mid c, y_{1}, u\right)=\int \tilde{p}\left(y_{2} \mid x_{2}, C, u\right) \tilde{p}\left(c \mid y_{1}, u\right) \mathrm{d} c=\int \mathcal{N}\left(y_{2} ;\left(x_{2}^{\top} \otimes I_{d}\right) c, u \cdot \omega_{1} R_{0}\right) \mathcal{N}\left(c ; c_{1}, u L_{1}\right) \mathrm{d} c \tag{F.56}
\end{equation*}
$$

which is analogous to (F.37). We also see that we can define $R_{1}=\omega_{1} R_{0}$ to update the measurement noise covariance.

We observe in the above derivation that after completing an entire iteration we have obtained a new scale variable $u \sim \mathcal{I G}\left(u ;\left(\lambda_{0}+d\right) / 2,\left(\lambda_{0}+d\right) / 2\right)$, and that we have found update rules for the noise covariances Q and R. This procedure is repeated at every step, and we can define appropriate notation for this process by setting $s_{0}=s$ and $s_{1}=u$, and generally have scale variables $s_{k} \sim \mathcal{I} \mathcal{G}\left(s_{k} ; \lambda_{k} / 2, \lambda_{k} / 2\right)$ with $\lambda_{k}=\lambda_{k-1}+d$. Thus, $s_{k}=\omega_{k}^{-1} s_{k-1}$ with $\omega_{k}=\left(\lambda_{k-1}+\Delta_{k}^{2}\right) /\left(\lambda_{k-1}+d\right)$, which corresponds to Tronarp et al. (2019). The noise covariances are clearly updated as $Q_{k}=\omega_{k} Q_{k-1}$ and $R_{k}=\omega_{k} R_{k-1}$. Algorithm 2 summarizes the steps of robust PSMF, including steps for parameter estimation using both the iterative and recursive approaches.

For completeness, we give the approximate negative marginal likelihood $\tilde{p}_{\theta}\left(y_{k} \mid y_{1: k-1}\right)$, similar to Sec. 3.2.5. It follows that

$$
\begin{align*}
\tilde{p}_{\theta}\left(y_{k} \mid y_{1: k-1}\right) & =\iint \tilde{p}\left(y_{k} \mid y_{1: k-1}, c, s_{k-1}\right) \tilde{p}\left(c \mid y_{1: k-1}, s_{k-1}\right) \mathrm{d} c \mathrm{~d} s_{k-1} \tag{F.57}\\
& =\iint \mathcal{N}\left(y_{k} ; H_{k} c, s_{k-1} G_{k}\right) \mathcal{N}\left(c ; c_{k-1}, s_{k-1} L_{k-1}\right) \mathrm{d} c \mathrm{~d} s_{k-1} \tag{F.58}\\
& =\int \mathcal{N}\left(y_{k} ; H_{k} c_{k-1}, s_{k-1}\left(H_{k} L_{k-1} H_{k}^{\top}+G_{k}\right)\right) \mathrm{d} s_{k-1} \tag{F.59}\\
& =\mathcal{T}\left(y_{k} ; H_{k} c_{k-1}, H_{k} L_{k-1} H_{k}^{\top}+G_{k}, \lambda_{k-1}\right) \tag{F.60}
\end{align*}
$$

With $H_{k} c_{k-1}=C_{k-1} \bar{\mu}_{k}$ and $H_{k} L_{k-1} H_{k}^{\top}+G_{k}=\left(\bar{\mu}_{k}^{\top} V_{k-1} \bar{\mu}_{k}+\eta_{k}\right) \otimes I_{d}$ where $\bar{\mu}_{k}=f_{\theta}\left(\mu_{k-1}\right)$, we find after a brief algebraic exercise that

$$
\begin{align*}
-\log \tilde{p}_{\theta}\left(y_{k} \mid y_{1: k-1}\right) \stackrel{c}{=} \frac{d}{2} \log (& \left.\left\|f_{\theta}\left(\mu_{k-1}\right)\right\|_{V_{k-1}}^{2}+\eta_{k}\right) \tag{F.61}\\
& +\left(\frac{\lambda_{k-1}+d}{2}\right) \log \left(1+\frac{\left\|y_{k}-C_{k-1} f_{\theta}\left(\mu_{k-1}\right)\right\|^{2}}{\lambda_{k-1}\left(\left\|f_{\theta}\left(\mu_{k-1}\right)\right\|_{V_{k-1}}^{2}+\eta_{k}\right)}\right) \tag{F.62}
\end{align*}
$$

where $\stackrel{c}{=}$ again denotes equality up to terms independent of θ. Finally, we note that handling missing values in rPSMF is straightforward and follows the same reasoning as for PSMF in Supp. E.

G ADDITIONAL DETAILS FOR THE EXPERIMENTS

G. 1 Experiment 1

Optimization In this experiment, we have used the Adam optimizer Kingma and Ba (2015). In particular, instead of implementing the gradient step (26), we replace it with the Adam optimizer. In order to do so, we define the gradient as $g_{i}=\left.\nabla \log \tilde{p}_{\theta}\left(y_{1: n}\right)\right|_{\theta=\theta_{i-1}}$. Upon computing the gradient g_{i}, we first compute the running averages

$$
\begin{align*}
m_{i} & =\beta_{1} m_{i-1}+\left(1-\beta_{1}\right) g_{i} \tag{G.1}\\
v_{i} & =\beta_{2} v_{i-1}+\left(1-\beta_{2}\right)\left(g_{i} \odot g_{i}\right), \tag{G.2}
\end{align*}
$$

```
Algorithm 2 Iterative and recursive rPSMF
    Initialize \(\gamma, \theta_{0}, C_{0}, V_{0}, \mu_{0}, P_{0}, Q_{0}, R_{0}\).
    for \(i \geq 1\) do
        \(C_{0}^{-}=C_{T}, \mu_{0}=\mu_{T}, P_{0}=P_{T}, V_{0}=V_{T}\).
        for \(1 \leq k \leq T\) do
            Predictive mean of \(x_{k}: \bar{\mu}_{k}=f_{\theta_{i-1}}\left(\mu_{k-1}\right)\) or \(\bar{\mu}_{k}=f_{\theta_{k-1}}\left(\mu_{k-1}\right)\)
            Predictive covariance of \(x_{k}\)
```

$$
\bar{P}_{k}=F_{k} P_{k-1} F_{k}^{\top}+Q_{k-1}, \quad \text { where } \quad F_{k}=\left.\frac{\partial f(x)}{\partial x}\right|_{x=\bar{\mu}_{k-1}}
$$

Compute scaling factor for the dictionary update

$$
\varphi_{k}=\frac{\lambda_{k-1}}{\lambda_{k-1}+d}+\frac{\left(y_{k}-C_{k-1} \bar{\mu}_{k}\right)^{\top}\left(y_{k}-C_{k-1} \bar{\mu}_{k}\right)}{\left(\lambda_{k-1}+d\right)\left(\bar{\mu}_{k}^{\top} V_{k-1} \bar{\mu}_{k}+\eta_{k}\right)}
$$

where $\eta_{k}=\operatorname{Tr}\left(C_{k-1} \bar{P}_{k} C_{k-1}^{\top}+R_{k-1}\right) / d$.
Mean and covariance updates of the dictionary

$$
C_{k}=C_{k-1}+\frac{\left(y_{k}-C_{k-1} \bar{\mu}_{k}\right) \bar{\mu}_{k}^{\top} V_{k-1}^{\top}}{\bar{\mu}_{k}^{\top} V_{k-1} \bar{\mu}_{k}+\eta_{k}} \quad \text { and } \quad V_{k}=\varphi_{k}\left(V_{k-1}-\frac{V_{k-1} \bar{\mu}_{k} \bar{\mu}_{k}^{\top} V_{k-1}}{\bar{\mu}_{k}^{\top} V_{k-1} \bar{\mu}_{k}+\eta_{k}}\right)
$$

9: \quad Compute scaling factor for the coefficient update

$$
\omega_{k}=\frac{\lambda_{k-1}+\left(y_{k}-C_{k-1} \bar{\mu}_{k}\right)^{\top} S_{k}^{-1}\left(y_{k}-C_{k-1} \bar{\mu}_{k}\right)}{\lambda_{k-1}+d}
$$

where $S_{k}=C_{k-1} \bar{P}_{k} C_{k-1}^{\top}+\bar{R}_{k-1}$ and $\bar{R}_{k-1}=R_{k-1}+\bar{\mu}_{k}^{\top} V_{k-1} \bar{\mu}_{k} \otimes I_{d}$.
Mean and covariance updates of coefficients

$$
\mu_{k}=\bar{\mu}_{k}+\bar{P}_{k} C_{k-1}^{\top} S_{k}^{-1}\left(y_{k}-C_{k-1} \bar{\mu}_{k}\right) \quad \text { and } \quad P_{k}=\omega_{k}\left(\bar{P}_{k}-\bar{P}_{k} C_{k-1}^{\top} S_{k}^{-1} C_{k-1} \bar{P}_{k}\right)
$$

Update noise covariances: $Q_{k}=\omega_{k} Q_{k-1}$ and $R_{k}=\omega_{k} R_{k-1}$
Update degrees of freedom: $\lambda_{k}=\lambda_{k-1}+d$.
Parameter update: $\theta_{k}=\theta_{k-1}+\left.\gamma \nabla \log \tilde{p}_{\theta}\left(y_{k} \mid y_{1: k-1}\right)\right|_{\theta=\theta_{k-1}} \quad \triangleright$ recursive version
Parameter update: $\theta_{i}=\theta_{i-1}+\left.\gamma \sum_{k=1}^{T} \nabla \log \tilde{p}_{\theta}\left(y_{k} \mid y_{1: k-1}\right)\right|_{\theta=\theta_{i-1}}$. $\quad \triangleright$ iterative version
which is then corrected as

$$
\begin{align*}
\hat{m}_{i} & =\frac{m_{i}}{1-\beta_{1}^{i}} \tag{G.3}\\
\hat{v}_{i} & =\frac{v_{i}}{1-\beta_{2}^{i}} \tag{G.4}
\end{align*}
$$

Finally the parameter update is computed as

$$
\begin{equation*}
\theta_{i}=\operatorname{Proj}_{\Theta}\left(\theta_{i-1}+\gamma \frac{\hat{m}_{i}}{\sqrt{\hat{v}_{i}}+\epsilon}\right) \tag{G.5}
\end{equation*}
$$

where Proj denotes the projection operator which constrains the parameter to stay positive in each dimension where $\Theta=\mathbb{R}_{+} \times \cdots \times \mathbb{R}_{+} \subset \mathbb{R}^{6}$ which is implemented by simple max operators. We choose the standard parameterization with $\gamma=10^{-3}, \beta_{1}=0.9, \beta_{2}=0.999$ and $\epsilon=10^{-8}$.

In these experiments we use an observed time series of length 500 and a series of unobserved future data of length 250. Fig. 1 corresponds to the figure in the main text, but additionally shows how the underlying subspace is recovered and how the Frobenius norm between the reconstructed data and the true data decreases with the number of iterations. Fig. 2 shows a similar result for the PSMF method on normally-distributed data.

Figure 1: Fitting rPSMF on synthetic data with t-distributed noise. Figure (a) illustrates the fit to the observed and unobserved measurements. Figure (b) contains the true and reconstructed subspace, and (c) shows the reconstruction error over outer iterations of the iterative algorithm.

Figure 2: Fitting PSMF on synthetic data with normally distributed noise. Figure (a) illustrates the fit to the observed and unobserved measurements. Figure (b) contains the true and reconstructed subspace, and (c) shows the reconstruction error over outer iterations of the iterative algorithm.

G. 2 Experiment 2

G.2.1 Data generation and the experimental setup

We generate periodic time series using pendulum differential equations as the true subspace. For this experiment, we generate $d=20$ dimensional data where $d_{2}=3$ of them undergo a structural change. In order to test the method, we generate 1000 synthetic datasets. One such dataset is given in Fig. 3. We generate data with $n=1200$ and use the data after the data point $n_{0}=400$ to estimate changepoints, as PSMF has to converge to a stable regime before it can be used to detect changepoints. The true changepoint is at $n_{c}=601$.

G.2.2 The GP subspace model

In this subsection, we provide the details of the discretization of the Matérn-3/2 SDE. Particularly, we consider the SDE Särkkä et al. (2013)

$$
\frac{\mathrm{d} \mathrm{x}_{i}(t)}{\mathrm{d} t}=\mathrm{Fx}_{i}(t)+\left[\begin{array}{l}
0 \tag{G.6}\\
1
\end{array}\right] w_{i}(t)
$$

Figure 3: One instance of the 1000 different synthetic datasets used in Sec. 4.3. The dimensions which exhibit a structural change can be seen in black. The data contain outliers and the true changepoint can be seen as marked by the vertical red line.
where $x_{i}(t)=\left[x_{i}(t), \mathrm{d} x_{i}(t) / \mathrm{d} t\right]$ and $\kappa=\sqrt{2 \nu} / \ell$ and

$$
\mathrm{F}=\left[\begin{array}{cc}
0 & 1 \tag{G.7}\\
-\kappa^{2} & -2 \kappa
\end{array}\right]
$$

Given a step-size γ, the SDE (G.6) can be written as a linear dynamical system

$$
\begin{equation*}
x_{i, k}=A_{i} x_{i, k-1}+Q_{i}^{1 / 2} u_{i, k} \tag{G.8}
\end{equation*}
$$

where $A_{i}=\operatorname{expm}(\gamma F)$ where expm denotes the matrix exponential and $Q_{i}=P_{\infty}-A_{i} P_{\infty} A_{i}^{\top}$ and

$$
P_{\infty}=\left[\begin{array}{cc}
\sigma^{2} & 0 \tag{G.9}\\
0 & 3 \sigma^{2} / \ell^{2}
\end{array}\right]
$$

Finally, we construct our dynamical system as

$$
\begin{equation*}
x_{k}=A x_{k-1}+Q^{1 / 2} u_{k} \tag{G.10}
\end{equation*}
$$

where $x_{k}=\left[x_{1, k}, \ldots, x_{r, k}\right]^{\top} \in \mathbb{R}^{2 r}$ and

$$
\begin{equation*}
A=I_{r} \otimes A_{i} \quad \text { and } \quad Q=I_{r} \otimes Q_{i} \tag{G.11}
\end{equation*}
$$

Using these system matrices, we define $H_{i}=[1,0]$ and $H=I_{r} \otimes H_{i}$ and finally define the probabilistic model

$$
\begin{align*}
p(C) & =\mathcal{M N}\left(C ; C_{0}, I_{d}, V_{0}\right) \tag{G.12}\\
p\left(x_{0}\right) & =\mathcal{N}\left(x_{0} ; \mu_{0}, P_{0}\right), \tag{G.13}\\
p\left(x_{k} \mid x_{k-1}\right) & =\mathcal{N}\left(x_{k} ; A x_{k-1}, Q\right) \tag{G.14}\\
p\left(y_{k} \mid x_{k}, C\right) & =\mathcal{N}\left(y_{k} ; C H x_{k}, R\right) \tag{G.15}
\end{align*}
$$

Inference in this model can be done via a simple modification of the Algorithm 1 where H matrix is involved in the computations. Fig. 4 illustrates the learned GP features $r=4$ and two change points.

Figure 4: An illustration of the learned GP features vs. true changepoints for $r=4$ and two changepoints.

G. 3 Experiment 3

All experiments where run on a Linux machine with an AMD Ryzen 53600 processor and 32 GB of memory. Additional results on different missing percentages are shown in Table 4 and Table 5. We again observe excellent imputation performance of the proposed methods.

Table 4: Imputation error and runtime on several datasets using 20% and 40% missing values, averaged over 100 random repetitions. An asterisk marks offline methods.
(a) 20% missing data

	Imputation RMSE					Runtime (s)				
	NO_{2}	PM10	PM25	S\&P500	Gas	NO_{2}	PM10	PM25	S\&P500	Gas
PSMF	5.52	7.26	$\underset{(0.52)}{3.42}$	$\underset{(1.93)}{9.95}$	4.19	2.71	2.59	1.92	9.42	101.16
rPSMF	$\underset{(0.14)}{5.53}$	$\begin{aligned} & 7.47 \\ & (0.46) \end{aligned}$	3.40	$\underset{(1.41)}{9.29}$	4.56	2.91	2.73	2.03	13.98	122.57
MLE-SMF	$\begin{array}{r} 11.03 \\ (0.51) \end{array}$	$\underset{(0.46)}{9.46}$	${ }_{(0.63)}^{4.81}$	$\underset{(1.02)}{30.23}$	$\begin{aligned} & 87.12 \\ & (14.84) \end{aligned}$	2.48	2.39	1.71	9.52	92.09
TMF	7.60 (0.14)	7.95 (0.30)	4.43	$\underset{\substack{34.96 \\(1.00)}}{ }$	$\begin{array}{r} 73.70 \\ (8.85) \end{array}$	1.03	0.97	0.72	4.19	35.35
PMF*	$\underset{(0.08)}{10.47}$	${ }_{(0.26)}^{10.46}$	$\underset{(0.48)}{3.97}$	${ }_{(1.80)}^{40.07}$	23.54	2.14	1.90	0.68	3.12	31.78
BPMF*	$\begin{aligned} & (0.08) \\ & 9.03 \\ & (0.18) \end{aligned}$	$\begin{aligned} & (0.20 \\ & 8.39 \\ & (0.28) \end{aligned}$	$\begin{aligned} & 3.61 \\ & 3.0 .69 \end{aligned}$	$\begin{array}{r} (1.80) \\ 27.36 \\ (0.93) \end{array}$	$\underbrace{17.70}_{(0.17)}$	3.11	4.48	3.05	4.15	92.50

(b) 40% missing data

	Imputation RMSE					Runtime (s)				
	NO_{2}	PM10	PM25	S\&P500	Gas	NO_{2}	PM10	PM25	S\&P500	Gas
PSMF	${ }_{\text {6 }}^{6.06}$	7.72 (0.28)	3.77 (0.23)	${ }_{\text {(3.06) }} 13.87$	8.75	2.77	2.62	1.92	9.12	100.68
rPSMF	$\underset{(0.97)}{\text { (1.27 }}$	$\underset{(0.57)}{ }$	$\underset{(0.29)}{3.67}$	$\underset{(4.39)}{12.36}$	9.03	2.92	2.77	2.02	13.30	109.38
MLE-SMF	11.30	9.55	4.93	30.14	125.54	2.54	2.38	1.70	9.59	85.11
TMF	7.90	8.27	4.86	34.78	66.27	0.98	0.97	0.73	4.13	32.01
PMF*	10.54	10.53	4.11	41.53	24.12	1.73	1.51	0.54	2.43	24.75
BPMF*	(0.05) 9.46 (0.21)	$\begin{aligned} & (0.15) \\ & 8.64 \\ & (0.18) \end{aligned}$	$\begin{aligned} & (0.13) \\ & 3.72 \\ & (0.12) \end{aligned}$	(1.81) 27.91 (0.64)	$\begin{aligned} & (0.06) \\ & 19.10 \\ & (0.37 \end{aligned}$	4.26	4.07	2.92	3.16	82.44

H CONVERGENCE DISCUSSION

To gain insights in the convergence of our method, we have designed a simplified setup where the latent state trajectory is a one-dimensional random walk and observations are four-dimensional, and we have simulated a dataset consisting of size 1,000 where $C \in \mathbb{R}^{4}$. We run the KF with the ground-truth value C^{\star}. We also run the iterative PSMF which also estimates C as well as the hidden states. We have computed the distance between the sequence of optimal (Gaussian) filters constructed by the KF and the filters of the iterative PSMF in terms of the

Table 5: Average coverage proportion of the missing data by the 2σ uncertainty bars of the posterior predictive estimates for 20% and 40% missing values, averaged over 100 repetitions.
(a) 20% missing data (b) 40% missing data

	NO_{2}	PM10	PM25	S\&P500	Gas		NO_{2}	PM10	PM25	S\&P500	Gas
PSMF	0.79	0.79	0.93	0.85	0.93	PSMF	0.71	0.73	0.89	0.78	0.83
rPSMF	0.89	0.92	0.91	0.86	0.90	rPSMF	0.79	0.84	0.81	0.79	0.79
MLE-SMF	0.46	0.59	0.83	0.51	0.61	MLE-SMF	0.40	0.53	0.77	0.44	0.49

Figure 5: (a) Convergence of the approximate posterior and true posterior (with true C^{\star}) in averaged Wasserstein distance for iterative PSMF. (b) Convergence of the mean C_{k} to C^{\star}. (c) Filter estimates given by the iterative PSMF and the optimal filter.
averaged Wasserstein distance over the path:

$$
\begin{equation*}
\bar{W}_{2}(t):=\frac{1}{t} \sum_{k=1}^{t} W_{2}\left(p_{\star}\left(x_{k} \mid y_{1: k}\right), \tilde{p}\left(x_{k} \mid y_{1: k}\right)\right) \tag{H.1}
\end{equation*}
$$

We observe that the distance between the optimal and approximate filters over the entire path is uniformly bounded (see Fig. 5(a)). We also observe that $C_{k} \rightarrow C^{\star}$ for this case, see Fig. 5(b) and show the mean estimates are sufficiently close (Fig. 5(c)).

More precisely, we simulate the following state-space model

$$
\begin{align*}
p\left(x_{0}\right) & =\mathcal{N}\left(x_{0} ; \mu_{0}, P_{0}\right) \tag{H.2}\\
p\left(x_{k} \mid x_{k-1}\right) & =\mathcal{N}\left(x_{k} ; x_{k-1}, Q\right) \tag{H.3}\\
p\left(y_{k} \mid x_{k}, C^{\star}\right) & =\mathcal{N}\left(y_{k} ; C^{\star} x_{k}, R\right) \tag{H.4}
\end{align*}
$$

where $C^{\star} \in \mathbb{R}^{4}$ and $x_{k} \in \mathbb{R}$, which leads to $y_{k} \in \mathbb{R}^{4}$. In this case, the identifability problem is alleviated since C^{\star} is a vector and we can test empirically whether the posterior provided by the PSMF for the states $p\left(x_{k} \mid y_{1: k}\right)$ converges to the true posterior of the states $p_{\star}\left(x_{k} \mid y_{1: k}\right)$.
Note that, the PSMF provides the filtering distribution of states as a Gaussian

$$
\begin{equation*}
\tilde{p}\left(x_{k} \mid y_{1: k}\right)=\mathcal{N}\left(x_{k} ; \mu_{k}, P_{k}\right) \tag{H.5}
\end{equation*}
$$

where μ_{k}, P_{k} are defined within Algorithm 1. Since the data is generated from the model using C^{\star}, we also compute the optimal Kalman filter with C^{\star} which we denote as $p_{\star}\left(x_{k} \mid y_{1: k}\right)$. In order to test the convergence
between the approximate filter provided by the PSMF $\tilde{p}\left(x_{k} \mid y_{1: k}\right)$ and the true filter $p_{\star}\left(x_{k} \mid y_{1: k}\right)$, we use the Wasserstein-2 distance which is defined as

$$
\begin{equation*}
W_{2}(\mu, \nu)=\inf _{\Gamma \in \mathcal{C}(\mu, \nu)} \iint\|x-y\|^{2} \Gamma(\mathrm{~d} x, \mathrm{~d} y) \tag{H.6}
\end{equation*}
$$

where $\mathcal{C}(\mu, \nu)$ is the set of couplings whose marginals are μ and ν respectively. This Wasserstein- 2 distance can be computed in closed form for two Gaussians, e.g., for $\mu=\mathcal{N}\left(\mu_{1}, \Sigma_{1}\right)$ and $\nu=\mathcal{N}\left(\mu_{2}, \Sigma_{2}\right)$, we have

$$
\begin{equation*}
W_{2}(\mu, \nu)^{2}=\left\|\mu_{1}-\mu_{2}\right\|^{2}+\operatorname{Tr}\left(\Sigma_{1}+\Sigma_{2}-2\left(\Sigma_{2}^{1 / 2} \Sigma_{1} \Sigma_{2}^{1 / 2}\right)^{1 / 2}\right) \tag{H.7}
\end{equation*}
$$

Hence, for a given sequence of filters $\left(\tilde{p}\left(x_{k} \mid y_{1: k}\right)\right)_{k \geq 1}$ and $\left(p_{\star}\left(x_{k} \mid y_{1: k}\right)\right)_{k \geq 1}$, we define the averaged Wasserstein distance for time t as

$$
\begin{equation*}
\bar{W}_{2}(t)=\frac{1}{t} \sum_{k=1}^{t} W_{2}\left(\tilde{p}\left(x_{k} \mid y_{1: k}\right), p_{\star}\left(x_{k} \mid y_{1: k}\right)\right) \tag{H.8}
\end{equation*}
$$

One can see from Fig. 5 that $\lim _{t \rightarrow \infty} \bar{W}_{2}(t)<\infty$ which implies that a convergence result can be proven for our method. We leave this exciting direction to future work.

I ADDITIONAL RESULTS FOR RECURSIVE PSMF

In this section, we present an additional result using recursive PSMF to demonstrate the scalability of our method in a purely streaming setting.

Using the same setting of Sec. 4.1, we use a longer sequence ($n=4000$) with an additional prediction sequence of length 800. This presents a challenging setting as we do not iterate over data and the algorithm observes the training data only once (i.e. the streaming setting). As can be seen from Fig. 6, recursive PSMF learns the underlying dynamics and has a successful out-of-sample prediction performance, even with a relatively long sequence into the future. This demonstrates the recursive version of our method can be used in a setting where iterating over data multiple times is impractical.

Figure 6: Recursive PSMF. Observed time series (blue) with unobserved future data (yellow) and the reconstruction from the model (red).

