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A Reptile Optimizes Lemp(A; S)

The Reptile meta-learning algorithm [16] is defined as follows. Given a model f✓ parametrized by ✓, it defines
the inner loop algorithm A✓0 as a T -step stochastic gradient optimization:

A✓0(Si) := ✓iT , where ✓it+1 := ✓it � ↵tr✓i
t

0

@ 1

|Si|
X

(x,y)2Si

`(f✓t(x), y)

1

A (15)

In the outer loop, it updates ✓0, which is shared across all tasks, as follows:

✓0  ✓0 � "
1

n

nX

i=1

(✓0 �A✓0(Si)), " > 0 (16)

We argue that Reptile outer loop updates (16) approximate gradient descent on the empirical estimator of the
transfer risk:

Lemp(A✓0 ; S) :=
1

n

nX

i=1

R̂(A✓0 , Si), R̂(A✓0 , Si) :=
1

|Si|
X

(x,y)2Si

`(A✓0(Si)(x), y) (17)

To understand why this is the case, first, consider the gradient of Lemp(A✓0 ; S) with respect to ✓0:

r✓0Lemp(A✓0 ; S) =
1

n

nX

i=1

r✓0R̂(A✓0 , Si) (18)

=
1

n

nX

i=1

1

|Si|
X

(x,y)2Si

r✓0`(A✓0(Si)(x), y) (19)

=
1

n

nX

i=1

1

|Si|
X

(x,y)2Si

r✓i
T
`(f✓i

T
(x), y)[r✓0A✓0(Si)] (20)

Now, we can compute the difference between r✓0R̂(A✓0 , Si) and the Reptile update A✓0(Si)� ✓0:

(✓0 �A✓0(Si))�r✓0R̂(A✓0 , Si) =
1

|Si|
X

(x,y)2Si

" 
TX

t=1

↵tr✓i
t
`(f✓i

t
(x), y)

!
�r✓i

T
`(f✓i

T
(x), y)[r✓0A✓0(Si)]

#
(21)

Expression in the square brackets is the difference between T inner loop gradient steps on `(f✓(x), y) and the
gradient at the final T -th step transformed by the Jacobian r✓0A✓0(Si). This expression was analyzed by Nichol
et al. [16] using perturbation theory and Taylor approximation, where it was shown that this difference is equal
to the following:

 
TX

t=1

↵tr✓i
t
`(f✓i

t
(x), y)

!
�r✓i

T
`(f✓i

T
(x), y)[r✓0A✓0(Si)] = (I � ↵HT

✓0)
T�1X

t=1

r✓i
t
`(f✓i

t
(x), y) +O(↵2) (22)

where HT
✓0

is the Hessian of `(f✓T (x), y) at ✓0, ↵ := maxt2[1,T ] ↵t.

Assuming that ↵ (i.e., the inner loop step size) is sufficiently small and the norm of r✓`(f✓(x), y) is bounded by
some constant G, the difference in (22) is bounded by (1� ↵�max(HT

✓0
))G(T � 1) +O(↵2), which implies:

(✓0 �A✓0(Si))�r✓0R̂(A✓0 , Si)  (1� ↵�max(H
T
✓0))G(T � 1) +O(↵2) (23)

The deviation between r✓0Lemp and Reptile updates would be small when the inner loop objective is well-
behaved (has a small G), the number of inner loops steps T is not too large, and the step sizes ↵ are small. These
conditions would ensure convergence of Reptile to a stationary point of Lemp. We leave sharper analysis of the
convergence rates in the case of non-convex and convex `(·, ·) to future work.
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B Proofs

In this section, we provide detailed expressions for meta-generalization bounds, proofs for Theorems 2 and 3,
statements (and proof sketches where necessary) for classical auxiliary results, and further discuss the implications
and limitations of our analysis.

B.1 Classical Bounds on Meta-generalization Error

The meta-generalization bounds provided in Section 4 directly extend of the following classical result by Maurer
[19] (which in turn uses meta-learning formulation of Baxter [35] and is a direct adaptation of the algorithmic
stability bounds of Bousquet and Elisseeff [18]).

Theorem 4 (Theorem 1 from [19]) Let the meta-algorithm A satisfy the following two conditions:

C1. For every pair of meta-samples S = {S1, . . . , Sn}, S�i := S\{Si}, and for any sample S, we have |R̂(A(S), S)�
R̂(A(S�i), S)|  �0.

C2. For any pair of samples S = {(x1, y1), . . . , (xm, ym)}, S�j := S \ {(xj , yj)}, any algorithm A produced by A,
and any (x, y), we have |`(A(S)(x), y)� `(A(S�j)(x), y)|  �.

Then for any task distribution P(T ), with probability at least 1� � the following inequality holds:

R(A(S),P(T ))� Lemp(A(S); S)  2�0 + (4n�0 +M)

r
ln(1/�)

2n
+ 2�, (24)

where Lemp(A(S); S) := 1
n

Pn
i=1 R̂(A(S), Si), R̂(A,Si) :=

1
|Si|
P

(x,y)2Si
`(A(Si)(x), y) with the loss function `(·, ·)

bounded by M .

Conditions C1 and C2 in Theorem 4 define uniform stability (i.e., sensitivity of the algorithm to removal of an
arbitrary point from the training sample [18]) and state that the bound holds if the meta-algorithm A and every
algorithm A it produces are uniformly �0- and �-stable with respect to the empirical risk R̂ and a loss function `,
respectively. The bound becomes non-trivial when �0 = o(1/na), a � 1/2 and � = o(1/mb), b � 0.

Theorem 4 provides a bound on the difference between the transfer risk R[A(S),P(T )] and its empirical estimator
Lemp(A(S); S) based on meta-sample S, implying that a small Lemp(A(S); S) guarantees meta-generalization
within the bound. Denoting A ⌘ A(S) to simplify our notation, the bound is obtained as follows:

R(A,P(T ))� Lemp(A; S) = ED⇠P(T )

h
ES⇠Dm

h
R̂(A,S)

ii
� 1

n

nX

i=1

R̂(A,Si) + (25)

ED⇠P(T )

h
ES⇠Dm

h
R(A(S),D)� R̂(A,S)

ii
(26)

The term (25) is the difference between the expected empirical risk over the true distribution of tasks and its
estimate Lemp(A; S) based on the meta-sample S. As long as A is �0-uniformly stable with respect to R̂(A,S)
(C1, Theorem 4), this term is bounded by 2�0 + (4n�0 +M)

p
ln(1/�)/2n, which follows directly from the classical

result of Bousquet and Elisseeff [18].

The term (26) is the estimation error of a model f(·) = A(S) learned by A from S with respect to the data
distribution D, computed in expectation over the distribution of tasks P(T ). Stability of the inner-loop (C2,
Theorem 4) directly implies a bound of 2� on this term (see Theorem 6 in [19]). Putting together bounds of
terms (25) and (26), we arrive at (24).

B.2 Bounding Meta-generalization of Reptile, MAML, and ProtoNets

The bound given in (24) is on the generalization error, i.e., the deviation of the true transfer risk R from the
empirical estimator Lemp, and has meaningful practical implications only when the meta-algorithm A minimizes
Lemp. As we have shown in A, Lemp(A; S) is the meta-training objective function optimized by Reptile, and
thus the bound from Theorem 4 applies directly. However, MAML and ProtoNets optimize LQ(A; S), so we
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have to bound R(A,P)� LQ(A; S) instead, which can be decomposed into two terms similar to (25) and (26),
where R̂ is replaced by R̂Q and S is replaced by S \Q (since samples from the query set Q are not used in the
inner-loop). The bound on the first term will not change much as we can still directly apply results from stability
theory with the only caveat that we would require �0

Q-uniform stability of the meta-algorithm with respect to R̂Q.
The second term, however, vanishes:

ES⇠Dm

h
R(A(S \Q),D)� R̂Q(A,S)

i

= ES\Q⇠Dm�k

2

4R(A(S \Q),D)� EQ⇠Dm�k

2

4 1

|Q|
X

(x,y)2Q

`(A(S \Q)(x), y)

3

5

3

5 ⌘ 0 (27)

This allows us to reformulate Theorem 4 and obtain the following generalization bound applicable to any
meta-learning method that optimizes R̂Q in the outer loop, including MAML and ProtoNets.

Theorem 5 Let the meta-algorithm A satisfy the following two conditions:

C1. For every pair of meta-samples S = {S1, . . . , Sn}, S�i := S \ {Si}, and for any sample S, we have
|R̂Q(A(S), S)� R̂Q(A(S�i), S)|  �0

Q.

C2. For any pair of samples S = {(x1, y1), . . . , (xm, ym)}, S�j := S \ {(xj , yj)}, any algorithm A produced by A,
and any (x, y), we have |`(A(S)(x), y)� `(A(S�j)(x), y)|  �.

Then for any task distribution P(T ), with probability at least 1� � the following inequality holds:

R(A(S),P)� LQ(A(S); S)  2�0
Q + (4n�0

Q +M)

r
ln(1/�)

2n
, (28)

where LQ(A(S); S) := 1
n

Pn
i=1 R̂Q(A(S), Si), R̂Q(A,Si) :=

1
|Qi|

P
(x,y)2Qi

`(A(Si Qi)(x), y) with the loss function
`(·, ·) bounded by M .

Since MAML, Reptile, and ProtoNets use stochastic gradient method (SGM) for solving the outer loop
optimization problem, and Reptile additionally uses SGM in the inner loop as well, we further adopt the
following general result from stability theory of SGM due to Hardt et al. [20].

Lemma 6 (Theorem 3.12 in [20]) Let `(·, z) 2 [0, 1] be L-Lipschitz and �-smooth loss function for every z.
Suppose that we optimize 1

n

Pn
i=1 `(✓, zi) by running SGM for T steps with monotonically non-increasing step

sizes ↵t  c/t. Then, SGM is �-uniformly stable with

�  1 + 1/(�c)

n� 1
(2cL2)1/(�c+1)T 1�1/(�c+1) (29)

Combining Theorems 4, 5, and 6 we finally arrive at the meta-generalization error bounds for modern meta-learning
algorithms.

Theorem 7 Let the meta-algorithm A be an SGM that optimizes an L0-Lipschitz and �0-smooth loss L(A; S) by
taking T 0 steps with non-increasing step sizes ↵0

t  c0/t. With probability at least 1� �, we have the following:

1. If L(A; S) is Q-estimator of the transfer risk, then the following bound holds:

R[A,P(T )]� L(A; S)  B0(n, T 0, L0, �0, c0) ⇡ O

 
L02T 0

r
ln(1/�)

n

!
(30)

2. If L(A; S) is the empirical estimator of the transfer risk and the inner loop learning algorithm A is an SGM
that optimizes L-Lipschitz and �-smooth loss `(f(x), y) by taking T steps with non-increasing step sizes
↵t  c/t, then:

R[A,P(T )]� L(A; S)  B0(n, T 0, L0, �0, c0) +B(m,T, L, �, c) ⇡ O

 
L02T 0

r
ln(1/�)

n
+ L2T

1

m

!
(31)
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Proof Conditions of the theorem and Lemma 6 imply that A is �0-(or �0
Q-)uniformly stable and the coefficient

can be expressed through the Lipschitz and smoothness constants of Lemp (or LQ). This leads to the following
expression for B0(n, T 0, L0, �0, c0):

B0(n, T 0, L0, �0, c0) =
2C

n

✓
1 +

1

n� 1

◆
+ 2C

r
2 ln(1/�)

n

✓
1 +

1

n� 1
+

M

4C

◆
, (32)

where C := (1 + 1/(�0c0))(2c0L02)1/(�
0c0+1)T 01�1/(�0c0+1). The simplified expression given in (30) upper-bounds

(32). Similarly, if each algorithm A produced by the meta-algorithm A is an SGM on the Lemp objective, using
Lemma 6 we arrive at the following expression for B(m,T, L, �, c):

B(m,T, L, �, c) = 2�  2
1 + 1/(�c)

m� 1
(2cL2)1/(�c+1)T 1�1/(�c+1) ⇡ O

✓
L2T

1

m

◆
(33)

where the approximation ignores terms associated with c and �. The statement of the theorem now follows from
Theorems 4 and 5 and the derived expressions.

Besides the implications of our theory discussed in the main text, we can make a few more interesting observations.

What happens if we use empirical estimator of the transfer risk as the objective for MAML? In
principle, we can make MAML optimize Lemp instead of LQ in the outer loop. Nichol et al. [Section 6.3, 16]
considered an interesting setup in their ablation study, where they analyzed how the overlap between the support
and query data affects performance of the the first-order version of MAML. Note that the larger the overlap, the
closer MAML’s objective becomes to Lemp. Interestingly, they show that larger overlaps lead to the performance
degradation on the Omniglot dataset. This result is consistent with our theory—switching MAML’s objective to
Lemp necessarily leads to larger meta-generalization error characterized by the additional 2� term in the bound.

Implications for federated learning. In federated learning research, one of the most popular algorithms is
federated averaging (FedAvg) [28], which uses model updates that are mathematically equivalent to Reptile.
The tasks are defined by the (private) datasets available on different client devices (e.g., mobile phones). Our
theory suggests that federated-averaging-style updates might be suboptimal for applications where the available
labeled data for each client is very small; at the same time, when each client has sufficient data (as in the
EMNIST dataset), we observe empirically superiority of Reptile/FedAvg over MAML (Section 6.3). Designing
personalized federated learning algorithms that learn by optimizing a combination of Lemp (on clients with a lot
of data) and LQ (on clients with very small datasets) objectives is an interesting research avenue to explore next.

C Details on the Experimental Setup

We provide details on the experimental setup used throughout the paper, including model architectures (often
termed backbone networks in the few-shot learning literature) and hyperparameters for meta-learning methods.
Additionally, our full experimental configurations can be found in the provided supplementary code in the
corresponding conf/ folders, which enables full reproducibility.

C.1 Network Architectures

For all our experiments, we used the standard Conv4 backbone network architectures proposed in the original
papers [15, 17, 16]. The embeddings computed by the last hidden layer of the backbone networks were subsequently
used for clustering in our active sampling approach. MAML and Reptile used a linear final layer to compute
logits from the embeddings, while ProtoNets used the distances between the query and support samples in the
embedding space for computing class probabilities.

Omniglot and EMNIST. Input images were resized to 28 ⇥ 28. Models used by all methods consisted of 4
convolutional layers with 64 filters, kernel size of 3, and strides of 2, followed by batch normalization and ReLU
activations (with no pooling or dropout in the intermediate layers).

mini-ImageNet. Input images were resized to 84⇥ 84. Models used by all methods consisted of 4 convolutional
layers with 32 filters, kernel size of 3, and strides of 2, followed by batch normalization and ReLU activations
(with no pooling or dropout in the intermediate layers).
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Table 3: Meta-test performance with unbounded supervision.

Method O-5w-1s O-5w-5s O-20w-1s O-20w-5s MI-5w1d MI-5w5d

MAML 98.3±0.6 99.9±0.1 95.0±0.5 98.6±0.5 48.7±1.7 63.0±0.9

Reptile 94.9±0.2 98.2±0.5 88.2±0.4 96.4±0.4 47.8±1.3 61.9±1.1

Protonets 97.9±0.4 99.0±0.1 91.9±1.2 98.6±0.5 48.3±0.8 66.2±0.8

C.2 Meta-learning Algorithms

Meta-training (i.e., the outer loop optimization) was performed using Adam optimizer [49] with learning rate of
0.005 and �1 = 0 for MAML and ProtoNets. For Reptile, following parameters provided by Nichol et al. [16],
the outer loop learning rate was set 1.0 and the optimizer set to stochastic gradient descent (SGD). Details on
model adaptation are provided below.

MAML [15]. At training time, we used 5 inner loop gradient descent (GD) steps with a learning rate of 0.01.
At evaluation time, the number of inner loop steps was set to 10. To implement first order adaptation updates,
we nullified the second order derivatives when computing the meta-training loss.

Reptile [16]. At training time, we used 10 inner loop gradient descent (GD) steps with a learning rate of 0.001
for Omniglot and 0.0005 for mini -ImageNet. At evaluation time, the number of inner loop steps was set to 50.

Prototypical Networks [17]. We used a version of the method with the Euclidean distance. The method has
no other hyperparameters besides those of the outer loop optimizer.

C.3 Calibration

We selected the hyperparameters described above such that the meta-test performance of all methods nearly
matched the reported numbers in the original papers in the limited supervision regime. Results for the calibrated
models are reported in Table 3.

A note on Reptile. Nichol et al. [16] used 10-shot tasks at meta-training time and trained for over 100,000
meta-updates (each meta-update was computed on a batch of 20 tasks) in order to attain the performance
reported in the original paper. In the limited supervision setting, this would have required a label budget of over
100M (i.e., 1000 times larger than those considered in our study). However, just for calibration purposes, we
matched the original setup of Nichol et al. [16].

A note on ProtoNets. To improve performance, Snell et al. [17] proposed to meta-train ProtoNets on
tasks with higher number of classes than the tasks used at meta-test time (e.g., meta-training on 60-way tasks
while meta-testing on 20-way tasks). Even though training tasks with more classes could be helpful in learning
better data representations, increasing the number of classes per task affects the amount of labeled points required
per task and may affect performance of non-oracle label selection strategies. Therefore, in our experiments,
we decided to stick with a clean setup that matches the number of classes per task at both meta-training and
meta-test times, although sacrificing some performance gains. Again, for calibration purposes only, we used an
increased number of classes per task at meta-training time.

C.4 Limitations

To avoid a combinatorially large number of combinations of architectures, algorithms, and their hyperparameters,
we had to fix many of these variables before experimenting with different labeling budgets and sampling strategies.
While this allowed us to conduct a fairly comprehensive study of 3 different meta-learning methods across a
variety of regimes, the reported results may be limited to the specific choice of the setup described above; we
do not exclude the possibility that the behavior of different methods might vary with the setup (e.g., tuning
hyperparameters for each labeling budget separately, while extremely costly, might have rectified poor performance
of some of the methods on some of the benchmarks).


