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Abstract

We develop a new Riemannian descent algo-
rithm that relies on momentum to improve
over existing first-order methods for geodesi-
cally convex optimization. In contrast, accel-
erated convergence rates proved in prior work
have only been shown to hold for geodesi-
cally strongly-convex objective functions. We
further extend our algorithm to geodesically
weakly-quasi-convex objectives. Our proofs of
convergence rely on a novel estimate sequence
that illustrates the dependency of the conver-
gence rate on the curvature of the manifold.
We validate our theoretical results empirically
on several optimization problems defined on
the sphere and on the manifold of positive
definite matrices.

1 Introduction

The field of optimization plays a central role in ma-
chine learning. At its core lies the problem of finding
a minimum of a function f : H → R. In the vast
majority of applications in machine learning, H is con-
sidered to be a Euclidean vector space. However, a
number of machine learning tasks can profit from a
specialized problem-dependent Riemannian structure
(Bonnabel, 2013; Zhang and Sra, 2016), which will be
the focus of our discussion in this paper. Among the
most popular types of methods to optimize f are first-
order methods, such as gradient descent that simply
updates a sequence of iterates {xk} by stepping in
the opposite direction of the gradient ∇f(xk). In the
case H = Rn, gradient descent as a first-order method
has been shown to achieve a suboptimal convergence
rate on convex problems (O(1/k)). In a seminal paper,
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(Nesterov, 1983), Nesterov showed that one can con-
struct an optimal — i.e. accelerated — algorithm that
achieves faster rates of convergence for both convex
(O(1/k2)) and strongly-convex functions. The conver-
gence analysis of this algorithm relies heavily on the
linear structure of H and it is not until recently that a
first adaptation to Riemannian manifolds was derived
by Zhang and Sra (2018). The algorithm by Zhang and
Sra (2018) is shown to obtain an accelerated rate of
convergence for functions that are known to be geodesi-
cally strongly-convex, provided that one initializes in a
neighborhood of the (unique) solution. These functions
are of particular interest as they might be non-convex
in the Euclidean sense and they occur in some relevant
computational tasks, such as the approximation of the
Karcher mean of positive definite matrices (Zhang et al.,
2016). However, many other interesting problems be-
long to the weaker class of geodesically convex functions.
This includes problems defined on the cone of Hermi-
tian positive definite matrices (Sra and Hosseini, 2015),
which appear in various areas of machine learning such
as tracking (Cheng and Vemuri, 2013) and medical
imaging (Zhu et al., 2007). In this paper, we therefore
address the question of whether an algorithm that relies
on momentum can provably achieve a faster rate of con-
vergence for functions that are geodesically convex but
not necessarily strongly convex. We also consider the
extension to the weaker class of geodesically weakly-
quasi-convex objective functions. A more thorough
motivation for investigating convex and weakly-quasi
convex objectives in Riemannian optimization can be
found in Section 4 of (Alimisis et al., 2019). Our main
contributions are:

1. We propose a new practical Riemannian algorithm
that exploits momentum to speed up convergence for
geodesically convex and weakly-quasi-convex functions.
As in (Nesterov et al., 2018), our approach uses a
small-dimensional relaxation (sDR) oracle (which can
be solved approximately and in linear time) to per-
form adaptive linear coupling1 (Allen-Zhu and Orec-
chia, 2014). In order to provide theoretical guarantees

1See discussion in the next section.
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for this new algorithm, we use a novel estimate se-
quence combining ideas from (Nesterov et al., 2018)
and (Zhang and Sra, 2018) as well as develop some
new results at the intersection of optimization and
Riemannian geometry.

2. Our main algorithm applied to geodesically convex
objective functions provides better theoretical guaran-
tees of convergence compared to Riemannian Gradient
Descent (RGD) (Zhang and Sra, 2016), given that the
bound on the working domain is not exceedingly large.
Since RGD is the only known first-order method with
guaranteed convergence for geodesically convex func-
tions, our algorithm has the best known worst-case
behaviour. Moreover, our algorithm is accelerated for
the first (practically large) part of the optimization
procedure.

3. We validate our theoretical findings numerically on
several important machine learning problems defined
on manifolds of both positive curvature (Rayleigh quo-
tient maximization) and negative curvature (operator
scaling and Karcher mean approximation). Some of
these problems are convex (but not strongly-convex)
while others have a relatively small strong convexity
constant. We show the empirical superiority of our
method when compared to Riemannian algorithms de-
signed for well-conditioned geodesically strongly-convex
objectives, such as RAGD (Zhang and Sra, 2018).

2 Related Work

Accelerated Gradient Descent (AGD). The
first accelerated gradient descent algorithm in Eu-
clidean vector spaces is due to Nesterov (1983). Since
then, the community has shown a deep interest in un-
derstanding the mechanism underlying acceleration. A
recent trend has been to look at acceleration from a
continuous-time viewpoint (Su et al., 2014; Wibisono
et al., 2016). In this framework, AGD is seen as the
discretization of a second-order ODE. Alternatively,
Allen-Zhu and Orecchia (2014) showed how one can
view AGD as a primal-dual method performing linear
coupling between gradient descent and mirror descent.
Recently Nesterov et al. (2018) proposed AGDsDR, a
modification of the method by Allen-Zhu and Orecchia
(2014), which adaptively selects the linear coupling
parameter (denoted by β) at each iteration using an
approximate line search. This work will serve as an
inspiration for us to design an accelerated Riemannian
algorithm.

Riemannian optimization. Research in the field
of Riemannian optimization has encountered a lot of
interest in the last decade. A seminal book in the area
is (Absil et al., 2009), which gives a comprehensive
review of many standard optimization methods, but

does not discuss acceleration. More recently, Zhang
and Sra (2016) proved convergence rates for Rieman-
nian gradient descent applied to geodesically convex
functions. Acceleration in a Riemannian framework
was first discussed by Liu et al. (2017), who claimed to
have designed a Riemannian method with guaranteed
acceleration. While their methodology is interesting,
unfortunately, as discussed in (Zhang and Sra, 2018),
their algorithm relies on finding the exact solution to a
nonlinear equation at each iteration, and it is not clear
how difficult this additional problem might be or how
approximation errors accumulate. Subsequently, Zhang
and Sra (2018) developed the first computationally
tractable accelerated algorithm on a Riemannian mani-
fold, but their approach only has provable convergence
for geodesically strongly-convex objectives (provided
that one initializes sufficiently close to the solution).
A more recent work, (Ahn and Sra, 2020), attempts
to tackle the problem of acceleration for geodesically
strongly-convex optimization with global convergence
rate (no assumptions on the initialization required).
Notwithstanding the theoretical significance of this
work, the final algorithm has the practical drawback
that achieves full acceleration only in late training (after
a possibly very large number of steps for ill-conditioned
problems), while at the beginning behaves compara-
bly to Riemannian gradient descent. Instead, using a
continuous-time viewpoint, the recent work (Alimisis
et al., 2019) analyzed various ODEs that can model
acceleration on Riemannian manifolds with theoretical
guarantees of convergence. They derived discrete-time
algorithms via numerical integration of the continuous-
time process but do not provide theoretical guarantees
for the discrete-time schemes. The problem we address
is different from prior work as we aim to demonstrate
that momentum provably yields a better rate of conver-
gence than Riemannian gradient descent for the classes
of geodesically convex and weakly-quasi-convex func-
tions, which are both of significant practical interest
(see discussion in Section 6). We note that extending
the proof by Zhang and Sra (2018) to these weaker
classes of functions is not straightforward due to some
distortions between the tangent spaces of the sequence
of iterates of the algorithm 2. Indeed, the estimate
sequence used in (Zhang and Sra, 2018) relies on chang-
ing the tangent space at each step. These successive
changes give rise to additional errors which can be
dealt with by relying on the strong convexity assump-
tion. However, we were unable to adapt their proof to

2By "distortion", we mean that when considering two
successive iterates xk and xk+1, the terms logxk (a)−logxk (b)

and logxk+1
(a) − logxk+1

(b) appearing in the estimate se-
quence belong to different tangent spaces and are therefore
not directly comparable (while they are exactly the same
in the Euclidean case).
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weaker function classes. Instead, we rely on a novel
estimate sequence that is qualitatively different from
the one used in (Zhang and Sra, 2018) in order to avoid
distortions produced by changing tangent spaces.

3 Background

3.1 Preliminaries from Differential Geometry

We review some basic notions from Riemannian ge-
ometry that are required in our analysis. For a full
review, we refer the reader to some classical textbook,
for instance (Spivak, 1979).

Manifolds. A differentiable manifold M is a topo-
logical space that is locally Euclidean. This means that
for any point x ∈M , we can find a neighborhood that
is diffeomorphic to an open subset of some Euclidean
space. This Euclidean space can be proved to have the
same dimension, regardless of the chosen point, called
the dimension of the manifold.
A Riemannian manifold (M, g) is a differentiable man-
ifold equipped with a Riemannian metric gx, i.e. an
inner product for each tangent space TxM at x ∈ M .
We denote the inner product of u, v ∈ TxM with 〈u, v〉x
or just 〈u, v〉 when the tangent space is obvious from
context. Similarly we consider the norm as the one
induced by the inner product at each tangent space.
The Riemannian metric provides us a way to measure
the distance d between points on the manifold, trans-
forming it into a metric space. Given A ⊆ M , the
diameter of A is defined as diam(A) = supp,q∈A d(p, q).

Geodesics. Geodesics are curves γ : [0, 1] → M of
constant speed and of (locally) minimum length. They
can be thought of as the Riemannian generalization of
straight lines in Euclidean space. Geodesics are used to
construct the exponential map expx : TxM →M , de-
fined by expx(v) = γ(1), where γ is the unique geodesic
such that γ(0) = x and γ̇(0) = v. The exponential map
is locally a diffeomorphism. We denote the inverse of
the exponential map expx (in a neighborhood U ⊆M
of x) by logx : U → TxM . Geodesics also provide a
way to transport vectors from one tangent space to
another. This operation, called parallel transport, is
usually denoted by Γyx : TxM → TyM .

Vector fields and covariant derivative. The cor-
rect notion to capture second order changes on a Rie-
mannian manifold is called covariant differentiation and
it is induced by the fundamental property of Rieman-
nian manifolds to be equipped with a connection. We
are interested in a specific type of connection, called
the Levi-Civita connection, which induces a specific
type of covariant derivative. The fact that a unique
Levi-Civita connection exists always in a Riemannian

manifold is the subject of the fundamental theorem of
Riemannian geometry. However, for the purpose of our
analysis, it will be sufficient to rely on a simple notion
of covariant derivative that relies on the (more visual-
izable) notion of parallel transport. First, we define
vector fields on a Riemannian manifold as sections of
the tangent bundle.
Definition 1. Let M be a Riemannian manifold. A
vector field X in M is a smooth map X : M → TM ,
where TM is the tangent bundle, i.e. the collection
of all tangent vectors in all tangent spaces of M , such
that p ◦X is the identity (p projects from TM to M).
One can see a vector field as an infinite collection of
imaginary curves, the so-called integral curves (formally
solutions of first order differential equations on M).
Definition 2. Given two vector fields X,Y in
a Riemannian manifold M , we define the covari-
ant derivative of Y along X to be ∇XY (p) =

limh→0
Γp
γ(h)

Y (γ(h))−Y (p)

h , where γ is the unique integral
curve of X, starting from p, i.e γ(0) = p.

3.2 Geodesic convexity

We remind the reader of the basic definitions needed
in Riemannian optimization.
Definition 3. A subset A ⊆M of a Riemannian man-
ifold M is called geodesically uniquely convex, if every
two points in A are connected by a unique geodesic.
Definition 4. A function f : A → R is called
geodesically convex, if for any p, q ∈ M , we have
f(γ(t)) ≤ (1− t)f(p) + tf(q) for any t ∈ [0, 1], where
γ is the geodesic connecting p, q ∈M .

Given a function f : M → R, the notions of differential
and (Riemannian) inner product allow us to define the
Riemannian gradient of f at x ∈M , which is a tangent
vector belonging to the tangent space based at x, TxM .

Definition 5. The Riemannian gradient gradf of a
(real-valued) function f : M → R at a point x ∈ M ,
is the tangent vector at x, such that 〈gradf(x), u〉 =
df(x)u 3, for any u ∈ TxM .

Given the notion of Riemannian gradient and covariant
derivative we define the notion of Riemannian Hessian.

Definition 6. The Hessian of f is defined as a bilinear
form at each point p ∈M , given by Hessp(f)(X,Y ) =
〈∇X grad f, Y 〉, for two vector fields X,Y on M .

Using the Riemannian inner product and gradient, we
can formulate an equivalent definition for geodesic con-

3df denotes the differential of f , i.e. df(x)[u] =

limt→0
f(c(t))−f(x)

t
, where c : I → M is a smooth curve

such that c(0) = x and ċ(0) = u.
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vexity for a smooth function f defined in a geodesically
uniquely convex domain A.

Proposition 1. Let f : A→ R be a smooth, geodesi-
cally convex function. Then, for any x, y ∈ A,

f(y)− f(x) ≥ 〈gradf(x), logx(y)〉.

As in the Euclidean case, any local minimum of a
geodesically convex function is a global minimum. We
now generalize the well-known notion of Euclidean
weak-quasi-convexity to Riemannian manifolds. For a
review of this notion, we refer the reader to (Guminov
and Gasnikov, 2017).

Definition 7. A function f : A→ R is called geodesi-
cally α-weakly-quasi-convex with respect to c ∈ M , if
α(f(c) − f(x)) ≥ 〈gradf(x), logx(c)〉 for some fixed
α ∈ (0, 1] and any x ∈ A.

It is easy to see that weak-quasi-convexity implies that
any local minimum of f is also a global minimum.
Using the notion of parallel transport we can define
when f is geodesically L-smooth, i.e. has Lipschitz
continuous gradient in a differential-geometric way.

Definition 8. f : A → R is called L-smooth if
‖gradf(x)−Γxygradf(y)‖ ≤ L‖logx(y)‖ for any x, y ∈ A.

Geodesic L-smoothness has similar properties to its
Euclidean analogue: a two times differentiable function
is L-smooth, if and only if the norm of its Riemannian
Hessian is upper bounded by L.

3.3 Basic Assumptions

In this paper, we make the standard assumption that
the input space is not "infinitely curved". In order
to make this statement rigorous, we need the notion
of sectional curvature K, which is a measure of how
sharply the manifold is curved (or how “far” from be-
ing flat our manifold is), “two-dimensionally”. More
concretely, as in (Zhang and Sra, 2018), we make the
following set of assumptions:

Assumption 1. Given A ⊆ M geodesically uniquely
convex, and f : A→ R,

1. The sectional curvature K inside A is bounded
from above and below, i.e. Kmin ≤ K ≤ Kmax.

2. A is a geodesically uniquely convex subset of M ,
such that diam(A) ≤ D < ∞. This implies that
the exponential map expx : TxM →M is globally a
diffeomorphism for any x ∈ A with inverse denoted
by logx.

3. f is geodesically L-smooth with its local minima
(which are all global) inside A, we denote some of
them by x∗.

4. We have granted access to oracles which compute
the exponential and logarithmic maps as well as
the Riemannian gradient of f efficiently.

5. All the iterates of our algorithms remain inside A.

The last assumption is standard in accelerated Rieman-
nian optimization, (Zhang and Sra, 2018; Alimisis et al.,
2019; Ahn and Sra, 2020), and we did not observe it
to be violated in our experiments. However, it remains
an open question as to whether it could be relaxed or
even removed completely from our analysis.

4 The RAGDsDR Algorithm

We now develop a new Riemannian algorithm that relies
on momentum and which is inspired by the Euclidean
algorithm presented in (Nesterov et al., 2018) (see
description in Appendix A). It is detailed in Algorithm
1 and illustrated in Figure 1. At each iteration k, the
next iterate xk+1 (line 5) is computed by taking a
gradient step at an interpolated point yk (line 4) which
follows the direction of a momentum term logvk(xk).
The main difference with the Euclidean case is that the
curve from vk to xk is a geodesic on the manifold M
instead of a straight Euclidean line. As in (Nesterov
et al., 2018), we also rely on a minimization over a
closed interval (i.e. the small-dimension relaxation,
sDR) to choose the best possible stepsize βk (line 3)
on the geodesic connecting vk to xk. We will see in the
next section that this minimization is computationally
fast to solve (also see Section 6), can be computed
approximately and practically yields faster convergence
than the typical fixed parameter βk = k

k+2 (Nesterov,
2018). The curvature of M is involved directly in the
algorithm via the quantity ζ ≥ 1 (line 6), defined as

ζ :=

{√
−KminD coth(

√
−KminD) ,Kmin < 0

1 ,Kmin ≥ 0
(1)

Algorithm 1 RAGDsDR for convex functions
1: A0 = 0, x0 = v0 ∈ A
2: for k ≥ 0 do
3: βk = argmin

β∈[0,1]

{
f(expvk (β logvk (xk)))

}
4: yk = expvk (βk logvk (xk))

5: xk+1 = expyk
(
− 1
L
gradf(yk)

)
6:

ζa2k+1

Ak+ak+1
= 1

L
, ak+1 > 0

7: Ak+1 = Ak + ak+1

8: vk+1 = expvk (−ak+1Γ
vk
ykgradf(yk))

9: end for

The discriminant of the quadratic equation defining
ak+1 at step 6 is positive, thus the aforementioned
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Figure 1: Illustration of one step of Algorithm 1. The point
yk is computed to minimize f on the geodesic between xk
and vk. xk+1 is computed by taking a gradient step from
yk and projected using the exponential map expyk (·).

equation has a positive and negative solution, from
which we choose the first.

The computation of the parallel transport at step 8 is
given directly by the oracle, since it relies on the com-
putation of the exponential map. For manifolds found
in applications, the parallel transport is cheap and im-
plementations are found in libraries such as (Townsend
et al., 2016).

The definition of vk+1 at step 8 is qualitatively differ-
ent from the one in (Zhang and Sra, 2018), but not
heavier computationally, since in both cases we need
three oracle calls. Note that Nesterov et al. (2018)
define vk+1 through a minimization problem (see Ap-
pendix A). This approach could be naively generalized
to the Riemannian setting but it would yield a mini-
mization problem that has no explicit solution due to
non-linearity. Instead, we find a generalization of the
Euclidean definition that can be solved explicitly and
write vk+1 directly in its explicit form in Algorithm 1.

Geodesic search. The second step in Algorithm 1
is solved using a procedure similar to a line search
which we name geodesic search. It guarantees that the
following two key conditions hold (proof in App. B):

f(yk) ≤ f(xk) and 〈gradf(yk), logyk(vk)〉 ≥ 0. (2)

Practically, the geodesic search procedure is inexact.
While we can still expect the first inequality in Eq. 2 to
be satisfied exactly, the second one can only be satisfied
up to a small error ε̃ > 0, i.e. 〈gradf(yk), logyk(vk)〉 ≥
−ε̃. We note that this is an analogous condition to the
one used by Nesterov et al. (2018) in the Euclidean
case. As we will see shortly, one of the main quantities
of interest in our analysis will be

Ek(x) := 〈gradf(yk), logyk(x)− Γykvk logvk(x)〉, (3)

which occurs as an error in our estimate-sequence anal-
ysis and captures the curved nature of the manifold

M . We will prove that the absolute value of this
error is bounded by the sum of two terms, namely
| Ek(x) |≤ ε̃+ η̃k, where ε̃ is the error obtained by the
geodesic search and η̃k is an extra curvature-dependent
error. The latter depends on an upper bound on the
working domain D and it decays to 0 as the algorithm
runs. In the Euclidean case η̃k = 0. We will prove that
in the Riemannian case η̃k = O

(
d(M)
k

)
, where d(M)

is a small constant which depends on the sectional
curvature and a bound of our working domain.

5 Convergence Analysis

Geodesically-convex functions. We now present
our main convergence result. Our analysis is based on
a novel estimate sequence, which allows for an extra
error at each step. However, this extra error does
not accumulate, and it decays linearly over iterations.
As a result, we obtain a rate of convergence that is
superior to the convergence guarantees of RGD derived
in (Zhang and Sra, 2016) under a restriction on the
bound of the working domain (see later discussion).
We first need to examine the behaviour of Ek(x):
Lemma 2. Under our set of assumptions (Assumption
1), Algorithm 1 produces iterates yk, vk such that

−Ek(x) ≤ ‖gradf(yk)‖max{ζ − 1, 1− δ}D + ε̃

with ζ ≥ 1 defined by equation (1) and δ ≤ 1 defined by

δ :=

{
1 ,Kmax ≤ 0√
KmaxD cot(

√
KmaxD) ,Kmax > 0

We prove this lemma in Appendix C. We rely on vari-
ous geometric bounds derived in Appendix D, which
are inspired by those of Alimisis et al. (2019). Gen-
erally speaking, δ and ζ are obtained by considering
the spectral properties of an operator similar to the
Riemannian Hessian of the squared distance function,
δ as a lower bounds of its smallest eigenvalue and ζ as
an upper bound of the largest one.

We are now ready to state our main convergence result:

Theorem 3. Algorithm 1 applied to a geodesically
convex function f produces iterates xk, such that

f(xk)− f∗ ≤
2ζLD2

k2
+ 4 max{ζ − 1, 1− δ}ζLD

2

k
+ ε̃ ≤

2 max

{
2ζLD2

k2
, 4 max{ζ − 1, 1− δ}ζLD

2

k

}
+ ε̃

Recall that parameter D is used to denote an upper
bound for the diameter of our working domain (As-
sumption 1).
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The proof is derived in Appendix E and relies on Lemma
2. At first glance, the upper bound seems rather intu-
itive for those familiar with Riemannian optimization,
namely the positive-curvature case provides the same
guarantees as the Euclidean one, while the negative-
curvature case provides worse guarantees.
Let’s take a closer look at the rate of convergence. To
do so, we define the following quantity which we call
the “discrepancy” of the manifold M .

Definition 9. The discrepancy of the manifold M is
defined as d(M) := 4 max{ζ − 1, 1− δ}.

In the Euclidean case, we have d(M) = 0, thus our
algorithm is a generalization of accelerated gradient
descent with line search.
The convergence rate in Thm. 3 is accelerated when

2ζLD2

k2
≥ d(M)

ζLD2

k

which is equivalent to k ≤
2

d(M)
. Thus, 2/d(M) is

an upper bound indicating how many steps of the
algorithm can be performed with an accelerated con-
vergence rate. When the manifold M tends to be Eu-
clidean in the sense that max{| Kmin |, | Kmax |} → 0,
then d(M) → 0 and 2

d(M) → ∞, increasing the num-
bers of iterations that one can perform accelerated
optimization.
Even when we exceed this bound, the condition

2d(M) <
1

2
⇔ max{ζ − 1, 1− δ} < 1

16
(4)

suffices to guarantee a better worst-case upper bound
than Riemannian Gradient Descent in (Zhang and Sra,
2016) (Theorem 13), since we have a smaller constant
in the numerator. This is because the rate provided in
Theorem 13 in (Zhang and Sra, 2016) is

f(xk)− f∗ ≤ ζLD2

2(ζ + k − 2)

Condition (4) implies that ζLD2

2(ζ+k−2) > 2d(M) ζLD
2

k ,
since 4d(M) < 1 and ζ < 2 (which implies that
1
k <

1
ζ+k−2 ).

Finally, condition (4) is for instance satisfied if√
| Kmin |D ≤ 0.4, and

√
| Kmax |D ≤ 0.4.

Both conditions hold if and only if the curvature of the
manifold is in absolute value less or equal than 0.16

D2 .
We summarize these facts in the following theorem:

Theorem 4. When the sectional curvature K of the
manifold M satisfies

| K |≤ 0.16

D2
,

Algorithm 1 performs better than RGD in (Zhang and
Sra, 2016).
When

k ≤ 2

d(M)
−→
K→0

∞,

Algorithm 1 is accelerated.

In practical situations, we have observed that the quan-
tity d(M) is very small, and we therefore empirically
observe acceleration for a very large number of itera-
tions (almost until convergence). We refer the reader
to the discussion in Section 7 which also includes a
comparison with (Zhang and Sra, 2018).

Geodesically weakly-quasi-convex functions.
We extend Algorithm 1 to functions that are α-weakly-
quasi-convex. This requires to restart Algorithm 1
whenever the suboptimality at the current iteration is
less than the previous one by a factor 1 − α

c , where
c > 1 is a constant. This procedure yields Alg. 2.

Theorem 5. Algorithm 2 applied to an α-weakly-
quasi-convex function as in the assumptions produces
a sequence of iterates {xk}Nk=1, such that

f(xN )− f(x∗) ≤

O
(
ζLD2

α3N2

)
+ d(M)O

(
ζLD2

α2N

)
+

c

(c− 1)α
ε̃,

where ε̃ is the error of the geodesic search, c > 1 and
d(M) is the discrepancy of the manifold.

As in the convex case, the O( 1
N ) part of the rate is

multiplied by the discrepancy of the manifold d(M),
thus the analysis of Theorem 4 holds almost the same.
The proof can be found in Appendix F.

6 Numerical Experiments

We validate our findings on Riemannian manifolds of
both positive and negative curvature. Our code4 is
built on top of PyManopt (Townsend et al., 2016). We
compare RAGDsDR (Algorithm 1) with Riemannian
Gradient Descent (RGD) and, when possible (i.e. when
we can estimate the strong convexity modulus), with
RAGD by Zhang and Sra (2018). As a more practical
alternative to the geodesic search in step 2 (which
we solve with at most 10 iterations of golden-section
search), we show the performance for βk = k

k+2 . Under

4https://github.com/aorvieto/RAGDsDR

https://github.com/aorvieto/RAGDsDR
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Algorithm 2 RAGDsDR for weakly-quasi-convex
functions
1: for i ≥ 0 do
2: A0 = 0, xi0 = vi0 ∈ A
3: for k ≥ 0 do
4: βk =argminβ∈[0,1]

{
f
(

expvi
k

(
β logvi

k
(xik)

))}
5: yik = expvik

(
βk logvik(xik)

)
6: xik+1 = expyik

(
− 1
Lgradf(yik)

)
7:

ζa2k+1

Ak+ak+1
= 1

L , ak+1 > 0

8: Ak+1 = Ak + ak+1

9: vik+1 = expvik

(
−ak+1Γ

vik
yik
gradf(yik)

)
10: if f(xik) − f(x∗) ≤

(
1− α

c

)
(f(xi0) − f(x∗))

then
11: break
12: end if
13: end for
14: xi+1

0 = xiN (where N is the number of steps
performed in the loop over k)

15: end for

this choice, RAGDsDR recovers a Riemannian version
of Linear Coupling (Allen-Zhu and Orecchia, 2014).

6.1 Positive curvature

Figure 2: Maximization of the Rayleigh quotient on M =
Sd−1. Setting is discussed in Sec. 6.1. We found that just 8
iterations of golden section search are sufficient to guarantee
a steady per-iteration decrease in RAGDsDR up until a
suboptimality of 10−9.

We first consider the problem of maximizing the
Rayleigh quotient xTAx

2‖x‖22
over Rd, i.e. of finding the

dominant eigenvector of A ∈ Rd×d. This non-convex
problem can be written on the open hemisphere Sd−1

(constant positive curvature) : argminx∈Sd−1 f(x) :=
− 1

2x
TAx. It is well known that, in the Euclidean case,

such an objective is hard to optimize if A is high-
dimensional and ill-conditioned — and is therefore able

to truly showcase the acceleration phenomenon5 for
convex but not necessarily strongly-convex functions, in
a tight way. We choose A = 1

dBB
T , where B ∈ Rd×n

has standard Gaussian entries6. We choose d = 2000
and n = 2100 u d, leading to a large condition num-
ber. In correspondence to the Euclidean case, we have
L = λmax(A) and use a step-size of 1/L for RGD and
RAGD. Also, we choose the strong-convexity modulus
µ (needed parameter for RAGD) as λmin(A), again in
correspondence with the Euclidean case.

Results. As predicted by Theorem 3, Figure 2 shows
that RAGDsDR is able to accelerate RGD from O(1/k)
to O(1/k2) during the first hundred iterations. The
rate will eventually7 become linear, due to the gradient-
dominance of f (Thm. 4 in (Zhang et al., 2016)). In
contrast, RAGD is only able to profit from acceleration
at a late stage — before that, it is comparable to RGD.
We note that the choice βk = k

k+2 , which reduces the
iteration-cost of RAGDsDR, does not influence much
the empirical rate. Indeed, as shown in the figure,
the geodesic search returns a result which is somehow
similar. However, as also mentioned in (Nesterov et al.,
2018), the geodesic search increases the adaptiveness
of the method to curvature, providing better stability
(no oscillations) and steady decrease at each iteration.

Comment on regularization. In the Euclidean set-
ting, one can sometimes add a quadratic regularizer to
accelerate the convergence of momentum methods de-
signed for strongly-convex objectives. For the Rayleigh
quotient problem, one may replace A with A+ γId×d,
where γ > 0. We note that there is typically no general
principle for choosing an appropriate γ (which is tie
to generalization in machine learning). However, such
a regularization technique increases the value of the
strong-convexity modulus µ, which speeds up optimiz-
ers designed for strongly-convex problems. Instead, the
algorithm we present in this paper provably improves
over RGD in terms of gradient computations, and this
effect is independent of µ. To the best of our knowl-
edge, RAGDsDR is the only Riemannian algorithm in
the current literature with these features. To conclude,
we also note that the derivation of accelerated rates
for problems which are not strongly-convex has a long
history in convex optimization (e.g. Nesterov’s 1983
seminal paper (Nesterov, 1983)) and arguably deserves
the same attention in Riemannian optimization.

Comment on the wall-clock time performance.
RAGDsDR, with or without geodesic search, only re-

5Indeed, high dimensional quadratics are used to con-
struct lower bounds in (Nesterov, 1983).

6Inspired by PCA and linear regression, where B is the
design matrix (n data points).

7This happens quite late, around iteration k = 100,
because of the large condition number κ(A) u 4000.
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quires the computation of one gradient per iteration.
However, the calculation of βk using geodesic search
(line 3 in Algorithm 1) increases the time complexity.
The approximation of βk does not require additional
gradients, but just a few (in this case 8 per iteration)
function evaluations. For simple problems such as the
ones we present in this section, the overall complex-
ity is dominated by the call of geometric operations
like the log and exponential maps (required for func-
tion evaluations along geodesics). Hence, as shown in
Figure 3, RAGDsDR with geodesic search is de facto
slower than RGD with an optimized step-size. RGD of
course benefits from less geometric operations required
per iteration. However, we note that (1) the practical
variant of RAGDsDR is faster than RGD, and (2) for
problems where the cost of a gradient computation is
dominating, we would expect a significant acceleration
from RAGDsDR with geodesic search.

Figure 3: Wall-clock time performance. Settings as Fig. 2.

6.2 Negative curvature

We study two problems on d × d symmetric positive
definite matrices S++(d). The metric gA(M,N) =
trace(A−1MA−1N) makes S++(d) a Riemannian man-
ifold with negative curvature (Bhatia, 2009).

Operator Scaling. Consider an operator T :
Rd×d → Rd×d defined by an m-tuple of d × d ma-
trices (Aj)

m
j=1: T (X) =

∑m
i=1AiXA

T
i . The prob-

lem of operator scaling consists in finding n × n ma-
trices X and Y such that if Âi := Y −1AiX, then∑m
i=1 ÂiÂ

T
i =

∑m
i=1 Â

T
i Âi = Id (double stochasticity).

Such problem is of extreme interest in theoretical com-
puter science (Garg et al., 2018), and has applications
in algebraic complexity, invariant theory, analysis and
quantum information. Gurvits (2004) showed that one
can solve operator scaling by computing the capacity
of T , i.e. by finding argminX∈S++(d)

det(T (X))
det(X) . This

function is non-convex in Rd×d, but its logarithm8 is

8log(det(T (X))) − log(det(X)) is geodesically convex
on S++(d). This is linked to the fact that log(det(X)) is
geodesically linear (both convex and concave).

geodesically convex on S++(d), (Vishnoi, 2018).Re-
cently, Allen-Zhu et al. (2018) were able to exploit
this property to design a competitive second-order Rie-
mannian optimizer to solve operator scaling. Here, we
instead test the performance of accelerated first-order
methods. To the best of our knowledge, there does
not exist any estimate of the strong convexity constant
for the log-capacity. Hence, RAGD (Zhang and Sra,
2018) is not applicable to operator scaling. Instead,
we compare the performance of RAGDsDR with the
algorithm by Gurvits (2004) in Fig. 4, showing again a
significant acceleration.

Figure 4: Scaling of a positive operator by minimizing
its log-capacity. Shown is the distance to double stochas-
ticity (Def. 2.9 from (Garg et al., 2018)). In this metric,
RAGDsDR is not necessarily a descent method. Here we es-
timate L = 1 (the smallest value that guarantees numerical
stability), and note that the algorithm by Gurvits (2004) is
very similar to RGD with step 1/L. The rate appears to
be sublinear (yet faster than O(1/k2)), in accordance with
the complexity result in (Garg et al., 2018).

Karcher mean. Given an n-tuple of d× d positive
definite matrices (Aj)

n
j=1, the Karcher mean is the

unique positive definite solution X to the equation∑m
i=1 log(A−1

i X) = 0, where log is the matrix loga-
rithm. This matrix average has many properties, which
make its computation relevant to signal processing and
medical imaging. The Karcher mean can also be writ-
ten as argminX∈S++(d) f(X) = 1

2m

∑m
i=1 d(Ai, X)2.

Figure 5: Performance of various optimizers on the Karcher
Mean problem, as discussed in Section 6.2. Performance is
similar under different values for n and κ. The rate appears
to be linear, as predicted by Zhang et al. (2016).
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Clearly, f is strongly-convex with modulus µ = 1,
and L-smooth with modulus estimated to be around
5 (Zhang and Sra, 2016). Following Zhang and Sra
(2016), we use the Matrix Mean Toolbox (Bini and
Iannazzo, 2013) to generate 100 random 100× 100 pos-
itive definite matrices with fixed condition number 106.
In Figure 5, we show that RAGDsDR (with geodesic
search) is able to achieve a faster rate compared to
RAGD in terms of number of iterations. Interestingly,
here the choice βk = k

k+2 only leads to a slight initial
acceleration compared to RGD. This can be explained
by looking at the values of βk returned by geodesic
search: for the first iterations βk is set to a very small
value — leading to convergence in 10 iterations.

7 Discussion

We proposed a novel algorithm that exploits momentum
for minimizing geodesically convex and weakly-quasi-
convex functions defined on a Riemannian manifold
of bounded sectional curvature. We derived theoreti-
cal guarantees proving that these algorithms achieve
faster rates of convergence than RGD and validated
our results empirically. We conclude by contrasting our
results to prior work and discussing further extensions.

Extension to strongly-convex case. Extending
our analysis to the strongly-convex case appears non-
trivial. Existing analyses such as (Zhang and Sra,
2018) that consider such functions, have an extra term
µ
2 d(yk, x

∗)2 in the estimate sequence, which cannot
straightforwardly be dealt with in our current proof.

Initialization used in (Zhang and Sra, 2018).
Theorem 3 in (Zhang and Sra, 2018) relies on the
restrictive assumption that the initialization of their
algorithm is inside a ball of radius D = 1

20
√
K

( µL )
3
4

centered at x∗. Using the strong convexity of the objec-
tive function, they are able to prove that the working
domain is expanded until 1

10
√
K

( µL )
1
4 ≤ 1

10
√
K
. Given

that we do not use strong convexity (but just con-
vexity), this assumption would translate to a bound
on the working domain of D ≤ 1

10
√
K
. This would in

turn imply ζ ≈ 1.003 and δ ≈ 0.997. This implies
that d(M) = 4 max{ζ − 1, 1− δ} ≈ 0.012 and the first
point of Theorem 4 holds. In addition, algorithm 1 is
accelerated for at least

[
2

0.012

]
≈ 166 iterations.

Further improvements. One question of practical
relevance surrounds the extra error term in our rate of
convergence of Theorem 3. We proved that this error
decays with rate O (d(M)/k) and that under restric-
tions on the working domain, our algorithm has better
worst-case behaviour than RGD. However, this extra
error does not allow us to claim full acceleration of

our algorithm and it is a topic for future work whether
such term is an artifact of our worst-case analysis. Al-
ternatively, an interesting direction would be to study
whether the extra error arises as the numerical dis-
cretization error of the ODE derived in (Alimisis et al.,
2019). However, this error is practically not a signifi-
cant problem since one can perform at the beginning
many steps of the method with full acceleration.
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Appendix: Proofs and Supplementaries

A Euclidean Algorithm

We restate here the Euclidean algorithm presented in (Nesterov et al., 2018), which serves as an inspiration for
developing the new Riemannian algorithm presented in this paper. One key aspect of this algorithm compared to
other accelerated methods is the use of a simple 1d line search technique to obtain βk, which makes the algorithm
a descent method. This step can also be implemented efficiently in a Riemannian setting, therefore not affecting
the practical aspect of the implementation of such an algorithm. The definition of vk+1 in the following algorithm
is implicit as the minimizer of ψk+1, while we present the same step explicitly in algorithm 1.

Algorithm 3 Accelerated Gradient Method with Small-Dimensional Relaxation (AGMsDR)
We recall here the euclidean algorithm, which is the basis for the Riemannian one. It is a part of algorithm 1 in
(Nesterov et al., 2018).
1: A0 = 0, x0 = v0 ∈ Rn, ψ0(x) = 1

2‖x− v0‖2
2: for k ≥ 0 do
3: βk = argminβ∈[0,1]{f(vk + β(xk − vk))}
4: yk = vk + βk(xk − vk)
5: xk+1 = yk − 1

L∇f(yk)

6:
a2k+1

Ak+ak+1
= 1

L

7: Ak+1 = Ak + ak+1

8: ψk+1(x) = ψk(x) + ak+1(f(yk) + 〈∇f(yk), x− yk〉)
9: vk+1 = argminx∈Rn ψk+1(x)
10: end for

B Geodesic search (equation 2)

We now examine in greater detail geodesic search in algorithm 1 (step 3) and its two main consequences summarized
in equation 2.
The first condition f(yk) ≤ f(xk) follows by simply setting β = 1 in the expression f(expvk(β logvk(xk)).
For the second condition 〈gradf(yk), logyk(vk)〉 ≥ 0, we consider different cases depending on the value of β. We
have to take into consideration that yk is on the geodesic connecting vk with xk. The derivative of the curve
expvk(β logvk(xk)) with respect to β is tangent to the geodesic and has length equal to ‖ logvk(xk)‖, because
geodesics have constant speed. This means that the derivative at the point yk is equal to Γykvk logvk(xk). By
relying on the optimality condition of β, we distinguish the following three cases:

(i) If βk = 0, then 〈gradf(yk),Γykvk logvk(xk)〉 ≥ 0 (f(expvk(β logvk(yk))) is locally increasing on the right) and
yk = vk, thus 〈gradf(yk), logyk(vk)〉 = 0.

(ii) If βk ∈ (0, 1), then9 〈gradf(yk),Γykvk logvk(xk)〉 = 0 and logvk(yk) = βk logvk(xk).
Thus, 〈gradf(yk), 1

βk
Γykvk logvk(yk)〉 = 0, which implies 〈gradf(yk), logyk(vk)〉 = 0.

(iii) If βk = 1, then10 〈gradf(yk),Γykvk logvk(xk)〉 ≤ 0 and yk = xk.
We deduce that 〈gradf(yk),Γykvk logvk(yk)〉 ≤ 0, thus 〈gradf(yk),− logyk(vk)〉 ≤ 0 and finally
〈gradf(yk), logyk(vk)〉 ≥ 0.

In any case, the second condition is satisfied.

C Proof of Lemma 2

Consider the function g : [0, 1]→ R defined as

g(t) = 〈gradf(yk),Γykγ(t) logγ(t)(x)〉,
9We use Fermat’s theorem for f(expvk (β logvk (yk))).

10f(expvk (β logvk (yk))) is locally decreasing on the left.
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where γ : [0, 1]→M is the geodesic connecting yk = γ(0) and vk = γ(1). By the mean value theorem, there exists
some t0 ∈ (0, 1), such that g(1)− g(0) = ġ(t0). This is equivalent to

Ek(x) = 〈gradf(yk), logyk(x)− Γykvk logvk(x)〉 = 〈gradf(yk),
d

dt

∣∣∣∣
t=t0

− Γykγ(t) logγ(t)(x)〉

= 〈gradf(yk),−Γykγ(t0) ∇γ̇(t) logγ(t)(x)
∣∣∣
t=t0
〉.

The last equality holds because of a well-known property of parallel transport:

d

dt
Γykγ(t) logγ(t)(x) = Γykγ(t)∇γ̇(t) logγ(t)(x),

where ∇γ̇ is the covariant derivative along γ̇ as defined in Def. 2 (see e.g Theorem 3.3.6(vi) in (Robbin and
Salamon)). Now we have that

∇γ̇(t) logγ(t)(x) = ∇γ̇(t)

(
gradγ

(
−1

2
d(γ, x)2

)
(t)

)
= ∇γ̇(t)

(
gradγ

(
−1

2
d(γ, x)2

))
γ̇(t)

= Hessγ
(
−1

2
d(γ, x∗)2

)
γ̇(t).

The derivation of the second equality can be found in (Lee, 2018), Chapter 11. The last equality holds because
the Hessian is by definition equal to ∇grad, and since γ is a geodesic 11, we have
γ̇(t) = Γ

γ(t)
yk logyk(vk). Thus

Ek(x) = 〈gradf(yk), logyk(x)− Γykvk logvk(x)〉 (5)

= 〈gradf(yk),−Γykγ(t)Hessγ
(
−1

2
d(γ, x∗)2

)
Γγ(t)
yk

logyk(vk)〉 (6)

where we will denote the operator on the RHS by H := −Γykγ(t)Hessγ(− 1
2d(γ, x∗)2)Γ

γ(t)
yk (further details regarding

the operator H can be found in Appendix D).

According to Lemma 2 in (Alimisis et al., 2019), the largest eigenvalue of the operator −Hessγ(− 1
2d(γ, x∗)2) is

upper bounded by

ζ =

{√
−KminD coth(

√
−KminD) ,Kmin < 0

1 ,Kmin ≥ 0

while the smallest eigenvalue is lower bounded by

δ =

{
1 ,Kmax ≤ 0√
KmaxD cot(

√
KmaxD) ,Kmax > 0

The eigenvalues of the operator H are exactly equal to the ones of Hessγ(− 1
2d(γ, x∗)2), because Γ

γ(t)
yk = (Γykγ(t))

−1,
thus the norm of the operator H− Id satisfies

‖H − Id‖ ≤ max{ζ − 1, 1− δ}. (7)

We refer the reader to the next section for the derivation of the bound on the eigenvalues of H.
Now, observe that the quantity Ek(x) can be manipulated as follows:

Ek(x) = 〈gradf(yk), logyk(x)− Γykvk logvk(x)− logyk(vk)〉+ 〈gradf(yk), logyk(vk)〉
≥ 〈gradf(yk), logyk(x)− Γykvk logvk(x)− logyk(vk)〉 − ε̃,

11Recall that the geodesic γ, defined as γ(t) = exp(t logyk(vk)), has constant velocity and the parallel transport of a
tangent vector along γ remains tangent. Thus transporting parallelly logyk (vk) = γ̇(0) from γ(0) to γ(t) gives the velocity
at γ(t), i.e. γ̇(t).
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where the last inequality holds by definition of ε̃ (by the geodesic search) which is such that 〈gradf(yk), logyk(vk)〉 ≥
−ε̃.

Using Eq. 7, we finally get

− 〈gradf(yk), logyk(x)− Γykvk logvk(x)− logyk(vk)〉 ≤ ‖gradf(yk)‖‖H − Id‖‖ logyk(vk)‖
≤ ‖gradf(yk)‖max{ζ − 1, 1− δ}D

by Cauchy-Schwarz inequality.
Thus −Ek(x) ≤ −〈gradf(yk), logyk(x)− Γykvk logvk(x)− logyk(vk)〉+ ε̃ ≤ ‖gradf(yk)‖max{ζ − 1, 1− δ}D + ε̃

D The operator H

An important operator in the control of the extra error arising due to the "jump" we do in our estimate sequence
is H = −Γykγ(t)Hessγ(− 1

2d(γ, x∗)2)Γ
γ(t)
yk : TykM → TykM . This is actually a whole family of operators depending

on t. Let us fix some t, i.e. fix one operator of the family.

• The eigenvalues of H are equal to the eigenvalues of −Hessγ(− 1
2d(γ, x∗)2). Indeed, the operator

−Hessγ(− 1
2d(γ, x∗)2) is diagonalizable (check (Alimisis et al., 2019)) and can be written as UDU−1 in

a unique way, where D is diagonal formed by its eigenvalues and U by its eigenvectors. Then the operator H
has a unique representation in the form Γykγ(t)UDU

−1(Γykγ(t))
−1 = (Γykγ(t)U)D(Γykγ(t)U)−1 and its eigenvalues

are the diagonal entries of D.

• The largest eigenvalue of −Hessγ(− 1
2d(γ, x∗)2) is less or equal than

ζ =

{√
−Kmind(γ, x∗) coth(

√
−Kmind(γ, x∗)) ,Kmin < 0

1 ,Kmin ≥ 0
.

and the smallest more or equal than

δ =

{
1 ,Kmax ≤ 0√
Kmaxd(γ, x∗) cot(

√
Kmaxd(γ, x∗)) ,Kmax > 0

Indeed, Lemma 2 in (Alimisis et al., 2019) implies that

δ‖γ̇‖2 ≤ 〈−Hessγ(−1

2
d(γ, x∗)2)γ̇, γ̇〉 ≤ ζ‖γ̇‖2

for any curve γ. Thus for a vector v ∈ Tγ(t)M we can choose a curve γ̄, such that ˙̄γ(t) = v. This yields to
the relation

δ ≤
〈−Hessγ(− 1

2d(γ, x∗)2)v, v〉
‖v‖2

≤ ζ.

By the min-max theorem, the largest eigenvalue is the maximum of 〈−Hessγ(− 1
2d(γ,x∗)2)v,v〉
‖v‖2 and the smallest its

minimum over all v ∈ Tγ(t)M . Thus we recover the initial estimation for the largest and smallest eigenvalue
of H.

E Proof of Theorem 3

Proof. As in (Nesterov et al., 2018), the proof relies on an estimate sequence of functions, defined as

ψ0(x) =
1

2
‖ logv0(x)‖2

ψk(x) = ψ∗k +
1

2
‖ logvk(x)‖2, k ≥ 1

where ψ∗k is the minimum of ψk which is yet to be specified.

The proof consists in establishing the following two inequalities – for a suitable choice of ψ∗k – from which one can
prove the desired final result:
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• C1) Akf(xk) ≤ ψ∗k (see definition of Ak in Algorithm 1)

• C2) ψk+1(x) ≤ ψk(x) + ak+1(f(yk) + 〈gradf(yk), logyk(x)〉 − Ek(x)), at least for x = x∗.

Proof C2.

Consider

ψ∗k+1 = ψ∗k + ak+1f(yk)−
ζa2
k+1

2
‖gradf(yk)‖2,

where

ζ =

{√
−kminD coth(

√
−kminD) , kmin < 0

1 , kmin ≥ 0.

We now have

ψk(x) + ak+1(f(yk) + 〈gradf(yk), logyk(x)〉)

= ψ∗k +
1

2
‖ logvk(x)‖2 + ak+1(f(yk) + 〈gradf(yk), logyk(x)〉)

≥ ψ∗k + ak+1f(yk) +
1

2
‖ logvk(x)‖2 + ak+1〈gradf(yk),Γykvk logvk(x)〉+ ak+1Ek(x)

= ψ∗k + ak+1f(yk) +
1

2
‖ logvk(x)‖2 + ak+1〈Γvkykgradf(yk), logvk(x)〉+ ak+1Ek(x)

≥ ψ∗k + ak+1f(yk) +
1

2
‖ logvk+1

(x)‖2 −
ζa2
k+1

2
‖gradf(yk)‖2 + ak+1Ek(x)

= ψ∗k+1 +
1

2
‖ logvk+1

(x)‖2 + ak+1Ek(x)

= ψk+1(x) + ak+1Ek(x),

which concludes the proof of C2.
The last inequality follows from the definition of vk+1 and using a trigonometric distance bound. First, we set
vk+1 = expvk(−ak+1Γvkykgradf(yk)) and we get

logvk(vk+1) = −ak+1Γvkykgradf(yk).

Thus we have
1

2
‖ logvk(x)‖2 + ak+1〈Γvkykgradf(yk), logvk(x)〉 =

1

2
‖ logvk(x)‖2 − 〈logvk(vk+1), logvk(x)〉

≥ 1

2
‖ logvk+1

(x)‖2 − ζ

2
‖ logvk(vk+1)‖2 =

1

2
‖ logvk+1

(x)‖2 − ζ

2
a2
k+1‖Γvkykgradf(yk)‖2

=
1

2
‖ logvk+1

(x)‖2 −
ζa2
k+1

2
‖gradf(yk)‖2.

by the basic trigonometric distance bound (lemma 5 in (Zhang and Sra, 2016)) in the geodesic triangle ∆vkvk+1x.

Proof C1 We prove C1 by induction.
We assume that Akf(xk) ≤ ψ∗k and we wish to prove that Ak+1f(xk+1) ≤ ψ∗k+1.

ψ∗k+1 = ψ∗k + ak+1f(yk)−
ζa2
k+1

2
‖gradf(yk)‖2

≥ Akf(xk) + ak+1f(yk)− Ak+1

2L
‖gradf(yk)‖2

≥ Ak+1f(yk)− Ak+1

2L
‖gradf(yk)‖2

= Ak+1(f(yk)− 1

2L
‖gradf(yk)‖2)

≥ Ak+1f(xk+1),
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where the last inequality follows from the definition of xk+1 as a gradient step and L-smoothness of f .

Combining C1 and C2 Now that we have established that both C1 and C2 hold, we get

Akf(xk) ≤ ψ∗k ≤ ψk(x∗) ≤
k−1∑
i=0

ai+1(f(yi) + 〈gradf(yi), logyi(x
∗)〉 − Ei(x)) + ψ0(x∗)

≤
k−1∑
i=0

ai+1f(x∗) + ψ0(x∗)−
k−1∑
i=0

ai+1Ei(x∗) = Akf(x∗) + ψ0(x∗)−
k−1∑
i=0

ai+1Ei(x∗),

where the last inequality uses the geodesic-convexity property of the function f .
We now have that

−
k−1∑
i=0

ai+1Ei(x∗) = −
k−1∑
i=0

ai+1〈gradf(yi), logyi(x)− Γyivi logvk(x)〉 =

k−1∑
i=0

ai+1〈gradf(yi),− logyi(x) + Γyivi logvk(x)〉

≤
k−1∑
i=0

ai+1(〈gradf(yi),− logyi(x) + Γyivi logvk(x)〉+ 〈gradf(yi), logyi(vi)〉+ ε̃)

=

k−1∑
i=0

ai+1(〈gradf(yi),− logyi(x) + Γyivi logvk(x) + logyi(vi)〉) +Ak ε̃

≤
k−1∑
i=0

ai+1‖gradf(yi)‖max{ζ − 1, 1− δ}D +Ak ε̃

=

k−1∑
i=0

d(vi, vi+1) max{ζ − 1, 1− δ}D +Ak ε̃

≤ kmax{ζ − 1, 1− δ}D2 +Ak ε̃

The first inequality holds, because by the second property of geodesic search (equation 2). The second inequality
holds by lemma 2.
Thus we get an upper bound for the suboptimality gap:

f(xk)− f(x∗) ≤ ψ0(x∗)

Ak
+
kmax{ζ − 1, 1− δ}D2

Ak
+ ε̃ (8)

We can derive a lower bound for Ak from the equation ζa2k+1

Ak+ak+1
= 1

L (similarly to Nesterov et al. (2018)). Namely

Ak ≥ k2

4ζL and equation 8 becomes

f(xk)− f(x∗) ≤ 4ζLψ0(x∗)

k2
+

4 max{ζ − 1, 1− δ}ζLD2

k
+ ε̃.

Using the fact that ψ0(x∗) = 1
2d(x0, x

∗)2, we get:

f(xk)− f(x∗) ≤ 2ζLd(x0, x
∗)2

k2
+

4 max{ζ − 1, 1− δ}ζLD2

k
+ ε̃

F Proof of theorem 5

We now turn our attention to the more general class of α-weakly-quasi-convex functions. This requires a slight
modification to Algorithm 1 by applying a restarting technique detailed in Algorithm 2.
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The constant c in the algorithm is chosen to be bigger than 1 (c = 2 in (Nesterov et al., 2018)).

Lemma 6. Algorithm 1 applied to an α-weakly-convex function f produces iterates xk satisfying

Ak(f(xk)− f(x∗)) ≤ (1− α)Ak(f(x0)− f(x∗)) + ψ0(x∗) + kmax{ζ − 1, 1− δ}D2 +Ak ε̃,

where ψ0(x∗) = 1
2d(x0, x

∗)2.

Proof. We note that both C1 and C2 proven in appendix E did not require convexity and we can therefore apply
both inequalities to obtain:

Akf(xk) ≤ ψ∗k ≤
k−1∑
i=0

ai+1((f(yi) + 〈gradf(yi), logyi(x
∗)〉 − Ei(x∗)) + ψ0(x∗)

≤
k−1∑
i=0

ai+1((1− α)f(yi) + αf(x∗)− Ei(x∗)) + ψ0(x∗)

≤
k−1∑
i=0

ai+1((1− α)f(x0) + αf(x∗)− Ei(x∗)) + ψ0(x∗)

= Ak((1− α)f(x0) +Akαf(x∗)−
k−1∑
i=0

ai+1Ei(x∗) + ψ0(x∗),

where the third inequality uses the fact that the function f is α-weakly-quasi-convex.

Thus

Ak(f(xk)− f(x∗)) ≤ Ak(1− α)(f(x0)− f(x∗)) + ψ0(x∗)−
k−1∑
i=0

ai+1Ei(x∗)

≤ Ak(1− α)(f(x0)− f(x∗)) + ψ0(x∗) + kmax{ζ − 1, 1− δ}D2 +Ak ε̃

Theorem 5. Algorithm 2 applied to an α-weakly-quasi-convex function as in the assumptions produces a sequence
of iterates {xk}Nk=1, such that

f(xN )− f(x∗) ≤

O
(
ζLD2

α3N2

)
+ d(M)O

(
ζLD2

α2N

)
+

c

(c− 1)α
ε̃,

where ε̃ is the error of the geodesic search, c > 1 and d(M) is the discrepancy of the manifold.

Proof. We first consider the first outer loop of Algorithm 2 for i = 0. Let ε0 = f(x0
0)− f(x∗). By Lemma 6 and

the lower bound Ak ≥ k2

4ζL established previously, we have that

f(x0
k)− f(x∗) ≤ (1− α)ε0 +

2ζLD2

k2
+ d(M)

ζLD2

k
+ ε̃.

We want to show that the LHS is less or equal than (1− α
c )ε0, therefore it suffices that

(1− α)ε0 +
2ζLD2

k2
+ d(M)

ζLD2

k
+ ε̃ ≤

(
1− α

c

)
ε0.
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This is equivalent to

2ζLD2

k2
+ d(M)

ζLD2

k
≤ (c− 1)α

c
− ε̃ =: A⇐⇒

k2 − d(M)ζLD2

A
k − 2ζLD2

A
≥ 0

This is satisfied if

k ≥ d(M)ζLD2

2A
+

√(
d(M)ζLD2

2A

)2

+
4ζLD2

A

This implies that the algorithm is first restarted after at most N0 =

⌈
d(M)ζLD2

2A +

√(
d(M)ζLD2

2A

)2

+ 4ζLD2

A

⌉
iterations.

Similarly between the ith and the (i+ 1)th restart we have that

f(xik)− f(x∗) ≤ (1− α)
(

1− α

c

)i
ε0 +

2ζLD2

k2
+ d(M)

ζLD2

k
+ ε̃ ≤

(
1− α

c

)i+1

ε0,

which is equivalent to
2ζLD2

k2
+ d(M)

ζLD2

k
≤ (c− 1)α

c

(
1− α

c

)i
ε0 − ε̃ =: Ai,

or

k ≥ d(M)ζLD2

2Ai
+

√(
d(M)ζLD2

2
Ai

)2

+
4ζLD2

Ai

Thus, between the ith and the (i+ 1)th restart we have at most

Ni =

d(M)ζLD2

2Ai
+

√(
d(M)ζLD2

2
Ai

)2

+
4ζLD2

Ai

 ≤
d(M)ζLD2

Ai
+

√
4ζLD2

Ai


steps (Ni-many steps suffice for the restart to happen).
Let d = log1−αc

ε
ε0
. Then we obtain an ε-solution using algorithm 2 after d-many restarts.

If algorithm 2 runs for N -many steps overall, we have

N =

d∑
i=0

Ni ≤
d∑
i=0

2
d(M)ζLD2

Ai
+

√
4ζLD2

Ai


≤ d+ 1 +

d∑
i=0

(
2d(M)ζLD2

(c−1)α
c ε− ε̃

+

√
4ζLD2

(c−1)α
c ε− ε̃

)(
1− α

c

) d−i
2

= d+ 1 +

(
2d(M)ζLD2

(c−1)α
c ε− ε̃

+

√
4ζLD2

(c−1)α
c ε− ε̃

)
d∑
i=0

(
1− α

c

) d−i
2

= O

(
d(M)ζLD2

α2ε− cα
(c−1) ε̃

+

√
ζLD2

α3ε− cα2

(c−1) ε̃

)
similarly to the sequence of relations at the end of Theorem 4 in (Nesterov et al., 2018). The last equality holds
because the quantity

∑d
i=0(1− α

c )
d−i
2 is bounded by a constant depending only on α and c.

Indeed
d∑
i=0

(
1− α

c

) d−i
2 ≤

d∑
i=−∞

(
1− α

c

) d−i
2

=

∞∑
i=0

(
1− α

c

) i
2

=
1

1−
√

1− α
c

=
1 +

√
1− α

c
α
c

We conclude that

f(xN )− f(x∗) ≤ ε ≤ O
(
ζLD2

α3N2

)
+ d(M)O

(
ζLD2

α2N

)
+

c

(c− 1)α
ε̃.
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