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Abstract

We develop a new Riemannian descent algo-
rithm that relies on momentum to improve
over existing first-order methods for geodesi-
cally convex optimization. In contrast, accel-
erated convergence rates proved in prior work
have only been shown to hold for geodesi-
cally strongly-convex objective functions. We
further extend our algorithm to geodesically
weakly-quasi-convex objectives. Our proofs of
convergence rely on a novel estimate sequence
that illustrates the dependency of the conver-
gence rate on the curvature of the manifold.
We validate our theoretical results empirically
on several optimization problems defined on
the sphere and on the manifold of positive
definite matrices.

1 Introduction

The field of optimization plays a central role in ma-
chine learning. At its core lies the problem of finding
a minimum of a function f : H → R. In the vast
majority of applications in machine learning, H is con-
sidered to be a Euclidean vector space. However, a
number of machine learning tasks can profit from a
specialized problem-dependent Riemannian structure
(Bonnabel, 2013; Zhang and Sra, 2016), which will be
the focus of our discussion in this paper. Among the
most popular types of methods to optimize f are first-
order methods, such as gradient descent that simply
updates a sequence of iterates {xk} by stepping in
the opposite direction of the gradient ∇f(xk). In the
case H = Rn, gradient descent as a first-order method
has been shown to achieve a suboptimal convergence
rate on convex problems (O(1/k)). In a seminal paper,
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(Nesterov, 1983), Nesterov showed that one can con-
struct an optimal — i.e. accelerated — algorithm that
achieves faster rates of convergence for both convex
(O(1/k2)) and strongly-convex functions. The conver-
gence analysis of this algorithm relies heavily on the
linear structure of H and it is not until recently that a
first adaptation to Riemannian manifolds was derived
by Zhang and Sra (2018). The algorithm by Zhang and
Sra (2018) is shown to obtain an accelerated rate of
convergence for functions that are known to be geodesi-
cally strongly-convex, provided that one initializes in a
neighborhood of the (unique) solution. These functions
are of particular interest as they might be non-convex
in the Euclidean sense and they occur in some relevant
computational tasks, such as the approximation of the
Karcher mean of positive definite matrices (Zhang et al.,
2016). However, many other interesting problems be-
long to the weaker class of geodesically convex functions.
This includes problems defined on the cone of Hermi-
tian positive definite matrices (Sra and Hosseini, 2015),
which appear in various areas of machine learning such
as tracking (Cheng and Vemuri, 2013) and medical
imaging (Zhu et al., 2007). In this paper, we therefore
address the question of whether an algorithm that relies
on momentum can provably achieve a faster rate of con-
vergence for functions that are geodesically convex but
not necessarily strongly convex. We also consider the
extension to the weaker class of geodesically weakly-
quasi-convex objective functions. A more thorough
motivation for investigating convex and weakly-quasi
convex objectives in Riemannian optimization can be
found in Section 4 of (Alimisis et al., 2019). Our main
contributions are:

1. We propose a new practical Riemannian algorithm
that exploits momentum to speed up convergence for
geodesically convex and weakly-quasi-convex functions.
As in (Nesterov et al., 2018), our approach uses a
small-dimensional relaxation (sDR) oracle (which can
be solved approximately and in linear time) to per-
form adaptive linear coupling1 (Allen-Zhu and Orec-
chia, 2014). In order to provide theoretical guarantees

1See discussion in the next section.
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for this new algorithm, we use a novel estimate se-
quence combining ideas from (Nesterov et al., 2018)
and (Zhang and Sra, 2018) as well as develop some
new results at the intersection of optimization and
Riemannian geometry.

2. Our main algorithm applied to geodesically convex
objective functions provides better theoretical guaran-
tees of convergence compared to Riemannian Gradient
Descent (RGD) (Zhang and Sra, 2016), given that the
bound on the working domain is not exceedingly large.
Since RGD is the only known �rst-order method with
guaranteed convergence for geodesically convex func-
tions, our algorithm has the best known worst-case
behaviour. Moreover, our algorithm is accelerated for
the �rst (practically large) part of the optimization
procedure.

3. We validate our theoretical �ndings numerically on
several important machine learning problems de�ned
on manifolds of both positive curvature (Rayleigh quo-
tient maximization) and negative curvature (operator
scaling and Karcher mean approximation). Some of
these problems are convex (but not strongly-convex)
while others have a relatively small strong convexity
constant. We show the empirical superiority of our
method when compared to Riemannian algorithms de-
signed for well-conditioned geodesically strongly-convex
objectives, such as RAGD (Zhang and Sra, 2018).

2 Related Work

Accelerated Gradient Descent (AGD). The
�rst accelerated gradient descent algorithm in Eu-
clidean vector spaces is due to Nesterov (1983). Since
then, the community has shown a deep interest in un-
derstanding the mechanism underlying acceleration. A
recent trend has been to look at acceleration from a
continuous-time viewpoint (Su et al., 2014; Wibisono
et al., 2016). In this framework, AGD is seen as the
discretization of a second-order ODE. Alternatively,
Allen-Zhu and Orecchia (2014) showed how one can
view AGD as a primal-dual method performing linear
coupling between gradient descent and mirror descent.
Recently Nesterov et al. (2018) proposed AGDsDR, a
modi�cation of the method by Allen-Zhu and Orecchia
(2014), which adaptively selects the linear coupling
parameter (denoted by � ) at each iteration using an
approximate line search. This work will serve as an
inspiration for us to design an accelerated Riemannian
algorithm.

Riemannian optimization. Research in the �eld
of Riemannian optimization has encountered a lot of
interest in the last decade. A seminal book in the area
is (Absil et al., 2009), which gives a comprehensive
review of many standard optimization methods, but

does not discuss acceleration. More recently, Zhang
and Sra (2016) proved convergence rates for Rieman-
nian gradient descent applied to geodesically convex
functions. Acceleration in a Riemannian framework
was �rst discussed by Liu et al. (2017), who claimed to
have designed a Riemannian method with guaranteed
acceleration. While their methodology is interesting,
unfortunately, as discussed in (Zhang and Sra, 2018),
their algorithm relies on �nding the exact solution to a
nonlinear equation at each iteration, and it is not clear
how di�cult this additional problem might be or how
approximation errors accumulate. Subsequently, Zhang
and Sra (2018) developed the �rst computationally
tractable accelerated algorithm on a Riemannian mani-
fold, but their approach only has provable convergence
for geodesically strongly-convex objectives (provided
that one initializes su�ciently close to the solution).
A more recent work, (Ahn and Sra, 2020), attempts
to tackle the problem of acceleration for geodesically
strongly-convex optimization with global convergence
rate (no assumptions on the initialization required).
Notwithstanding the theoretical signi�cance of this
work, the �nal algorithm has the practical drawback
that achieves full acceleration only in late training (after
a possibly very large number of steps for ill-conditioned
problems), while at the beginning behaves compara-
bly to Riemannian gradient descent. Instead, using a
continuous-time viewpoint, the recent work (Alimisis
et al., 2019) analyzed various ODEs that can model
acceleration on Riemannian manifolds with theoretical
guarantees of convergence. They derived discrete-time
algorithms via numerical integration of the continuous-
time process but do not provide theoretical guarantees
for the discrete-time schemes. The problem we address
is di�erent from prior work as we aim to demonstrate
that momentum provably yields a better rate of conver-
gence than Riemannian gradient descent for the classes
of geodesically convex and weakly-quasi-convex func-
tions, which are both of signi�cant practical interest
(see discussion in Section 6). We note that extending
the proof by Zhang and Sra (2018) to these weaker
classes of functions is not straightforward due to some
distortions between the tangent spaces of the sequence
of iterates of the algorithm 2. Indeed, the estimate
sequence used in (Zhang and Sra, 2018) relies on chang-
ing the tangent space at each step. These successive
changes give rise to additional errors which can be
dealt with by relying on the strong convexity assump-
tion. However, we were unable to adapt their proof to

2By "distortion", we mean that when considering two
successive iteratesxk and xk +1 , the terms logx k

(a)� logx k
(b)

and logx k +1
(a) � logx k +1

(b) appearing in the estimate se-
quence belong to di�erent tangent spaces and are therefore
not directly comparable (while they are exactly the same
in the Euclidean case).
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weaker function classes. Instead, we rely on a novel
estimate sequence that is qualitatively di�erent from
the one used in (Zhang and Sra, 2018) in order to avoid
distortions produced by changing tangent spaces.

3 Background

3.1 Preliminaries from Di�erential Geometry

We review some basic notions from Riemannian ge-
ometry that are required in our analysis. For a full
review, we refer the reader to some classical textbook,
for instance (Spivak, 1979).

Manifolds. A di�erentiable manifold M is a topo-
logical space that is locally Euclidean. This means that
for any point x 2 M , we can �nd a neighborhood that
is di�eomorphic to an open subset of some Euclidean
space. This Euclidean space can be proved to have the
same dimension, regardless of the chosen point, called
the dimension of the manifold.
A Riemannian manifold (M; g) is a di�erentiable man-
ifold equipped with a Riemannian metric gx , i.e. an
inner product for each tangent spaceTx M at x 2 M .
We denote the inner product ofu; v 2 Tx M with hu; vi x

or just hu; vi when the tangent space is obvious from
context. Similarly we consider the norm as the one
induced by the inner product at each tangent space.
The Riemannian metric provides us a way to measure
the distance d between points on the manifold, trans-
forming it into a metric space. Given A � M , the
diameter of A is de�ned as diam(A) = supp;q2 A d(p; q).

Geodesics. Geodesics are curves
 : [0; 1] ! M of
constant speed and of (locally) minimum length. They
can be thought of as the Riemannian generalization of
straight lines in Euclidean space. Geodesics are used to
construct the exponential map expx : Tx M ! M , de-
�ned by expx (v) = 
 (1), where
 is the unique geodesic
such that 
 (0) = x and _
 (0) = v. The exponential map
is locally a di�eomorphism. We denote the inverse of
the exponential map expx (in a neighborhood U � M
of x) by logx : U ! Tx M . Geodesics also provide a
way to transport vectors from one tangent space to
another. This operation, called parallel transport, is
usually denoted by � y

x : Tx M ! Ty M .

Vector �elds and covariant derivative. The cor-
rect notion to capture second order changes on a Rie-
mannian manifold is called covariant di�erentiation and
it is induced by the fundamental property of Rieman-
nian manifolds to be equipped with a connection. We
are interested in a speci�c type of connection, called
the Levi-Civita connection, which induces a speci�c
type of covariant derivative. The fact that a unique
Levi-Civita connection exists always in a Riemannian

manifold is the subject of the fundamental theorem of
Riemannian geometry. However, for the purpose of our
analysis, it will be su�cient to rely on a simple notion
of covariant derivative that relies on the (more visual-
izable) notion of parallel transport. First, we de�ne
vector �elds on a Riemannian manifold as sections of
the tangent bundle.

De�nition 1. Let M be a Riemannian manifold. A
vector �eld X in M is a smooth mapX : M ! T M ,
where T M is the tangent bundle, i.e. the collection
of all tangent vectors in all tangent spaces ofM , such
that p � X is the identity (p projects from T M to M ).

One can see a vector �eld as an in�nite collection of
imaginary curves, the so-called integral curves (formally
solutions of �rst order di�erential equations on M ).

De�nition 2. Given two vector �elds X; Y in
a Riemannian manifold M , we de�ne the covari-
ant derivative of Y along X to be r X Y(p) =

limh! 0
� p


 ( h ) Y ( 
 (h)) � Y (p)

h , where
 is the unique integral
curve of X , starting from p, i.e 
 (0) = p.

3.2 Geodesic convexity

We remind the reader of the basic de�nitions needed
in Riemannian optimization.

De�nition 3. A subsetA � M of a Riemannian man-
ifold M is called geodesically uniquely convex, if every
two points in A are connected by a unique geodesic.

De�nition 4. A function f : A ! R is called
geodesically convex, if for anyp; q 2 M , we have
f (
 (t)) � (1 � t)f (p) + tf (q) for any t 2 [0; 1], where

 is the geodesic connectingp; q 2 M .

Given a function f : M ! R, the notions of di�erential
and (Riemannian) inner product allow us to de�ne the
Riemannian gradient of f at x 2 M , which is a tangent
vector belonging to the tangent space based atx, Tx M .

De�nition 5. The Riemannian gradient gradf of a
(real-valued) function f : M ! R at a point x 2 M ,
is the tangent vector at x, such that hgradf(x); ui =
df (x)u 3, for any u 2 Tx M .

Given the notion of Riemannian gradient and covariant
derivative we de�ne the notion of Riemannian Hessian.

De�nition 6. The Hessian off is de�ned as a bilinear
form at each point p 2 M , given byHessp(f )(X; Y ) =
hr X gradf; Y i , for two vector �elds X; Y on M .

Using the Riemannian inner product and gradient, we
can formulate an equivalent de�nition for geodesic con-

3df denotes the di�erential of f , i.e. df (x)[u] =
lim t ! 0

f ( c( t )) � f ( x )
t ; where c : I ! M is a smooth curve

such that c(0) = x and _c(0) = u.
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vexity for a smooth function f de�ned in a geodesically
uniquely convex domainA.

Proposition 1. Let f : A ! R be a smooth, geodesi-
cally convex function. Then, for any x; y 2 A,

f (y) � f (x) � h gradf(x); logx (y)i :

As in the Euclidean case, any local minimum of a
geodesically convex function is a global minimum. We
now generalize the well-known notion of Euclidean
weak-quasi-convexity to Riemannian manifolds. For a
review of this notion, we refer the reader to (Guminov
and Gasnikov, 2017).

De�nition 7. A function f : A ! R is called geodesi-
cally � -weakly-quasi-convex with respect toc 2 M , if
� (f (c) � f (x)) � h gradf(x); logx (c)i for some �xed
� 2 (0; 1] and any x 2 A.

It is easy to see that weak-quasi-convexity implies that
any local minimum of f is also a global minimum.
Using the notion of parallel transport we can de�ne
when f is geodesicallyL -smooth, i.e. has Lipschitz
continuous gradient in a di�erential-geometric way.

De�nition 8. f : A ! R is called L-smooth if
kgradf(x) � � x

y gradf(y)k � Lklogx (y)k for any x; y 2 A.

GeodesicL-smoothness has similar properties to its
Euclidean analogue: a two times di�erentiable function
is L -smooth, if and only if the norm of its Riemannian
Hessian is upper bounded byL .

3.3 Basic Assumptions

In this paper, we make the standard assumption that
the input space is not "in�nitely curved". In order
to make this statement rigorous, we need the notion
of sectional curvature K , which is a measure of how
sharply the manifold is curved (or how �far� from be-
ing �at our manifold is), �two-dimensionally�. More
concretely, as in (Zhang and Sra, 2018), we make the
following set of assumptions:

Assumption 1. Given A � M geodesically uniquely
convex, andf : A ! R,

1. The sectional curvature K inside A is bounded
from above and below, i.e.K min � K � K max .

2. A is a geodesically uniquely convex subset ofM ,
such that diam(A) � D < 1 . This implies that
the exponential mapexpx : Tx M ! M is globally a
di�eomorphism for any x 2 A with inverse denoted
by logx .

3. f is geodesicallyL -smooth with its local minima
(which are all global) insideA, we denote some of
them by x � .

4. We have granted access to oracles which compute
the exponential and logarithmic maps as well as
the Riemannian gradient of f e�ciently.

5. All the iterates of our algorithms remain inside A.

The last assumption is standard in accelerated Rieman-
nian optimization, (Zhang and Sra, 2018; Alimisis et al.,
2019; Ahn and Sra, 2020), and we did not observe it
to be violated in our experiments. However, it remains
an open question as to whether it could be relaxed or
even removed completely from our analysis.

4 The RAGDsDR Algorithm

We now develop a new Riemannian algorithm that relies
on momentum and which is inspired by the Euclidean
algorithm presented in (Nesterov et al., 2018) (see
description in Appendix A). It is detailed in Algorithm
1 and illustrated in Figure 1. At each iteration k, the
next iterate xk+1 (line 5) is computed by taking a
gradient step at an interpolated point yk (line 4) which
follows the direction of a momentum term logvk

(xk ).
The main di�erence with the Euclidean case is that the
curve from vk to xk is a geodesic on the manifoldM
instead of a straight Euclidean line. As in (Nesterov
et al., 2018), we also rely on a minimization over a
closed interval (i.e. the small-dimension relaxation,
sDR) to choose the best possible stepsize� k (line 3)
on the geodesic connectingvk to xk . We will see in the
next section that this minimization is computationally
fast to solve (also see Section 6), can be computed
approximately and practically yields faster convergence
than the typical �xed parameter � k = k

k+2 (Nesterov,
2018). The curvature of M is involved directly in the
algorithm via the quantity � � 1 (line 6), de�ned as

� :=

( p
� K min D coth(

p
� K min D) ; K min < 0

1 ; K min � 0
(1)

Algorithm 1 RAGDsDR for convex functions
1: A0 = 0 ; x0 = v0 2 A
2: for k � 0 do
3: � k = argmin

� 2 [0 ;1]

�
f (expvk

(� logvk
(xk )))

	

4: yk = exp vk
(� k logvk

(xk ))
5: xk +1 = exp y k

�
� 1

L gradf (yk )
�

6:
�a 2

k +1
A k + ak +1

= 1
L ; ak +1 > 0

7: A k +1 = A k + ak +1

8: vk +1 = exp vk
(� ak +1 � vk

y k gradf (yk ))
9: end for

The discriminant of the quadratic equation de�ning
ak+1 at step 6 is positive, thus the aforementioned
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Figure 1: Illustration of one step of Algorithm 1. The point
yk is computed to minimize f on the geodesic betweenxk

and vk . xk +1 is computed by taking a gradient step from
yk and projected using the exponential map expy k

(�).

equation has a positive and negative solution, from
which we choose the �rst.

The computation of the parallel transport at step 8 is
given directly by the oracle, since it relies on the com-
putation of the exponential map. For manifolds found
in applications, the parallel transport is cheap and im-
plementations are found in libraries such as (Townsend
et al., 2016).

The de�nition of vk+1 at step 8 is qualitatively di�er-
ent from the one in (Zhang and Sra, 2018), but not
heavier computationally, since in both cases we need
three oracle calls. Note that Nesterov et al. (2018)
de�ne vk+1 through a minimization problem (see Ap-
pendix A). This approach could be naively generalized
to the Riemannian setting but it would yield a mini-
mization problem that has no explicit solution due to
non-linearity. Instead, we �nd a generalization of the
Euclidean de�nition that can be solved explicitly and
write vk+1 directly in its explicit form in Algorithm 1.

Geodesic search. The second step in Algorithm 1
is solved using a procedure similar to a line search
which we namegeodesic search. It guarantees that the
following two key conditions hold (proof in App. B):

f (yk ) � f (xk ) and hgradf (yk ); logyk
(vk )i � 0: (2)

Practically, the geodesic search procedure is inexact.
While we can still expect the �rst inequality in Eq. 2 to
be satis�ed exactly, the second one can only be satis�ed
up to a small error ~� > 0, i.e. hgradf (yk ); logyk

(vk )i �
� ~� . We note that this is an analogous condition to the
one used by Nesterov et al. (2018) in the Euclidean
case. As we will see shortly, one of the main quantities
of interest in our analysis will be

Ek (x) := hgradf (yk ); logyk
(x) � � yk

vk
logvk

(x)i ; (3)

which occurs as an error in our estimate-sequence anal-
ysis and captures the curved nature of the manifold

M . We will prove that the absolute value of this
error is bounded by the sum of two terms, namely
j Ek (x) j� ~� + ~� k , where ~� is the error obtained by the
geodesic search and~� k is an extra curvature-dependent
error. The latter depends on an upper bound on the
working domain D and it decays to 0 as the algorithm
runs. In the Euclidean case~� k = 0 . We will prove that
in the Riemannian case~� k = O

�
d(M )

k

�
, where d(M )

is a small constant which depends on the sectional
curvature and a bound of our working domain.

5 Convergence Analysis

Geodesically-convex functions. We now present
our main convergence result. Our analysis is based on
a novel estimate sequence, which allows for an extra
error at each step. However, this extra error does
not accumulate, and it decays linearly over iterations.
As a result, we obtain a rate of convergence that is
superior to the convergence guarantees of RGD derived
in (Zhang and Sra, 2016) under a restriction on the
bound of the working domain (see later discussion).
We �rst need to examine the behaviour of Ek (x):

Lemma 2. Under our set of assumptions (Assumption
1), Algorithm 1 produces iterates yk ; vk such that

�E k (x) � k gradf (yk )k maxf � � 1; 1 � � gD + ~�

with � � 1 de�ned by equation (1) and � � 1 de�ned by

� :=

(
1 ; K max � 0
p

K max D cot(
p

K max D) ; K max > 0

We prove this lemma in Appendix C. We rely on vari-
ous geometric bounds derived in Appendix D, which
are inspired by those of Alimisis et al. (2019). Gen-
erally speaking, � and � are obtained by considering
the spectral properties of an operator similar to the
Riemannian Hessian of the squared distance function,
� as a lower bounds of its smallest eigenvalue and� as
an upper bound of the largest one.

We are now ready to state our main convergence result:

Theorem 3. Algorithm 1 applied to a geodesically
convex function f produces iteratesxk , such that

f (xk ) � f � �

2�LD 2

k2 + 4 maxf � � 1; 1 � � g
�LD 2

k
+ ~� �

2 max
�

2�LD 2

k2 ; 4 maxf � � 1; 1 � � g
�LD 2

k

�
+ ~�

Recall that parameter D is used to denote an upper
bound for the diameter of our working domain (As-
sumption 1).
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The proof is derived in Appendix E and relies on Lemma
2. At �rst glance, the upper bound seems rather intu-
itive for those familiar with Riemannian optimization,
namely the positive-curvature case provides the same
guarantees as the Euclidean one, while the negative-
curvature case provides worse guarantees.
Let's take a closer look at the rate of convergence. To
do so, we de�ne the following quantity which we call
the �discrepancy� of the manifold M .

De�nition 9. The discrepancy of the manifoldM is
de�ned as d(M ) := 4 max f � � 1; 1 � � g.

In the Euclidean case, we haved(M ) = 0 , thus our
algorithm is a generalization of accelerated gradient
descent with line search.
The convergence rate in Thm. 3 is accelerated when

2�LD 2

k2 � d(M )
�LD 2

k

which is equivalent to k �
2

d(M )
: Thus, 2=d(M ) is

an upper bound indicating how many steps of the
algorithm can be performed with an accelerated con-
vergence rate. When the manifoldM tends to be Eu-
clidean in the sense thatmaxfj K min j; j K max jg ! 0,
then d(M ) ! 0 and 2

d(M ) ! 1 , increasing the num-
bers of iterations that one can perform accelerated
optimization.
Even when we exceed this bound, the condition

2d(M ) <
1
2

, maxf � � 1; 1 � � g <
1
16

(4)

su�ces to guarantee a better worst-case upper bound
than Riemannian Gradient Descent in (Zhang and Sra,
2016) (Theorem 13), since we have a smaller constant
in the numerator. This is because the rate provided in
Theorem 13 in (Zhang and Sra, 2016) is

f (xk ) � f � �
�LD 2

2(� + k � 2)

Condition (4) implies that �LD 2

2( � + k � 2) > 2d(M ) �LD 2

k ,
since4d(M ) < 1 and � < 2 (which implies that
1
k < 1

� + k � 2 ).

Finally, condition (4) is for instance satis�ed if

p
j K min jD � 0:4; and

p
j K max jD � 0:4:

Both conditions hold if and only if the curvature of the
manifold is in absolute value less or equal than0:16

D 2 .
We summarize these facts in the following theorem:

Theorem 4. When the sectional curvatureK of the
manifold M satis�es

j K j�
0:16
D 2 ;

Algorithm 1 performs better than RGD in (Zhang and
Sra, 2016).
When

k �
2

d(M )
�!
K ! 0

1 ;

Algorithm 1 is accelerated.

In practical situations, we have observed that the quan-
tity d(M ) is very small, and we therefore empirically
observe acceleration for a very large number of itera-
tions (almost until convergence). We refer the reader
to the discussion in Section 7 which also includes a
comparison with (Zhang and Sra, 2018).

Geodesically weakly-quasi-convex functions.
We extend Algorithm 1 to functions that are � -weakly-
quasi-convex. This requires to restart Algorithm 1
whenever the suboptimality at the current iteration is
less than the previous one by a factor1 � �

c , where
c > 1 is a constant. This procedure yields Alg. 2.

Theorem 5. Algorithm 2 applied to an � -weakly-
quasi-convex function as in the assumptions produces
a sequence of iteratesf xk gN

k=1 , such that

f (xN ) � f (x � ) �

O
�

�LD 2

� 3N 2

�
+ d(M )O

�
�LD 2

� 2N

�
+

c
(c � 1)�

~�;

where ~� is the error of the geodesic search,c > 1 and
d(M ) is the discrepancy of the manifold.

As in the convex case, theO( 1
N ) part of the rate is

multiplied by the discrepancy of the manifold d(M ),
thus the analysis of Theorem 4 holds almost the same.
The proof can be found in Appendix F.

6 Numerical Experiments

We validate our �ndings on Riemannian manifolds of
both positive and negative curvature. Our code4 is
built on top of PyManopt(Townsend et al., 2016). We
compare RAGDsDR (Algorithm 1) with Riemannian
Gradient Descent (RGD) and, when possible (i.e. when
we can estimate the strong convexity modulus), with
RAGD by Zhang and Sra (2018). As a more practical
alternative to the geodesic search in step 2 (which
we solve with at most 10 iterations of golden-section
search), we show the performance for� k = k

k+2 . Under

4https://github.com/aorvieto/RAGDsDR
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