
Automatic structured variational inference (supplementary)

A Details of the Inference Gym experiments

A.1 Inference Gym tasks

Time series models

As first application, we focus on timeseries models and SDEs. We used two models, both from the Inference
Gym (Sountsov et al., 2020).

The first model (BR) is a Brownian motion without drift, governed by x′(t) = wx(t), where wx(t) is a Gaussian
white noise process with scale σx. The value of xt is observed with noise standard deviation equal to σobs. The
data are generated with σx = 0.1 and σobs = 0.15. In the BRG model with global variables, both σx and σobs are
treated as random variables with LogNormal(loc=0, scale=2) priors.

The second model (LZ) is a stochastic Lorenz system (nonlinear SDE):

x′(t) = 10(y(t)− x(t)) + wx(t) (1a)
y′(t) = x(t)(28− z(t))− y(t) + wy(t) (1b)
z′(t) = x(t)y(t)− (8/3)z(t) + wz(t) (1c)

where wx(t), wy(t) and wz(t) are Gaussian white noise processes with standard deviation σ = 0.1. The value
of x(t) is observed with Gaussian noise with standard deviation σobs = 1.; y(t) and z′(t are left unobserved.
When global variables are allowed (the LZG model), σ and σobs are treated as unknown random variables with
LogNormal(loc=−1., scale=1.) priors.

All processes were discretized with the Euler–Maruyama method (dt = 0.01 for BR and dt = 0.02 for LZ) and
the transition probability was approximated as Gaussian (this approximation is exact for dt tending to 0). Each
model was integrated for 30 steps.

Hierarchical models

Eight Schools (Gelman et al., 2013) models the effect of coaching programs on standardized test scores, and is
specified as follows:

µ ∼ N(0, 100) (2)
log τ ∼ logN(5, 1) (3)

θi ∼ N(µ, τ2) (4)

yi ∼ N(θi, σ
2
i) (5)

where i = 1..8 indexes the schools, µ represents the prior average treatment effect and τ controls the variance
between schools. The yi and σi are observed.

The Radon model (Gelman and Hill, 2007) is a Bayesian hierarchical linear regression model that predicts
measurements of Radon, a carcinogenic gas, taken in houses in the United States. The hierarchical structure is

reflected in the grouping of houses by county, and the model is specified as follows:

µ ∼ N(0, 1) (6)

τ ∼ N+(0, 1) (7)

θi ∼ N(µ, τ2) (8)
β1, β2, β3 ∼ N(0, 1) (9)

σ ∼ N+(0, 1) (10)

yj ∼ N(β1zcj + β2xj + β3x̄cj + θcj , σ
2) (11)

where θi is the effect for county i (with prior mean µ and standard deviation τ) and the β are regression coefficients.
The log Radon measurement in house j, yj , depends on the effect θcj for the county to which the house belongs,
as well as features zcj (the log uranium measurement in county cj), xj (the floor of the house on which the
measurement was taken), and x̄cj (the mean floor by county, a contextual effect). N+(0, 1) indicates a Normal
distribution with mean 0 and variance 1, truncated to nonnegative values.

A.2 Baselines

Mean Field ADVI

The ADVI (MF) surrogate posterior is constructed with the same procedure as the ASVI posterior, but using
only the α parameters, or equivalently, fixing λ = 0. As with ASVI, therefore, the surrogate posterior for each
variable is in the same distribution family as its prior. This differs slightly from Kucukelbir et al. (2017), in
which surrogate posteriors are always bijectively transformed normal distributions, although we have no reason to
believe that this difference is material to our experiments.

Inverse Autoregressive Flows

Inverse Autoregressive Flows (IAFs) are normalizing flows which autoregressively transform a base distribution
(Kingma et al., 2016) with a masked neural network (Papamakarios et al., 2017). We build an IAF posterior
by transforming a standard Normal distribution with two sequential two-layer IAFs built with tfp.bijectors
.MaskedAutoregressiveFlow. The output of the flow is split and restructured to mirror the support of the prior
distribution, and then constrained to the support of the prior (for example, by applying a sigmoid transformation
to constrain values between zero and one, or a softplus to constrain values to be positive). In our experiments, we
use two different-sized IAF posteriors: the “Large” IAF has 512 hidden units in each layer and the “Small” IAF
has 8 hidden units in each layer.

Multivariate Normal

The MVN surrogate posterior is built by defining a full-covariance Multivariate Normal distribution with trainable
mean and covariance, restructuring the support to the support of the prior, and constraining the samples to the
prior support if necessary.

AR(1)

The autoregressive model surrogate learns a linear Gaussian conditional between each pair of successive model
variables:

xt+1 ∼ N (Atxt + bt,Dt)

where each At and bt parameterize a learned linear transformation, and Dt is a learned diagonal variance matrix.
The linear Gaussian autoregression operates on unconstrained values, which may then be then pushed through
constraining transformations as required by the model. To stabilize the optimization, we omit direct dependence
on global variables, i.e., when xt is a global variable we fix At = 0 (these are generally the first few variables
sampled in each model).

(a) Brownian motion (BR) (b) Brownian motion with globals (BRG) (c) Lorenz system (LZ)

(d) Lorenz system with globals (LZG) (e) Eight Schools (E) (f) Radon (R)

Figure 1: Training losses (negative ELBO values) for the ASVI, MF, Large IAF, and Small IAF baselines on the
Inference Gym tasks. Each posterior was trained with the Adam optimizer for 100000 steps.

A.3 Training details

For each of the following inference tasks and posterior baselines, we fit a posterior using full-batch gradient
descent on a 1-sample Monte Carlo estimate of the ELBO. We use the Adam optimizer with a learning rates
selected by hyperparameter sweep: 1e-2 learning rate for ASVI, MF, and AR(1), 1e-3 for the MVN and Small
IAF, and 5e-5 for the Large IAF. Each posterior was trained for 100000 iterations; in Figure 1 and Figure 2, we
report the training curves for each posterior-task pair. We find that ASVI successfully converges in all tasks; in
most cases, ASVI converges well before 100000 iterations, while MF, Large IAF, and Small IAF fail to converge
to a good solution in a few of the tasks.

B Details of the neural SDE experiment

B.1 Models

The function F (x) had the following form

F (x) = W2 tanh (x+ tanh(W1x)) (12)

where W2 and W1 were d× d matrices whose entries were sampled in each of the 5 repetitions from a centered
normal with SD equal to 0.2. Those matrices encodes the forward dynamical model and they were assumed to
be known during the experiment. This is a Kalman filter-like setting where the form of the forward model is
known and the inference is performed in the latent units. The neural SDE was integrated using Euler–Maruyama
integration with step size equal to 1 from t = 0 to t = 9. We trained the model by back-propagating though the
integrator.

We used two DCGAN generators as emission models. The networks were the DCGAN implemented in PyTorch.
In the CIFAR experiment, we used the following architecture:

ConvTranspose2d (100 ,64∗8 ,4 ,1 ,0 ,
b i a s=False) ,

BatchNorm2d (64∗8) ,
ReLU(True)

(a) Brownian motion (BR) (b) Brownian motion with globals (BRG) (c) Lorenz system (LZ)

(d) Lorenz system with globals (LZG) (e) Eight Schools (E) (f) Radon (R)

Figure 2: Training losses (negative ELBO values) for the MVN and AR(1) baselines on the Inference Gym tasks.
Each posterior was trained with the Adam optimizer for 100000 steps.

ConvTranspose2d (64∗8 , 64∗4 ,4 ,2 ,1 ,
b i a s=False) ,

BatchNorm2d (ngf ∗4) ,
ReLU(True) ,
ConvTranspose2d (64∗4 ,64∗2 ,4 ,2 ,1 ,

b i a s=False) ,
BatchNorm2d (64∗2) ,
ReLU(True) ,
ConvTranspose2d (64∗2 ,64 ,4 , 2 , 1 ,

b i a s=False) ,
BatchNorm2d (ngf) ,
ReLU(True) ,
ConvTranspose2 (64 ,4 , k e rne l_s i z e =1,

s t r i d e =1,
padding=0,
b i a s=False) ,

Tanh ()

Network pretrained on CFAR was obtained from the GitHub repository: csinva/gan-pretrained-pytorch. The
FashionGEN network was downloaded from the pytorch GAN zoo repository. The architectural details are given
in Radford et al. (2015).

B.2 Baselines

The ADVI (MF) baseline was obtained by replacing all the conditional Gaussian distributions in the probabilistic
program with Gaussian distributions with uncoupled trainable mean and standard deviation parameters. ADVI
(MN) was not computationally feasible in this larger scale experiment. Therefore, we implemented a a linear
Gaussian model whith conditional densities:

q(xt|xt−1) ∼ N
(
Wxt−1 +αt,σ

2
t

)
, (13)

where the matrix W , and the vectors αt and σ2
t are learnable parameters.

C Details of the autoencoder experiment

C.1 Models

Decoder 1 (f1(z1))

hidden_size=25
Linear (l a t ent_s i ze1 , hidden_size)
ReLU()
Linear (hidden_size , l a t en t_s i z e2)

Decoder 2 (f2(z2))

hidden_size = 75
Linear (l a t ent_s i ze2 , hidden_size)
ReLU()
Linear (hidden_size , l a t en t_s i z e3)

Decoder 3 (g1(z3))

Linear (l a t ent_s i ze3 , image_size)

Decoder 4 (α(y))

Linear (l a t ent_s i ze3 , image_size)

Inference network (f1(z1))

hidden_size1=120
Linear (image_size , hidden_size)
ReLU() # For hidden un i t s
Latent mean output
Latent l og sd output
Linear (hidden_size1 , l a t en t_s i z e3)
So f tp l u s () # For standard dev i a t i on output
hidden_size2=70
Linear (l a t ent_s i ze3 , hidden_size2)
ReLU() # For hidden un i t s
Latent mean output
Linear (hidden_size2 , l a t en t_s i z e2)
Latent l og sd output
Linear (hidden_size2 , l a t en t_s i z e2)
So f tp l u s () # For standard dev i a t i on
hidden_size3=70
Linear (l a t ent_s i ze2 , hidden_size3)
ReLU() # For hidden un i t s
Latent mean output
Linear (hidden_size3 , l a t en t_s i z e1)
Latent l og sd output
Linear (hidden_size3 , l a t en t_s i z e1)
So f tp l u s () # For standard dev i a t i on

References

P. Sountsov, A. Radul, and contributors. Inference gym, 2020. URL https://pypi.org/project/inference_gym.

https://pypi.org/project/inference_gym

A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. Bayesian Data Analysis. CRC
Press, 3 edition, 2013.

A. Gelman and J. Hill. Data analysis using regression and multilevel/hierarchical models. Cambridge University
Press, 2007.

A. Kucukelbir, D. Tran, R. Ranganath, A. Gelman, and D. M. Blei. Automatic differentiation variational inference.
The Journal of Machine Learning Research, 18(1):430–474, 2017.

D. P Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling. Improved variational inference
with inverse autoregressive flow. In Advances in Neural Information Processing Systems, 2016.

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density estimation. In
Advances in Neural Information Processing Systems, 2017.

A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative
adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

	Details of the Inference Gym experiments
	Inference Gym tasks
	Baselines
	Training details

	Details of the neural SDE experiment
	Models
	Baselines

	Details of the autoencoder experiment
	Models

