
Robust Learning under Strong Noise via SQs

A Omitted Proofs

For some of our proofs we will need the following bound:

Theorem A.1 (Hoeffding’s inequality (Hoeffding (1963))). Let Z1, . . . , Zn be independent random variables with
Zi ∈ [a, b], for all i ∈ [n]. Then, for all ε > 0,

Pr

[∣∣∣∣∣ 1n
n∑
i=1

(Zi − E[Zi])

∣∣∣∣∣ ≥ ε
]
≤ 2 exp

(
− 2nε2

(b− a)2

)
. (7)

A.1 Proof of Lemma 3.2

Proof. Consider some t ∈ [0, t0], and let Dx denote the marginal distribution on the unlabeled points. By
definition of the Tsybakov noise condition, the instance space X may be partitioned into regions Xgood and Xbad
such that

• Prx∼Dx [x ∈ Xgood] ≥ 1 − At
α

1−α , and η(x) ≤ 1
2 − t almost surely for all x ∈ Xgood. The points in Xgood

should be thought of as being corrupted with Massart noise;

• Prx∼Dx [x ∈ Xbad] ≤ At
α

1−α . The points in Xbad may have flipping probabilities arbitrarily close to 1/2.

As a result, it follows that

∫
X

(1− 2η(x))Dx(x)dx =

∫
Xgood

(1− 2η(x))Dx(x)dx +

>0︷ ︸︸ ︷∫
Xbad

(1− 2η(x))Dx(x)dx (8)

> 2t

∫
Xgood

Dx(x)dx (9)

≥ 2t(1−At
α

1−α ), (10)

where in the first line we used that η(x) < 1
2 for all x ∈ X . As a result, we obtain that

M−1 ≥ sup
t∈[0,t0]

{
2t(1−At

α
1−α )

}
. (11)

Finally, it is easy to verify that

sup
t∈[0,t0]

{
2t(1−At

α
1−α )

}
=

 2α
(
1−α
A

) 1−α
α if t∗ ≤ t0,

2t0

(
1−At

α
1−α
0

)
if t∗ > t0.

We should mention that when t∗ > t0, it follows that At
α

1−α
0 6= 1.

A.2 Proof of Lemma 4.1

Proof. First of all, we have that

Prx∼D′x [h(x) 6= f(x)] =
1

Z
E

x∼Dx

[(1− 2η(x))1{h(x) 6= f(x)}] (12)

≥ E
x∼Dx

[(1− 2η(x))1{h(x) 6= f(x)}], (13)

where the last inequality follows from Z ≤ 1. Moreover, we obtain that
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Pr(x,y)∼D[h(x) 6= y] = E
x∼Dx

[(1− η(x))1{h(x) 6= f(x)}] + E
x∼Dx

[η(x)1{h(x) = f(x)}] (14)

= E
x∼Dx

[η(x)] + E
x∼Dx

[(1− 2η(x))1{h(x) 6= f(x)}] (15)

≤ OPT +ε, (16)

where we used that OPT = Ex∼Dx [η(x)] and Prx∼D′x [h(x 6= f(x))] ≤ ε.

A.3 Proof of Lemma 4.2

Proof. It follows that

E
(x,y)∼D

[ψ(x, y)] =

∫
X
φ(x)f(x)(1− 2η(x))Dx(x)dx (17)

= Z

∫
X
φ(x)f(x)D′x(x)dx (18)

= Z E
x∼D′x

[φ(x)f(x)] (19)

= Z E
(x,y)∼D′

[ψ(x, y)]. (20)

A.4 Proof of Theorem 4.3

Proof. First of all, given that A efficiently learns up to an ε error the concept class C, it follows that q =
poly(d, 1/ε) and 1/τ = poly(d, 1/ε). For some iteration in the main loop of the algorithm, Z̃ will be such that
Z ≤ Z̃ ≤ Z + τ ′. For this particular Z̃, it follows that |1/Z − 1/Z̃| ≤ τ ′/Z2 ≤ τ ′C2 = τ/2, where we used that
Z ≥ 1/C.

Now consider any correlational statistical query ψ(x, y); we have to establish that when our guess for parameter
Z is close to the actual value, every query of algorithm A is simulated correctly with high probability. Indeed,
Lemma 4.2 implies that

∣∣∣∣ 1

Z̃
E

(x,y)∼D
[ψ(x, y)]− E

x∼D′x
[ψ(x, f(x))]

∣∣∣∣ =

∣∣∣∣ 1

Z̃
− 1

Z

∣∣∣∣ ∣∣∣∣ E
(x,y)∼D

[ψ(x, y)]

∣∣∣∣ ≤ τ/2, (21)

where D′ is defined as in Lemma 4.2. Moreover, let ÊD[ψ(x, y)] be the empirical estimate of E(x,y)∼D[ψ(x, y)]

formed from O
(
C2 log(q/δ)/τ2

)
samples. Given that |ψ(x, y)| ≤ 1, Hoeffding’s inequality implies that with

probability at least 1− δ/q,

∣∣∣∣ E
(x,y)∼D

[ψ(x, y)]− ÊD[ψ(x, y)]

∣∣∣∣ ≤ τ

2C
≤ τZ̃

2
. (22)

As a result, combining (21) and (22) yields that with probability at least 1− δ/q,

∣∣∣∣ 1

Z̃
ÊD[ψ(x, y)]− E

x∼D′x
[ψ(x, f(x))]

∣∣∣∣ ≤ τ ′

Z2
≤ τ. (23)

By the union bound, we obtain that for the Z̃ that satisfies Z ≤ Z̃ ≤ Z + τ ′, all of the q CSQ queries made by
algorithm A are answered correctly up to error τ with probability at least 1−δ. Then, for this particular iteration
the output hypothesis h of algorithm A satisfies Prx∼D′x [h(x) 6= f(x)] ≤ ε, which – by Lemma 4.1 – implies that

Pr(x,y)∼D[h(x) 6= y] ≤ OPT +ε. Finally, let P̂rD[h(x) 6= y] be the empirical estimate of Pr(x,y)∼D[h(x) 6= y]. If

we invoke O
(
log(1/δ)/ε2

)
samples, we obtain that with probability at least 1− δ,
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∣∣∣P̂rD[h(x) 6= y]−Pr(x,y)∼D[h(x) 6= y]
∣∣∣ ≤ ε. (24)

Thus, by the union bound O
(
log(N/δ)/ε2

)
samples suffice to guarantee that the estimation error is up to ε in

every iteration with probability at least 1 − δ, where N = O(C2/τ) is the number of iterations of the main
loop in the algorithm. Consequently, the output of the algorithm h satisfies, with probability at least 1 − 2δ,
Pr(x,y)∼D[h(x) 6= y] ≤ OPT +3ε. Finally, rescaling ε and δ concludes the proof.

A.5 Proof of Lemma 5.2

Proof. If f represents the target function, the claim follows from the following observation:

E
x∼D′x

[ψ(x, f(x))] = E
x∼D′x

[
ψ(x,−1)

1− f(x)

2
+ ψ(x, 1)

1 + f(x)

2

]
(25)

= E
x∼D′x

[
ψ(x, 1)− ψ(x,−1)

2
f(x)

]
+ E

x∼D′x

[
ψ(x, 1) + ψ(x,−1)

2

]
. (26)

A.6 Proof of Lemma 5.3

Proof. Let (φ′, τ) represent the target independent statistical query. In the interest of simplifying our argument
we notice that

E
x∼D′x

[φ′(x)] = E
x∼D′x

[
−1 + 2

1 + φ′(x)

2

]
= −1 + 2 E

x∼D′x
[φ(x)], (27)

where φ(x) = (1 + φ′(x))/2. Thus, it suffices to simulate the statistical query (φ, τ/2) on D′x, where φ takes
values in [0, 1]. If Z =M−1 = EDx [1− 2η(x)], we have that

E
x∼D′x

[φ(x)] =
1

Z

∫
X
φ(x)(1− 2η(x))Dx(x)dx =

1

Z
E

x∼Dx

[φ(x)(1− 2η(x))]. (28)

Let Ẑ be the empirical estimate of EDx [1 − 2η(x)] formed from O
(
log(1/δ)/(τ ′)2

)
samples of EXη(f,Dx, η),

for some δ > 0 and τ ′ := τ/(2C). Given that 0 ≤ 1 − 2η(x) ≤ 1,∀x ∈ X , Hoeffding’s inequality implies that

|Ẑ−Z| < τ ′/2, with probability at least 1−δ. Thus, if we let Ẑ := Ẑ+τ ′/2, we obtain that Z < Ẑ < Z+τ ′, with

probability at least 1−δ. Furthermore, let ÊDx [φ(x)(1−2η(x))] be the empirical estimate of EDx [φ(x)(1−2η(x))]
formed from O(log(1/δ)/(τ ′)2) of EXη(f,Dx, η). If we increment the estimate by τ ′/2 we can again guarantee

that EDx [φ(x)(1− 2η(x))] < ÊDx [φ(x)(1− 2η(x))] < EDx [φ(x)(1− 2η(x))] + τ ′, with probability at least 1− δ.
Indeed, given that 0 ≤ φ(x)(1 − 2η(x)) ≤ 1,∀x ∈ X , we can directly apply Hoeffding’s inequality. As a result,
with probability at least 1− 2δ we have that

ÊDx [φ(x)(1− 2η(x))]

Ẑ
<

EDx [φ(x)(1− 2η(x))] + τ ′

Z
≤ E
D′x

[φ(x)] + τ ′C = E
D′x

[φ(x)] +
τ

2
, (29)

ÊDx [φ(x)(1− 2η(x))]

Ẑ
>

EDx [φ(x)(1− 2η(x))]

Z + τ ′
≥ 1

1 + τ/2
E
D′x

[φ(x)], (30)

where in the final bound we used that τ ′ ≤ τZ/2. Thus, it follows from (30) that

ÊDx [φ(x)(1− 2η(x))]

Ẑ
− E
D′x

[φ(x)] > E
D′x

[φ(x)]

(
1

1 + τ/2
− 1

)
≥ − E

D′x
[φ(x)]

τ

2
≥ −τ

2
, (31)

since τ > 0 and 0 ≤ ED′x [φ(x)] ≤ 1. As a result, if we combine (29) and (31) we obtain that
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− τ

2
<

ÊDx [φ(x)(1− 2η(x))]

Ẑ
− E
D′x

[φ(x)] <
τ

2
, (32)

with probability at least 1− 2δ; finally, rescaling δ := δ/2 concludes the proof.

A.7 Proof of Lemma 5.4

Proof. Let Z = M−1 and ψ(x, f(x)) = φ(x)f(x) the input query. Every correlational statistical query on
distribution D′x can be expressed as

E
x∼D′x

[φ(x)f(x)] =
1

Z

∫
X
φ(x)f(x)(1− 2η(x))Dx(x)dx =

1

Z
E

(x,y)∼D
[φ(x)y]. (33)

Let Ẑ be the empirical estimate of Z from O(log(1/δ)/(τ ′)2) samples of EXη(f,Dx, η), for some δ > 0 and

τ ′ := τ/(2C2). If we increment our estimate by τ ′/2, it follows that Z < Ẑ < Z + τ ′ with probability at least
1− δ. Thus, we obtain that

∣∣∣∣ 1

Z
E

(x,y)∼D
[φ(x)y]− 1

Ẑ
E

(x,y)∼D
[φ(x)y]

∣∣∣∣ ≤ τ ′

Z2
≤ τ ′C2 =

τ

2
. (34)

Moreover, let ÊD[φ(x)y] the empirical estimate of ED[φ(x)y]. For Z < Ẑ, Hoeffding’s inequality implies that
O(C2 log(1/δ)/τ2) samples suffice so that

∣∣∣∣ 1

Ẑ
ÊD[φ(x)y]− 1

Ẑ
E

(x,y)∼D
[φ(x)y]

∣∣∣∣ < τ

2ẐC
<

τ

2ZC
<
τ

2
, (35)

with probability at least 1− δ. Thus, combining (34) and (35) we obtain that with probability at least 1− 2δ,

∣∣∣∣ 1

Ẑ
ÊD[φ(x)y]− E

D′x
[φ(x)f(x)]

∣∣∣∣ < τ. (36)

B Optimality in the Realizable Instance

In this section we analyze whether obtaing a hypothesis h such that errD(h) ≤ OPT +ε implies that PrDx [h(x) 6=
f(x)] ≤ ε′, for some ε′ that depends polynomially on ε. To be more precise, we show that this is indeed the case
in the Massart as well as the Tsybakov model, but as we will see it does not hold in general.

Massart Model. Consider a hypothesis h such that errD(h) ≤ OPT +ε, for any ε > 0. Then, given that
η(x) ≤ γ, it follows that

errD(h) = OPT + E
x∼Dx

[(1− 2η(x))1{h(x) 6= f(x)}] (37)

≥ OPT +(1− 2γ) Prx∼Dx [f(x) 6= h(x)]. (38)

Thus, we obtain that

Prx∼Dx [f(x) 6= h(x)] ≤ ε

1− 2γ
. (39)

As a result, it suffices to select ε = ε′(1− 2γ) to guarantee ε′ excess error in the underlying realizable instance.
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Tsybakov Model. Again, consider a hypothesis h such that errD(h) ≤ OPT +ε, for any ε > 0, and fix some
t ∈ [0, t0]. Employing similar ideas to Lemma 3.2 yields that

errD(h) = OPT + E
x∼Dx

[(1− 2η(x))1{h(x) 6= f(x)}] (40)

≥ OPT +

∫
Xgood

(1− 2η(x))1{h(x) 6= f(x)}Dx(x)dx (41)

≥ OPT +2t

∫
Xgood

1{h(x) 6= f(x)}Dx(x)dx, (42)

where Xgood is defined as in Lemma 3.2. Moreover, given that PrDx [x ∈ Xgood] ≥ 1−At
α

1−α , we obtain that

Prx∼Dx [h(x) 6= f(x)] ≤ ε

2t
+At

α
1−α . (43)

Therefore, in order to get Prx∼Dx [h(x) 6= f(x)] ≤ ε′, for any ε′ > 0, it suffices to select ε such that

ε = sup
t∈[0,t0]

{
2tε′ − 2At

1
1−α

}
. (44)

In particular, it follows that

sup
t∈[0,t0]

{
2tε′ − 2At

1
1−α

}
=

{
2(ε′)

1
α

(
1−α
A

) 1−α
α − 2A

(
ε′ 1−αA

) 1
α if t∗ ≤ t0,

2t0ε
′ − 2At

1
1−α
0 if t∗ > t0,

where

t∗ =

(
ε′

1− α
A

) 1−α
α

. (45)

On the other hand, consider the following noise function:

Definition B.1. A noise function η(x) satisfies a β-clean condition if there exists a region Xclean ⊆ X such
that

• Prx∼Dx [x ∈ Xclean] ≥ β;

• η(x) = 0,∀x ∈ Xclean.

This noise condition allows a 1− β fraction of the probability mass to be corrupted with noise arbitrarily close
to 1/2.

Lemma B.2. The magnitude of a β-clean noise with respect to any distribution Dx is upper-bounded by 1/β.

Proof. It follows that

M−1 =

∫
X

(1− 2η(x))Dx(x)dx ≥
∫
Xclean

Dx(x)dx ≥ β. (46)

However, in this particular noise model a guarantee in the noisy distribution does not necessarily translate in
the realizable instance. Indeed, assume that Dx is the uniform distribution on B2 = {x ∈ R2 : ||x||2 ≤ 1}. We
consider a partition of B2 into X rclean, X `clean, and the region B2 \ (X rclean ∪X `clean), as indicated in Figure 1, and
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Figure 1: The geometry of our example; here h∗ represents the optimal classifier.

we let PrDx [x ∈ X `clean] = PrDx [x ∈ X rclean] = β
2 . In addition, we let η(x) = 0,∀x ∈ X rclean ∪ X `clean, while for

the rest of the probability mass we let η(x) = 1
2 − ρ, for some ρ > 0.

The problem that arises is that in the limit of ρ → 0, errD(h′) → errD(h∗) = OPT, for any h′ as in Figure 1.
Yet, it is clear that in the realizable instance the error of h′ can be very far from the optimal. Nonetheless, it
should be noted that a hypothesis h such that errD(h) ≤ OPT +ε would classify correctly the clean data even in
the presence of intense noise, a result that appears to be non-trivial and of independent interest.


