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Abstract

Recent applications in machine learning have
renewed the interest of the community in
min-max optimization problems. While
gradient-based optimization methods are
widely used to solve such problems, there
are however many scenarios where these tech-
niques are not well-suited, or even not ap-
plicable when the gradient is not accessi-
ble. We investigate the use of direct-search
methods that belong to a class of derivative-
free techniques that only access the objective
function through an oracle. In this work,
we design a novel algorithm in the context
of min-max saddle point games where one
sequentially updates the min and the max
player. We prove convergence of this algo-
rithm under mild assumptions, where the ob-
jective of the max-player satisfies the Polyak-
 Lojasiewicz (PL) condition, while the min-
player is characterized by a nonconvex objec-
tive. Our method only assumes dynamically
adjusted accurate estimates of the oracle with
a fixed probability. To the best of our knowl-
edge, our analysis is the first one to address
the convergence of a direct-search method for
min-max objectives in a stochastic setting.

1 INTRODUCTION

Recent applications in the field of machine learning, in-
cluding generative models (Goodfellow et al., 2014) or
robust optimization (Ben-Tal et al., 2009), have trig-
gered significant interest for the optimization of min-
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max functions of the form

min
x∈X

max
y∈Y

f(x,y) = E[f̃(x,y, ξ)], (1)

where ξ is a random variable characterized by some
distribution. In machine learning, ξ is for instance
often drawn from a distribution that depends on the
training data.

In practice, min-max problems are often solved us-
ing gradient-based algorithms, especially simultaneous
gradient descent ascent (GDA) that simply alternates
between a gradient descent step for x and a gradi-
ent ascent step for y. While these algorithms are
attractive due to their simplicity, there are however
cases where the gradient of the objective function is
not accessible, such as when modelling distributions
with categorical variables (Jang et al., 2016), tuning
hyper-parameters (Audet and Orban, 2006; Marzat
et al., 2011) and multi-agent reinforcement learning
with bandit feedback (Zhang et al., 2019). A resur-
gence of interest has recently emerged for applications
in black-box optimization (Bogunovic et al., 2018; Liu
et al., 2019) and black-box poisoning attack (Liu et al.,
2020), where an attacker deliberately modifies the
training data in order to tamper with the model’s
predictions. This can be formulated as a min-max
optimization problem, where only stochastic accesses
to the objective function are available (Wang et al.,
2020).

In this work, we investigate the use of direct-search
methods to optimize min-max objective functions
without requiring access to the gradients of the ob-
jective f . Direct-search methods have a long history
in the field of optimization, dating back from the sem-
inal paper of Hooke and Jeeves (1961). The appeal of
these methods is due to their simplicity but also po-
tential ability to deal with non-trivial objective func-
tions. Although there are variations among random
search techniques, most of them can be summarized
conceptually as sampling random directions from a
search space and moving towards directions that de-
crease the objective function value. We note that these
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techniques are sometimes named derivative-free meth-
ods, but it is important to distinguish them from other
techniques that try to estimate derivatives based on
finite difference (Spall, 2003) or smoothing (Nesterov
and Spokoiny, 2017). We refer the reader to the sur-
veys by Lewis et al. (2000); Rios and Sahinidis (2013)
for a comprehensive review of direct-search methods.

Solving the saddle point problem (1) is equivalent to
finding a saddle point1 (x∗,y∗) such that

f(x∗,y) ≤ f(x∗,y∗) ≤ f(x,y∗) ∀x ∈ X , ∀y ∈ Y.

There is a rich literature on saddle point optimiza-
tion for the particular class of convex-concave func-
tions (i.e. when f is convex in x and concave in y)
that are differentiable. Although this type of objec-
tive function is commonly encountered in applications
such as constrained convex minimization, many saddle
point problems of interest do not satisfy the convex-
concave assumption. This for instance includes ap-
plications such as Generative Adversarial Networks
(GANs) (Goodfellow et al., 2014), robust optimiza-
tion (Ben-Tal et al., 2009; Bogunovic et al., 2018)
and multi-agent reinforcement learning (Omidshafiei
et al., 2017). For min-max problems without access
to derivatives, the literature is in fact very scarce.
Most existing techniques such as Hare and Mack-
lem (2013); Hare and Nutini (2013); Custódio et al.
(2021) consider finite-max functions, i.e., functions of
the form f(x) = max{fi(x) : i = 1, 2, . . . , N} where
N > 0 is finite and each fi is continuously differen-
tiable. Other techniques such as Bertsimas and No-
hadani (2010); Bertsimas et al. (2010) are restricted to
functions f that are convex with respect to x or only
provide asymptotic convergence analysis (Menickelly
and Wild, 2020). We refer the reader to Section 2 for
a more detailed discussion of prior approaches.

Motivated by a wide range of applications, we there-
fore focus on a nonconvex and nonconcave stochastic
setting where the max player satisfies the PL condition
(see Definition 5 in Section 4), which is known to be
a weaker assumption compared to convexity (Karimi
and Schmidt, 2015). In summary, our main contribu-
tions are:

• We design a novel direct-search algorithm for such
min-max problems and provide non-asymptotic
convergence guarantees in terms of first-order
Nash equilibrium. Concretely, we prove conver-
gence to an ε-first-order Nash Equilibrium (for a
definition see Section 3) in O(ε−2 log(ε−1)) itera-
tions, which is comparable to the rate achieved by
gradient-based techniques (Nouiehed et al., 2019).

1In the game theory literature, such point is commonly
referred to as (global) Nash equilibrium, see e.g. Liang and
Stokes (2018).

• We derive theoretical convergence guarantees in
a stochastic setting where one only has access to
accurate estimates of the objective function, with
some fixed probability. We prove our results for
the case where the min player optimizes a non-
convex function while the max player optimizes a
PL function.

• We validate empirically our theoretical findings,
including settings where derivatives are not avail-
able.

2 RELATED WORK

Direct-search methods for minimization prob-
lems The general principle behind direct-search
methods is to optimize a function f(x) without hav-
ing access to its gradient ∇f(x). There is a large
number of algorithms that are part of this broad
family including golden-section search techniques or
random search (Rastrigin, 1963). Among the most
popular algorithms in machine learning are evolution
strategies and population-based algorithms that have
demonstrated promising results in reinforcement learn-
ing (Salimans et al., 2017; Maheswaranathan et al.,
2018) and bandit optimization (Flaxman et al., 2004).
At a high-level, these techniques work by maintain-
ing a distribution over parameters and duplicate the
individuals in the population with higher fitness. Of-
ten these algorithms are initialized at a random point
and then adapt their search space, depending on which
area contains the best samples (i.e. the lowest func-
tion value when minimizing f(x)). New samples are
then generated from the best regions in a process re-
peated until convergence. The most well-known algo-
rithms that belong to this class are evolutionary-like
algorithms, including for instance CMA-ES (Hansen
et al., 2003). Evolutionary strategies have recently
been shown to be able to solve various complex tasks in
reinforcement learning such as Atari games or robotic
control problems, see e.g. Salimans et al. (2017). Their
advantages in the context of reinforcement learning
are their reduced sensitivity to noisy or uninforma-
tive gradients (potentially increasing their ability to
avoid local minima (Conti et al., 2017)) and the ease
with which one can implement a distributed or parallel
version.

Convergence guarantees for direct-search
methods Proofs of convergence for direct-search
methods are based on a specific construction for the
sampling directions, often that they positively span
the whole search space (Conn et al., 2009), or that
they are dense in certain types of directions (known
as refining directions) at the limit point (Audet and
Dennis Jr, 2006). In addition, they also typically
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rely on the use of a forcing function that imposes
each new selected iterate to decrease the function
value adequately. This technique has been analyzed
in Vicente (2013) who proved convergence under
mild assumptions in O(ε−2) iterations for the goal
‖∇f(x)‖ < ε. The number of required steps is
reduced to O(ε−1) for convex functions f , and to
O(log(ε−1)) for strongly-convex functions (Konevcnỳ
and Richtárik, 2014). This is on par with the steepest
descent method for unconstrained optimization (Nes-
terov, 2013) apart from some constants that depend
on the dimensionality of the problem.

Stochastic estimates of the function In our anal-
ysis, we only assume access to stochastic estimates of
the objective function.

f(x,y) = E[f̃(x,y, ξ)], (2)

where ξ is a random variable that captures the ran-
domness of the objective function. The origin of the
noise could be privacy related, or caused by a noisy
adversary. Most commonly, it might arise from on-
line streaming data, distributed and batch-sized up-
dates due to the sheer size of the problem. Stochas-
tic gradient descent is often used to optimize Eq. (2),
where one often assumes access to accurate estimates
of f and consider updates only in expectation (John-
son and Zhang, 2013). To establish similar conver-
gence rates to the deterministic case, an alternative
solution consists of adapting the accuracy of these es-
timates dynamically, which can be ensured by averag-
ing multiple samples together. This approach has for
instance been analyzed in the context of trust-region
methods (Blanchet et al., 2019) and line-search meth-
ods (Paquette and Scheinberg, 2018; Bergou et al.,
2018), including direct-search for the minimization of
nonconvex functions (Dzahini, 2020).

Algorithms for finding equilibria in games
Since the pioneering work of von Neumann (1928),
equilibria in games have received great attention. Most
past results focus on convex-concave settings (Chen
et al., 2014; Hien et al., 2017). Notably, Cherukuri
et al. (2017) studied convergence of the GDA algo-
rithm under strictly convex-concave assumptions. For
problems where the function does not satisfy this con-
dition however, convergence to a saddle point is not
guaranteed. More recent results focus on relaxing
these conditions. The work of Nouiehed et al. (2019)
analyzed gradient descent-ascent under a similar sce-
nario, where the objective of the max player satis-
fies the PL condition and where the min player opti-
mizes a nonconvex objective. Ostrovskii et al. (2020);
Wang et al. (2020) analyze a nonconvex-concave class
of problems, while Lin et al. (2020) present a two-scale

variant of the GDA algorithm for a similar scenario,
providing a replacement for the alternating updates
scheme.

We take inspiration from the work of Liu et al. (2019);
Nouiehed et al. (2019); Sanjabi et al. (2018) to design
a novel alternating direct-search algorithm, where the
inner maximization problem is solved almost exactly
before performing a single step towards improving the
strategy of the minimization player. We are able to
prove convergence of our direct-search algorithm un-
der this procedure, which has been proven to be more
stable than the analogous simultaneous one, as rigor-
ously shown in Gidel et al. (2018) and Zhang and Yu
(2019) for a variety of algorithms.

3 PRELIMINARIES

Throughout, we use ‖.‖ to denote the Euclidean norm;
that is, for x ∈ Rn we have ‖x‖ =

√
xᵀx.

3.1 Min-Max Games

We consider the optimization problem defined in
Eq. (1) for which a common notion of optimality is
the concept of Nash equilibrium as mentioned previ-
ously, which is formally defined as follows.

Definition 1. We say that a point (x∗,y∗) ∈ X × Y
is a Nash equilibrium of the game if

f(x∗,y) ≤ f(x∗,y∗) ≤ f(x,y∗) ∀x ∈ X , ∀y ∈ Y.

A Nash equilibrium is a point where the change of
strategy of each player individually does not lead to
an improvement from her viewpoint. Such a Nash
equilibrium point always exists for convex-concave
games (Jin et al., 2019), but not necessarily for
nonconvex-nonconcave games. Even when they ex-
ist, finding Nash equilibria is known to be a NP-
hard problem, which has led to the introduction of lo-
cal characterizations as discussed in Jin et al. (2019);
Adolphs et al. (2018). Here we use the notion of a
first-order Nash equilibrium (FNE) (for a definition
we refer to Pang and Razaviyayn (2016)). We focus
on the problem of converging to such a FNE point, or
an approximate FNE defined as follows (adapted from
Nouiehed et al. (2019) in the absence of constraints).

Definition 2. For a function f : Rn × Rm → R, a
point (x∗,y∗) ∈ Rn ×Rm is said to be an ε-first-order
Nash Equilibrium (ε-FNE) if: ‖∇xf(x∗,y∗)‖ ≤ ε and
‖∇yf(x∗,y∗)‖ ≤ ε.

3.2 Direct-Search Methods

Spanning set Direct-search methods typically rely
on the smoothness of the objective function, which we
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denote by f : Rn → R in this section2, and on appro-
priate choice of sampling points to prove convergence.
The key idea to guarantee convergence is that one of
the sampled directions will form an acute angle with
the negative gradient. This can be ensured by sam-
pling from a Positive Spanning Set (PSS). The quality
of a spanning set D is typically measured using a no-
tion of cosine measure defined as

κ(D) = min
0 6=u∈Rn

max
d∈D

uTd

‖u‖‖d‖
. (3)

In the following, we will consider positive spanning
sets such that κ(D) ≥ κmin > 0 and dmin ≤
‖d‖ ≤ dmax, ∀d ∈ D. These assumptions require
|D| ≥ n + 1. Common choices are i) the positive
and negative orthonormal bases D = [In − In] =
[e1, . . . , en,−e1, . . . ,−en] of size |D| = 2n, ii) a min-
imal positive basis with uniform angles of size |D| =
n+1 (see Corollary 2.6 of Conn et al. (2009) and Kolda
et al. (2003)) or iii) even rotations of these matri-
ces (Gratton et al., 2016).

Algorithm 1: Direct-search(f,x0, c, T )

Input: f : objective function, with fk it’s
estimate at step k
c: forcing function constant
T : number of steps

Initialize step size value σ0. Choose γ > 1.
Create the Positive Spanning Set D.
for k = 0, . . . , T - 1 do

1. Offspring generation:
Generate the points

xi = xk + σkd
i, ∀di ∈ D.

2. Parent Selection:
Choose x′ = arg mini fk(xi).
3. Sufficient Decrease:
if fk(x′) < fk(xk)− ρ(σk) then

(Iteration is successful)
Update and increase step size
xk+1 = x′, σk+1 = min{σmax, γσk}.

else
(Iteration is unsuccessful)
Decrease step size
xk+1 = xk, σk+1 = γ−1σk.

end

end
return xT

2When using the function f with one set of variables,
we consider the minimization problem. When using two
sets of variables, we instead consider the min-max problem
as defined in Eq. (1).

Forcing function Another critical component to
guarantee that the function value decreases at each
step appropriately is a forcing function ρ that satisfies
ρ(σ)
σ → 0 when σ → 0. Given such σ, direct-search

methods sample new points according to the rule

x′ = x + σd, (4)

and accept points for which

f(x′) < f(x)− ρ(σ), (5)

d ∈ D. If the previous condition holds for some d ∈ D,
then the new point is accepted, the step is deemed
successful and the σ parameter is increased, otherwise
σ is decreased and the above process is repeated. We
use a parameter γ to indicate these updates of the step
size. For convenience and without loss of generality, we
will only consider spanning sets with vectors of unitary
length dmin = dmax = 1 and a forcing function

ρ(σ) = cσ2.

The direct-search scheme is displayed in Algorithm 1.

4 STOCHASTIC DIRECT-SEARCH

The full algorithm we analyze to solve the min-max
objective is presented in Algorithm 2. It consists of two
steps: i) first solve the maximization problem w.r.t.
the y variable using Algorithm 1, and ii) perform one
update step for the x variable. In this section, we first
analyze the convergence properties of Algorithm 1 in
the setting where we only have access to estimates of
the objective function f ,

f(x) = E[f̃(x, ξ)].

Let (Ω,F , P ) be a probability space with elementary
events denoted with ω. We denote the random quan-
tities for the iterate by xk = Xk(ω) and for the step
size by σk = Σk(ω). Similarly let {F 0

k , F
σ
k } be the esti-

mates of f(Xk) and f(Xk+Σkdk), for each dk in a set
D, with their realizations f0

k = F 0
k (ω), fσk = Fσk (ω).

At each iteration the influence of the noise on function
evaluations is random. We will assume that, when
conditioned on all the past iterates, these estimates
are sufficiently accurate with a sufficiently high proba-
bility. We formalize this concept in the two definitions
below.

Definition 3. (εf -accurate) The estimates {F 0
k , F

σ
k }

are said to be εf -accurate with respect to the corre-
sponding sequence if

|F 0
k−f(Xk)| ≤ εfΣ2

k and |Fσk −f(Xk+Σkdk)| ≤ εfΣ2
k.

Definition 4. (pf -probabilistically εf -accurate) The
estimates {F 0

k , F
σ
k } are said to be pf -probabilistically
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εf -accurate with respect to the corresponding sequence
if the events

Jk = {The estimates {F 0
k , F

σ
k } are εf -accurate}

satisfy the condition3

P (Jk | Fk−1) = E[1Jk | Fk−1] ≥ pf ,

where Fk−1 is the sigma-algebra generated by the se-
quence {F 0

0 , F
σ
0 , . . . , F

0
k−1, F

σ
k−1}.

As the step size σ gets smaller, meaning that we are
getting closer to the optimum, we require the accu-
racy over the function values to increase. However,
the probability to encounter a good estimation remains
the same throughout. A significant challenge arises,
as steps may satisfy our sufficient decrease condition
specified in Eq. (5) falsely, leading to a potential in-
crease in terms of the objective value. This increase
can potentially be very large, leading to divergence,
and we therefore need to require an additional assump-
tion regarding the variance of the error.

Assumption 1. The sequence of estimates {F 0
k , F

σ
k }

are said to satisfy a lf -variance condition if for all
k ≥ 0

E[|F 0
k − f(Xk)|2 | Fk−1] ≤ l2fΣ4

k,

E[|Fσk − f(Xk + Σkdk)|2 | Fk−1] ≤ l2fΣ4
k.

Based on the above assumptions, we reach the follow-
ing conclusion regarding inaccurate steps (similar to
Lemma 2.5 in Paquette and Scheinberg (2018)).

Lemma 1. Let Assumption 1 hold for pf -
probabilistically εf -accurate estimates of a function.
Then for k ≥ 0 we have

E[1Jck |F
0
k − f(Xk)| | Fk−1] ≤ (1− pf )1/2lfΣ2

k,

E[1Jck |F
σ
k − f(Xk + Σkdk)| | Fk−1]

≤ (1− pf )1/2lfΣ2
k.

Computing the estimates In order to satisfy As-
sumption 1 we can perform multiple function evalua-
tions and average them out (see for instance Tropp
(2015)). We therefore get an estimate F 0

k =
1
|S0
k|
∑
ξi∈S0

k
f̃(Xk, ξi), where S0

k, S
σ
k correspond to in-

dependent samples for F 0
k and Fσk respectively. As-

suming bounded variance, i.e. E[|f̃(x, ξ) − f(x)|2] ≤
σ2
f , known concentration results (see e.g. Tripuraneni

3We use 1A to denote the indicator function for the set
A and Ac to denote its complement.

et al. (2018); Chen et al. (2018)) guarantee that we can
obtain pf -probabilistically εf -accurate estimates for

|S0
k| ≥ O(1)

(
σ2
f

ε2fΣ4
k

log

(
1

1− pf

))

number of evaluations (the same result holds for Sσk ).
To also satisfy Assumption 1, we additionally require

|S0
k| ≥

σ2
f

lfΣ4
k

.

4.1 Convergence of Stochastic Direct-Search

In order to study the convergence properties of Al-
gorithm 1, we introduce the following (random) Lya-
punov function:

Φk = v(f(Xk)− f∗) + (1− v)Σ2
k,

where v ∈ (0, 1) is a constant. We denote by f∗ the
minimum of the function f , assumed to exist and po-
tentially achieved at multiple positions. The Lyapunov
function Φk will be used to track the progress of the
gradient norm ‖∇f(Xk)‖, which will serve as a mea-
sure of convergence.

Theorem 2 presented below ensures that the Lyapunov
function decreases over iterations. Using this result,
one can guarantee that the sequence of step-sizes de-
creases and then exploit the fact that for sufficiently
small step sizes (and accurate estimates), the steps
are successful, i.e. they decrease the objective func-
tion. The proof of the next Theorem is mainly inspired
by Dzahini (2020); Audet et al. (2021).

Theorem 2. Let a function f with a minimum
value f∗, with Lipschitz continuous gradients with
a constant L. Let also f be pf -probabilistically εf -
accurate, while also having bounded noise variance
according to Assumption 1 with constant lf . Then:

E[Φk+1−Φk | Fk−1] ≤ −pf (1− v)(1− 1

γ2
)
Σ2
k

2
. (6)

The constants c, v and pf should satisfy

c− 2εf > 0,
pf√

1− pf
≥ 4vlf

(1− v)(1− γ−2)
,

v

1− v
≥ 1

c− 2εf
(γ2 − 1

γ2
).

Next, we characterize the number of steps required to
converge by using a renewal-reward process adapted
from Blanchet et al. (2019). Let us define the random
process {Φk,Σk}, with Φk ≥ 0 and Σk ≥ 0. Let us also
denote with Wk a random walk process and Fk the
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σ-algebra generated by {Φ0,Σ0,W0, . . . ,Φk,Σk,Wk}
with W0 = 1,

P (Wk+1 = 1 | Fk) = p,

P (Wk+1 = −1 | Fk) = 1− p.
(7)

We also define a family of stopping times {Tε}ε>0 with
respect to {Fk}k≥0 for ε > 0.

Assumption 2. Given the random quantities
{Φk,Σk,Wk}, we make the following assumptions.

i. There exists λ > 0 such that Σmax = Σ0e
λjmax for

jmax ∈ Z, and Σk ≤ Σmax for all k.

ii. There exists Σε = Σ0e
λjε with jε ∈ Z, such that

1Tε>kΣk+1 ≥ 1Tε>k min{ΣkeλWk+1 ,Σε}

where Wk+1 satisfies Equation (7) with probability
p > 1

2 .

iii. There exists a nondecreasing function h(·) :
[0,∞]→ (0,∞) and a constant Θ > 0 such that

1Tε>kE[Φk+1 | Fk] ≤ 1Tε>k(Φk −Θh(Σk)).

Assumption 2 (ii) requires that step sizes tend to in-
crease when below a specific threshold, while Assump-
tion 2 (iii) requires that the random function Φ de-
creases in expectation (already proved in Theorem 2).
Under this assumption, the following results hold for
the stopping time Tε (Blanchet et al., 2019).

Theorem 3. Under Assumption 2, we have

E[Tε] ≤
p

2p− 1

Φ0

Θh(Σε)
+ 1.

In our case, we use the fundamental result of conver-
gence for direct-search methods, that comes from cor-
relating the norm of the gradient with the step size for
unsuccessful iterations (generalization of results in Vi-
cente (2013); Gratton et al. (2016)).

Lemma 4. Let f : x ∈ Rn → R be a continuous dif-
ferentiable function with Lipschitz continuous gradi-
ents of constant L. Let also D be a positive spanning
set with κ(D) = κmin > 0 and vectors d satisfying
‖d‖ = 1, ∀d ∈ D. For a forcing function ρ(σ) = cσ2

and an εf -accurate estimates of the function, for an
unsuccessful step k it holds that

σk ≥ C‖∇f(xk)‖, C =
2κmin

L+ 2c+ 4εf
. (8)

In this analysis, our goal is to show that the norm of
the gradient decreases below a threshold

Tε = inf{k ≥ 0 : ‖∇f(Xk)‖ ≤ ε}.

We assume that Assumption 2 (i) holds by the choice
of Σmax. We also know from Lemma 4 that for
‖∇f(X)‖ > ε and Σ ≤ Cε then a successful step
occurs, provided that estimates are accurate. Then
following Lemma 4.10 from Paquette and Scheinberg
(2018) we get that Assumption 2 (ii) also holds, for
Σε = Cε. Based on the results of Theorem 3 and
Lemma 4, we can now prove convergence for a non-
convex bounded function.

Theorem 5. Assume that the Assumptions of The-
orem 2 hold with additionally pf >

1
2 . Then to get

‖∇f(Xk)‖ ≤ ε, the expected stopping time of Algo-
rithm 1 is

E[Tε] ≤ O(1)
κ−2

min

2pf − 1
(f(X0)−f∗+Σ2

0)(L+c+εf )2 1

ε2
.

Note that for the deterministic scenario where εf =
lf = 0, the above bound matches known results of
direct-search in the nonconvex case (Vicente, 2013;
Konevcnỳ and Richtárik, 2014). We now establish
faster convergence for a function f , additionally satis-
fying the PL condition, defined below.

Definition 5. (Polyak- Lojasiewicz Condition). A
differentiable function f : Rn → R with the mini-
mum value f∗ = minx f(x) is said to be µ-Polyak-
 Lojasiewicz (µ-PL) if:

1

2
‖∇f(x)‖2 ≥ µ(f(x)− f∗).

The PL condition is the weakest among a large fam-
ily of function classes that include convex functions
and other nonconvex ones (Karimi and Schmidt, 2015).
Again we can guarantee convergence that closely
matches results for deterministic direct-search under
strong convexity, by proving that the number of iter-
ations required to halve the distance to the optimum
objective value is constant in terms of the accuracy ε.

Theorem 6. Let a function f with a minimum
value f∗ and satisfying the PL condition with a con-
stant µ and Lipschitz continuous gradients with a
constant L. Let also f be pf -probabilistically εf -
accurate, while also having bounded noise variance
according to Assumption 1 with constant lf . Then
to get ‖∇f(Xk)‖ ≤ ε, the expected stopping time of
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Algorithm 1 is

E[Tε] ≤ O(1)
κ−2

min(c+ L)2

(2pf − 1)µ

(
1 +

1

c

)
log

(
L(f(X0)− f∗)

ε

)
.

(9)

The constants c, v and pf >
1
2 should satisfy

c > max{4εf , 2
√

2lf},
pf√

1− pf
≥ 4vlf

(1− v)(1− γ−2)

and
v

1− v
≥ max

{
1

c− 2εf
(γ2 − 1

γ2
),

72γ2

c

}
.

5 ALGORITHM & CONVERGENCE
GUARANTEES

We now focus on the min-max problem presented in
Eq. (1). To proceed, we make the following standard
assumptions regarding the smoothness of f .

Assumption 3. The function f is continuously differ-
entiable in both x and y and there exist constants L11,
L12, L21 and L22 such that for every x,x1,x2 ∈ X and
y,y1,y2 ∈ Y

‖∇xf(x1,y)−∇xf(x2,y)‖ ≤ L11‖x1 − x2‖,
‖∇xf(x,y1)−∇xf(x,y2)‖ ≤ L21‖y1 − y2‖,
‖∇yf(x1,y)−∇yf(x2,y)‖ ≤ L12‖x1 − x2‖,
‖∇yf(x,y1)−∇yf(x,y2)‖ ≤ L22‖y1 − y2‖.

We require that the objective of the max-player satis-
fies the PL condition.

Assumption 4. There exists a constant µ > 0 such
that the function −f(x,y) in problem (1) is µ-PL for
any x ∈ X .

Following prior works on PL games, e.g. Nouiehed
et al. (2019), we propose a sequential scheme for the
updates of the two players presented in Algorithm 2
(for simplicity some of the algorithm’s constants are
not depicted). This multi-step algorithm solves the
maximization problem up to some accuracy, and it
then performs a single (successful) Direct-Search (DR)
step for the minimization problem (see Algorithm 3).

We formalize our Assumptions and our final result.

Assumption 5. The function f is defined on the
whole domain X × Y = R|X | × R|Y|. We also require
f to be bounded below for every y ∈ Y and bounded
above for every x ∈ X .

Algorithm 2: Min-Max-Direct-search

Input: f : objective function
(x0,y0): initial point
σ0: initial step for the min problem

for t = 1, . . . , T do
yt = Direct-search(−f(xt−1, .),yt−1)
xt, σt = One-Step-Direct-search

(f(.,yt),xt−1, σt−1)
end
return (xT ,xT ).

Theorem 7. Suppose that the objective function
f(x,y) satisfies Assumptions 3, 4 and 5. If the esti-
mates are deterministic, then Algorithm 2 converges
to an ε-FNE within O(ε−2 log(ε−1)) steps. When
f(x,y) is εx-accurate with probability px for every y
satisfying assumptions of Theorem 5 and εy-accurate
with probability py for every x, satisfying assump-
tions of Theorem 6, then with a probability at least
δ, Algorithm 2 convergences and the expected num-
ber of steps to converge to reach an ε-FNE is

O
( 1

(2px − 1)(2py − 1)
ε−2
(

log(ε−1)

+

[
log

(
1− px
px

)]−1

log
(

1− e
1

(2px−1)ε−2 log δ
)))

.

Algorithm 2 performs in total O(ε−2) updates for
the minimization problem, and each minimization up-
date requires O(log(ε−1)) updates for the maximiza-
tion problem. The proof of Theorem 7 consists in
showing that the maximization problem is solved with
sufficient accuracy, for which we invoke the result of
Theorem 6. We then proceed by showing that itera-
tively solving the minimization problem allows us to
converge in terms of the min-max objective, which is
done using the result of Theorem 5. We note that the
sufficient decrease condition allows us to prove con-
vergence for the last iterate instead of relying on the
existence of an iterate k in the whole sequence that
satisfies the required inequalities (as proven in the cor-
responding gradient based method by Nouiehed et al.
(2019)).

6 EXPERIMENTS

One advantage of direct-search methods is their abili-
ties to explore the space of parameters. This however
comes at the price of a high dependency to the size
of the parameter space (Vicente, 2013). For noncon-
vex optimization problems in Rn, the complexity of
DS methods is of the order O(n2) (Dodangeh et al.,
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Figure 1: Zero-one loss for each method across classes. The term ”lr” stands for different learning rates used.
Error bars correspond to 20% of the standard deviation across 10-fold cross validation.

2016). However, recent works by Gratton et al. (2015);
Bergou et al. (2018) have shown that replacing the
sampling procedure from a PSS by one that correlates
with the gradient direction probabilistically, it is pos-
sible to achieve a dependence of the order O(n). The
sequential aspect of our method allows us to adopt this
probabilistic perspective for the experiments to follow,
thus lowering the computation cost.

6.1 Robust Optimization

Robustly-regularized estimators have been successfully
used in prior work (Namkoong and Duchi, 2017) to
deal with situations in which the empirical risk min-
imizer is susceptible to high amounts of noise. For-
mally, the problem of empirical risk minimization can
be formulated as follows,

min
θθθ

sup
P∈P

[f(X;θθθ,P) = {EP [l(X;θθθ)] :

D(P ‖ P̂n) ≤ ρ

n
}], (10)

where l(X;θθθ) denotes the loss function, X the data
and D(P ‖ P̂n) a distance function that measures the
divergence between the true data distribution P and
the empirical data distribution Pn. For the specific
case of a binary classification problem, as for instance
considered in Adolphs et al. (2018), Eq. (10) can be
reformulated as

min
θθθ

max
p
{ −

n∑
i=1

pi[yi log(ŷ(Xi;θθθ)) + (1− yi)

log(1− ŷ(Xi;θθθ))]− λ
n∑
i=1

(
pi −

1

n

)2

},

where yi and ŷ(Xi;θθθ) correspond to the true and the
predicted class of data point Xi and λ > 0 controls
the amount of regularization. Note that the afore-
mentioned function is strongly-concave w.r.t p (i.e. it

satisfies our PL assumption) and can thus be solved ef-
ficiently. We consider this optimization problem on the
Wisconsin breast cancer data set4, comparing the per-
formance between our proposed direct-search method
and GDA, using the same neural network as classifier.
The zero-one loss is shown in Fig. 1 which clearly shows
that our algorithm can consistently outperform GDA
for different choices of regularization parameters.

6.2 Categorical Data

Generative Adversarial Networks (Goodfellow et al.,
2014) are formulated as the saddle point problem:

min
x

max
y

f(x,y) =Eθθθ∼pdata [logDy(θθθ)]

+ Ez∼pz [log(1−Dy(Gx(z)))],

where Dy : Rn → [0, 1] and Gx : Rm → Rn are the dis-
criminator and generator networks. Although GANs
have been used in a wide variety of applications (Good-
fellow, 2016), very few approaches can deal with dis-
crete data. The most severe impeding factor in such
settings is the non existence of the gradient due to
the non-smooth nature of the objective function. One
advantage of direct-search techniques over gradient-
based methods is that they can be used in such a con-
text where gradients are not accessible. In some cases,
we note that `2 regularization can be used to increase
the smoothness constant of the objective function.We
illustrate the performance of our direct-search algo-
rithm on a simple example consisting of correlated cat-
egorical data, in Figure 2. For a more detailed discus-
sion and more experimental results we refer the reader
to the Appendix.

Scaling direct-search to higher dimensions still remains
an active area of research, where recent developments

4https://archive.ics.uci.edu/ml/datasets/
Breast+Cancer+Wisconsin+(Diagnostic)
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Figure 2: Learning a discretized mixture of Gaussian processes using direct-search methods. Both the Hellinger
distance and maximum mean discrepancy decrease as DR learns the modes of the distribution.

include guided search (Maheswaranathan et al., 2018)
and projection-based approaches (Wang et al., 2016).
In this work, we focus on the theoretical guarantees
or our algorithm in the stochastic min-max setting.
While we demonstrate a good empirical behavior on
relatively small-scale problems, scaling our algorithm
to large-scale problems will require further modifica-
tions to improve its scalability.

7 CONCLUSION

We presented and proved convergence results for a
direct-search method in a stochastic minimization set-
ting for both nonconvex and PL objective functions.
We then extended these results to prove convergence
for min-max objective functions, where the objective of
the max-player satisfies the (PL) condition, while the
min-player objective is nonconvex. Our experimen-
tal results establish that direct-search can outperform
traditionally adopted optimization schemes, while also
presenting a promising alternative for categorical set-
tings. A potential direction for future work is to im-
prove the scalability of our algorithm in order to run
it on large-scale problems, such as adversarial poison-
ing attacks on benchmark computer vision datasets.
Additional extensions of our work include the use of
momentum to accelerate convergence as in Gidel et al.
(2018) or developing an optimistic variant of our al-
gorithm as in Daskalakis et al. (2017); Daskalakis and
Panageas (2018).
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Mahdi Dodangeh, Lúıs Nunes Vicente, and Zaikun Zhang.
On the optimal order of worst case complexity of direct
search. Optimization Letters, 10(4):699–708, 2016.

Kwassi Joseph Dzahini. Expected complexity anal-
ysis of stochastic direct-search. arXiv preprint
arXiv:2003.03066, 2020.

Abraham D Flaxman, Adam Tauman Kalai, and H Bren-
dan McMahan. Online convex optimization in the ban-
dit setting: gradient descent without a gradient. arXiv
preprint cs/0408007, 2004.

Gauthier Gidel, Reyhane Askari Hemmat, Mohammad
Pezeshki, Remi Lepriol, Gabriel Huang, Simon Lacoste-
Julien, and Ioannis Mitliagkas. Negative momen-
tum for improved game dynamics. arXiv preprint
arXiv:1807.04740, 2018.

Ian Goodfellow. Nips 2016 tutorial: Generative adversarial
networks. arXiv preprint arXiv:1701.00160, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial nets. In Ad-
vances in neural information processing systems, pages
2672–2680, 2014.

Serge Gratton, Clément W Royer, Lúıs Nunes Vicente, and
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Multi-agent reinforcement learning: A selective
overview of theories and algorithms. arXiv preprint
arXiv:1911.10635, 2019.


