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A Proofs

Proof of Proposition 1[Anava and Levy, 2016].
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Where L is the Lipschitz constant as in assumption 3, and d is a distance measure. By placing an additional
assumption that the noise term can be bounded by a constant, |✏|  b, the variance term can be further bounded
with probability 1� � using an application of Hoe↵ding’s inequality [Anava and Levy, 2016],
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Proof of Proposition 2. By triangle inequality, we have for every i,
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The first inequality follows by assuming that 0  yi  1 and noting that 1/d�1/d(C)  0. So the first summand
is maximized by setting yj = 0 for j 2 C and second one is maximized by setting yj = 1 for j 2 D. The second
inequality follows by d � dmin. Finally, by summing over all i, we have
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This is minimized by the max-cut.



E�cient Balanced Treatment Assignments for Experimentation

A.1 Kallus [2018] and Maxcut

Given the graph, an equivalent formulation of Equation 1 is finding the weighted maximum cut on the graph (find
a subset of the vertices such that the total weight of edges connecting nodes of the two di↵erent subsets is
maximized). The equivalence is made plain by considering the binary quadratic program formulation of Maxcut
given in Equation 5,

arg max
u2{�1,1}

u
T
Lu = arg max

u2{�1,1}
u
T
Du� u

T
Gu

= arg max
u2{�1,1}

�u
T
Gu (7)

where we have defined L to be the combinatorial graph Laplacian, D � G where D is a diagonal matrix where
Di is the degree of vertex i and G is the weighted adjacency matrix. Comparing this to problem 1,
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we can see that problem 7 given by maxcut is isomorphic to problem 1, given by Kallus [2017]’s PSOD strategy.
Therefore, improved approximations to Maxcut will additionally be improved approximations to Kallus [2018].

A.2 The kernel objective of Kallus [2018] as uncentered Maximum Mean Discrepancy

The kernel objective of Kallus [2018] is defined as
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u
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where K is the Gram matrix for some reproducing kernel. By using the cyclic properties of the trace, we can
rewrite the objective in equation 8 is equivalent to
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a biased estimator of the Hilbert-Schmidt independence criterion with respect to K and the kernel given by uu
T

can be written as [Gretton et al., 2008]
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Equation 10, in turn, was shown to be equivalent to the biased estimator of the Maximum Mean Discrepancy
by Song [2008].

B Simulated data generating processes

DGP X y(0) y(1)

LinearDGP Xk = ✏k, k 2 {1, . . . , 4} X� + 1
10 ✏y(0) 1 + X� + 1

10 ✏y(1)
QuickBlockDGP Xk ⇠ U(0, 10), 8k 2 {1, 2}

Q2
k=1 Xk + ✏ 1 + y(0)

SinusoidalDGP Xk = ✏k, k 2 {1, . . . , 4} sin(X�) +
✏y(0)

10 1 + sin(X�) +
✏y(1)

10
TwoCircles latent: r ⇠ N (1 + i%2, 1

10 ) �1s+ �2r + ✏y(0) �1s+ �2r + ✏y(1)
s ⇠ U(0, 2⇡)

observed: x1 = r cos(s),
x2 = r sin(s)

Table 1: Data generating processes used in simulations. All ✏s indicate a standard normal variate and all �s
indicate a standard uniform variate. % indicates the modulo function, and i indicates a unit’s index.
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Figure 6: SoftBlock is robust to hyperparameter selection. This figure shows mean squared-error of the ATE,
mean integrated-squared-error of the CATE and time to calculate a design and perform estimation.

C Estimators for Experiments

For the estimation of ATEs for Bernoulli and rerandomization, we use regression-adjusted estimators as used in
Lin [2013]: a linear regression with covariates mean-centered and interacted with treatment. QuickBlock uses a
blocking estimator as the authors propose, and the Kallus [2018] designs use a di↵erence-in-means estimator as
proposed. The matched-pairs design takes the average in within-pair outcomes, which leads to a more e�cient
estimator than di↵erence-in-means [Imai, 2008]. When examining CATE estimators, we use random forest based
T-learners unless otherwise noted [Athey and Imbens, 2016, Künzel et al., 2019]. All methods use the same
hyperparameters, with the number of trees set at 20 ⇥ n

1
4 to ensure model complexity grows with sample size

and with maximum tree depth set at 8.

D Sensitivity to Hyperparameters

Figure 6 shows the sensitivity of the Kallus [2018] methods and SoftBlock to hyperparameters. Since both
methods are based on similarities defined by a kernel matrix, we plot the performance of these methods on
the TwoCircles problem as the bandwidth of the Gaussian kernel changes. Softblock is not at all sensitive to
hyperparameters, performing well at all values, while the Kallus [2018] methods perform well only when the
hyper-parameters are set well. In essence, these methods perform covariate adjustment a-priori, but this means
that they implicitly specify an outcome model before data is observed. As such, it is very di�cult to set these
values e↵ectively in practice, as it amounts to tuning a non-parametric model without data for cross-validation
or other model selection techniques.
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