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Abstract

In this work, we reframe the problem of bal-
anced treatment assignment as optimization
of a two-sample test between test and con-
trol units. Using this lens we provide an
assignment algorithm that is optimal with
respect to the minimum spanning tree test
of Friedman and Rafsky [1979]. This assign-
ment to treatment groups may be performed
exactly in polynomial time. We provide a
probabilistic interpretation of this process in
terms of the most probable element of de-
signs drawn from a determinantal point pro-
cess which admits a probabilistic interpreta-
tion of the design. We provide a novel formu-
lation of estimation as transductive inference
and show how the tree structures used in de-
sign can also be used in an adjustment esti-
mator. We conclude with a simulation study
demonstrating the improved e�cacy of our
method.

1 Introduction

Decision-making often requires engaging with counter-
factual questions. For instance, determining whether
to give a patient a medication depends on what their
health outcomes would have been absent the medica-
tion. One of the most successful tools for answering
these types of counterfactual questions has been ex-
perimentation. For a sample of patients, randomly
give half of them the medication and half of them a
placebo, and measure the average health outcomes for
each of the two groups. This provides unbiased esti-
mates of the typical response in the sample: the aver-
age treatment e↵ect (ATE) [Imbens and Rubin, 2015].
This does not address a doctor’s most fundamental
concern, however: how would this patient respond to
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treatment, relative to their counterfactual health out-
comes under placebo? To answer this question, it is
necessary to consider conditional average treatment ef-

fects (CATE) [Athey and Imbens, 2016]. While the lit-
erature has provided many improvements around the
design of experiments to measure the former quantity
(the ATE), in this paper, we analyze the problem of
experimental design for estimation of the CATE.

This work is concerned with extending the capabilities
of experimental design along two axes:

Experimental Design for Heterogeneous Treatment Ef-

fects. To our knowledge, this is the first work focused
on design-based solutions to the estimation of CATEs.

Computationally E�cient Exact Solutions. Both mean
(and kernel mean) based measures of imbalance and
blocking are NP-hard to optimize [Kallus, 2018, Hig-
gins et al., 2016].

Our primary contributions are:

• Motivate the estimation of CATEs around transduc-
tive learning.

• Show that the problem of good experimental design
is closely related to a ubiquitous graph-cutting prob-
lem through a bias-variance decomposition of the
design problem.

• Reorient the problem of balance around a two-
sample test between treatment and control covariate
profiles.

• Provide an e�cient approximation to this problem
based on maximum spanning trees, which optimizes
a ubiquitous graph-based two-sample test and pro-
vides highly accurate estimates of CATEs.

The structure of this paper is as follows. Section 2 de-
scribes the problem of experimental design, and esti-
mation of CATEs given a design. Section 3 provides an
overview of pre-existing work on experimental design.
Section 4 presents the problem of CATE-optimizing
experimental design, connects it to graph cutting and
discusses existing approaches through this lens. Sec-
tion 5 presents our proposed design which optimizes
test of balance based on the minimum spanning tree.

Code available at https://github.com/ddimmery/softblock.

https://github.com/ddimmery/softblock
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Section 6 shows a bevy of simulation evidence demon-
strating the strength of our proposed design.

2 Background and Problem

Description

We first give some background and notation before in-
troducing the task of this work. Throughout we will
consider three sets of variables, X 2 RD, A 2 {0, 1}
and Y 2 R. We assume that X is pretreatment, i.e.
the values are not caused by A or Y . We will also
assume that Y is given as some function of X, A, and
mean-zero noise. Given a set i = 1, . . . , N of realiza-
tions of Y and A the potential outcomes [Rubin, 2011],
Y

A=0, Y A=1 are the values of Y that would have been
observed had treatment been observed at A = 1 or
A = 0, respectively. For some mathematical state-
ments it is more convenient to annotate treatment as
being in {�1, 1}, and we will indicate this by the use of
a vector u, wherein �1 notates control and 1 indicates
treatment. Causal e↵ects are then, in turn, derived as
contrasts between potential outcomes. In this paper,
we will consider two causal estimands:

• The Conditional Average Treatment E↵ect (CATE)

is the conditional e↵ect of treatment, CATE =
E
⇥
Y

A=1
� Y

A=0
|X = x

⇤
.

• The Average Treatment E↵ect (ATE) is an
estimate of the marginal e↵ect of treatment
from a finite sample. The ATE is eas-
ily expressed as an expectation of the CATE,R
x2X E

⇥
Y

A=1
� Y

A=0
|X = x

⇤
p(x)dx.

Optimal experimental design—the central task of this
paper—considers the following problem. Given the set
of pre-treatment covariates X, how should treatment
be assigned to each individual in order to to obtain an
unbiased estimate of a causal estimand with minimal
variance? Optimal experimental design for estimat-
ing the ATE has been studied for decades (c.f., Fisher
[1935], Morgan et al. [2012], Hall et al. [1995], Kallus
[2018], Higgins et al. [2016]). In the general setting,
Kallus [2018] showed that complete randomization is
minimax optimal. However, with additional assump-
tions placed over the potential outcomes, improvement
can be made through careful allocation. One such as-
sumption, which we will employ throughout the re-
mainder of the paper, is that the potential outcomes
are smooth functions with additive noise. More pre-
cisely, we introduce the following assumptions

Assumption 1. The pre-treatment covariates, x, be-

long to a metric space, with the corresponding metric

denoted d(x, x0), and are drawn from some distribution

p(x) with finite variance. In this paper, we assume that

xi is drawn from some (possibly unknown) distribution

p(x) and that the domain is a metric space, X with the

metric dX .

Assumption 2. Each of the potential outcomes, are

drawn from the following generative process

f
A=a(Xi) = E

⇥
Y

A=a
i |Xi = x

⇤

✏
A=a
i = Y

A=a
i � f

A=a(Xi)

Where ✏
A=a

is mean zero.

Assumption 3. Each potential outcome function

f
A=a(x), a 2 {0, 1}, is Lipschitz continuous with Lip-

schitz constant, L.

3 Balance in existing designs

There have been a plethora of design procedures that
attempt to explicitly improve balance. These ap-
proaches fall into three primary camps:

• Blocking [Greevy et al., 2004, Higgins et al., 2016].
Units are divided into a partition and then a
fixed number of units are randomly given treatment
within each stratum. This ensures that treatment is
balanced on stratum indicators.

• Rerandomization [Morgan et al., 2012, Li et al.,
2018]. Units are assigned completely randomly to
treatment, then balance is checked. If imbalance is
too high, then randomization is performed again.
This process is repeated until imbalance is below
some a priori specified level.

• Optimization [Kallus, 2018, Harshaw et al., 2020].
An optimization procedure is used to find the best
vector of assignments to treatment in order to min-
imize some measure of imbalance. This assignment
may be deterministic.

These approaches can be di�cult to scale to the neces-
sary sample sizes for the online environment, as find-
ing optimally balanced treatment assignments is an
NP-hard problem.

The optimization objective most commonly employed
for optimal experimental design is mean balance (c.f.
Morgan et al. [2012], Kallus [2018]), i.e., minimizing
the distance in means between the instances of X that
are allocated to treatment and control, respectively.
This measure can be extended to incorporate higher
order and non-linear dependencies by applying a fea-
ture transformation, �, to the covariates. The result-
ing optimization problem is then given by

min
a2{0,1}

g (a�(Xi), (1� a)�(Xi))

where g(·) is a distance function. Popular choices for
g(·) are Euclidean [Hansen and Bowers, 2008], and Ma-
halanobis [Morgan et al., 2012] distance. Of particu-
lar interest to this work is the balance measure used
by Kallus [2018] which considers the mean di↵erence
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between X after projecting the covariates in to a re-
producing kernel Hilbert space (RKHS). The optimal
experimental design in this setting corresponds to solv-
ing the following binary quadratic program, termed
the pure strategy optimal design (PSOD) by its au-
thor,

min
u2{�1,1}

4

N2
u
T
Ku (1)

where K is the Gram matrix of X with respect to
an RKHS. Under smoothness assumptions on the po-
tential outcome function, the solution to PSOD was
shown to be Bayes optimal, with variance guarantess
comparable to those provided by post-hoc regression
adjustment.

While mean balance has intuitive and theoretical ap-
peal, it also comes with significant computational dis-
advantages. Kallus [2018] shows that PSOD, which ac-
comodates a large number of mean balance measures,
is equivalent to solving the balanced number partition
problem which is known to be NP-hard. The imple-
mented solution requires solving a semi-definite pro-
gram which prevents the applicability of the method
to moderately large domains (in the hundreds to thou-
sands).

4 Experimental Design for CATE

Design for the average treatment e↵ect has received
considerable attention in the literature. Less studied,
however, is design specifically targeting conditional av-
erage treatment e↵ects. Recently, this quantity has
gained substantial attention due to Athey and Imbens
[2016], Wager and Athey [2018] and the broader liter-
ature around conditional average treatment e↵ect es-
timation [Shalit et al., 2017, Shi et al., 2019]1. The
CATE is given by the di↵erence in potential outcomes
conditioned on x, Y A=0(x) � Y

A=1(x), x 2 X. The
central task considered within this paper is allocating
treatment to estimate the CATE well (we will make
this statement more formal shortly).

To motivate our design task, we begin with an esti-
mator for the conditional average treatment e↵ects.
We will restrict ourselves to distance based regression
functions,

f̂(xi) =
NX

j

wijyj s.t.

NX

j

wij = 1 (2)

Special cases of this general formulation are k-nearest
neighbors regression as well as Nadaraya-Watson ker-
nel regression. These estimators are non-parametric

1In the machine learning literature this is sometimes
referred to as “individual treatment e↵ect” estimation.

and fairly flexible. We focus on this estimator due
to its analytical tractability in combination with its
generally reasonable performance as a non-parametric
estimator. As we will show in section 6, a design which
is e↵ective for this estimator will typically also be e↵ec-
tive for other CATE estimators. Under the assumed
model, the empirical estimate of the CATE can be
written as

⌧̂i = (2ai � 1)

0

@yi �

nX

j=1

wijyj

1

A . (3)

Equation 3 can be interpreted as two independent re-
gressions inferring the potential outcomes of Y A=1 and
Y

A=0, where the predictions for observed potential
outcomes are constrained to be equal to the observed
outcome. In the conditional average treatment e↵ect
estimation literature, training an outcome for each po-
tential outcome surface is often referred to as a “T-
learner” [Künzel et al., 2019], but due to our restriction
that observed potential outcomes take their observed
values, our approach is more similar to the “X-learner”
of Künzel et al. [2019]. This restriction is also often
employed in the tranductive learning setting, for ex-
ample, by Zhu et al. [2003]. Framed in terms of trans-
ductive inference, our task of CATE estimation is to
impute the counterfactual for each unit, and this im-
putation of counterfactuals is the only way that error
is introduced into our estimation problem.

To our knowledge, this paper is the first to examine de-
signing an experiment explicitly for the estimation of
CATEs. We do so by viewing experimental design as
an optimal graph cut problem. We discuss the details
of the connection between graph cutting and experi-
mental design for CATE estimation next.

4.1 Graph cutting in experiments

A natural interpretation of the assignment problem is
to view the observations of covariates as nodes in a
graph with treatment being an indicator of missing-
ness. Through this lens we see that the task of treat-
ment assignment can be interpreted as minimizing the
risk of two interrelated regression problems: predict-
ing the control counterfactual for treatment using only
control units, and predicting the treated counterfac-
tual for control using only the treated units. The re-
sulting optimization problem is then given as

min
A

NX

i

������

X

j

(ai 6= aj)ei,jP
k (ai 6= ak)ei,k

yj � yi

������
(4)

where we refer to similarity between points as ei,j and
replace wi,j with a more explicit expression. Note that
the choice of similarity function, as before, is a design



E�cient Balanced Treatment Assignments for Experimentation

choice made by the practitioner. As with most causal
inference applications, the outcomes are unobserved
which can make reasoning over design choices di�-
cult a priori. However, after leveraging the Lipschitz
assumption (assumption 3) the following proposition
allows for a bound on the bias and variance of the
regression function.

Proposition 1. [Anava and Levy, 2016] The bias

and variance of an estimate for any one point, x
?
is

bounded by

�����

nX

i=1

w?,iyi � f (x?)

�����  Ckw?k2| {z }
variance

+L

nX

i=1

w?,id (xi, x?)

| {z }
bias

with probability 1 � �, where L is the Lipschitz con-

stant as in assumption 3, d is a distance measure,

C = b

q
2 log( 2� ), and b upper bounds noise, i.e.,

|✏|  b.

A proof is provided in the supplement for complete-
ness. Proposition 1 provides an expression for the er-
ror which relies only on observable quantities, namely
the distance between treatment and controls and the
regression weights, and an assumption on the magni-
tude of noise. The optimization problem in equation
4 can then be recast as

min
A

nX

j

Ckwjk2 + L

nX

i=1

wj,id (xi, xj)

with wj,i =
(ai 6=aj)ei,jP

k (ai 6=aj)ei,k
as in equation 4. This lens

makes explicit the tradeo↵s between bias and variance
in the design. It should come as no surprise that the
optimal design will be heavily reliant on the distribu-
tion of X and the magnitude of the noise term, i.e. the
size of b. For example, on one extreme when b is close
to zero, then the best choice will be to concentrate all
of the weight on the first nearest neighbor. As we dis-
cuss in section 4.3, this corresponds to a greedy design
which two-colors a one-nearest neighbor graph. More
generally, it is necessary to reason over trade-o↵s that
are occurring with respect to the experimental design.

In this work, we propose to view these choices by re-
casting the problem of experimental design in terms
of graph cutting. Specifically, we consider a graph, G
where the edge weights, ei,j are the similarity between
xi and xj. After remapping treatment to {�1, 1} via
u = 2a� 1, the problem of treatment assignment can
be recast as choosing an assignment. This view is quite
natural, since the set of cut edges, i.e., edges where
ai 6= aj are those which are used to infer the counter-
factuals in the nearest neighbor regression. The follow-
ing proposition makes this more formal by relating the
risk of the regression estimator to the Maxcut problem

Proposition 2.

NX

i

������

X

j

wi,jyj � yi

������


X

i

✏i +
esum �

P
i,j (ai 6= aj)eij

dmin

Where esum =
P

i,j ei,j, and dmin = mini
P

j ei,j.

The proof is provided in the supplement. The first
term is an irreducible component which corresponds
to the estimation error due to non-smoothness of the
potential outcome function. It shows the error under
an oracle scenario in which the unobserved potential
outcome for a unit is estimated based on the poten-
tial outcomes for all other units. It further presumes
this estimation is performed for every unit, which is
not possible due to the fundamental problem of causal
inference. This represents the Bayes risk of the esti-
mation problem: the lower bound of the error incurred
for this estimation. The second term is more interest-
ing, as it describes the error due to the assignment
process we choose. While esum and dmin do not de-
pend on the assignment (and therefore optimal design
need not incorporate them), the remaining piece does.
This term is the negative of the objective of the Max-
cut graph-cutting problem, which we now describe in
greater detail.

4.2 Maxcut

First, informally: maxcut divides the nodes of a graph
into two disjoint and exhaustive subsets by removing
(“cutting”) edges with the maximum edge-weights.

A common way to write this is through the use of the
graph Laplacian:

max
u2{�1,1}

u
T
Lu (5)

where u corresponds to which set each node belongs
to, denoted �1 and 1. The graph Laplacian is a ma-
trix which represents the structure of the network,
formed as the diagonal matrix of node-degree mi-
nus the incidence matrix of edge weights, D � G.
Maxcut is a canonical NP-hard problem and, is not
amenable to a polynomial-time approximation scheme
unless the unique games conjecture is true [Khot et al.,
2007, Goemans and Williamson, 1995]. Common ap-
proximation algorithms include semidefinite program-
ming [Goemans andWilliamson, 1995, Trevisan, 2012].
The best known approximation ratio for this problem,
in general, is through semidefinite programming, with
a ratio of 16

17 ⇡ 0.941. Given the di�culty of this prob-
lem, it is not possible to uniquely minimize Proposi-
tion 2 in polynomial time, so we will focus only on
e�cient algorithms for the computation of a design.
Note that the kernel allocation procedure proposed
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by Kallus [Kallus, 2018] is isomorphic to the Maxcut
problem. We provide a proof of this correspondence
in the supplement.

Certain special cases, however, allow for e�cient solu-
tions to Maxcut. Among these are particular bipartite
graphs such as forests and trees. These graphs, for
instance, admit solutions to Maxcut in linear time.

4.3 Optimal Matched Pair Designs

Propositions one and two can help shed light on com-
mon experimental designs, such as the matched pair
design [Imai, 2008].

Kallus [2018] demonstrates that, when outcomes are
Lipschitz, implementing this design by finding the max
weight matching is optimal. This can be e�ciently
implemented using, e.g. the Edmonds’ algorithm [Ed-
monds, 1967]. This optimality result, however, re-
stricts the set of designs to those which may be de-
fined as a matching on the graph. A graph match-
ing, of course, may have no two edges which share
an end-point. Our result demonstrates that a wider
class of designs may be considered, opening the door
to stronger assignment mechanisms.

In the observational literature on matching methods,
there is a distinction drawn between greedy and so-
called “optimal” matching [Stuart, 2010, Hansen and
Klopfer, 2006, Parikh et al., 2018]. The distinction
being that a greedy matching algorithm can “double
dip,” using the same unit as the matched control for
multiple treated units. The experimental design based
on optimal matching is the Kallus [2018] matched pair
design, but we can similarly form a greedy design by
two-coloring the one-nearest neighbor graph. The de-
composition of Proposition 1 gives us a ground on
which to compare these designs. The greedy design
ensures minimal pointwise bias for the CATE by min-
imizing the distance to a match. While providing the
minimum pointwise bias of the design, the variance
properties are not so clearcut. Depending on specific
properties of the data, either the greedy design or the
matched-pair design could be lower variance.

4.4 On Optimal Designs

We now turn to the question: can we construct a fea-
sible “optimal” design? To provide a specific example
from the previous section, how should practitioners de-
cide between greedy designs (which may imply higher
leverage for certain observations) and non-greedy de-
signs (which may imply higher bias for the imputa-
tion of CATEs for some units)? This question does
not have easy answers. Indeed, a simple example can
illustrate this conundrum. Suppose a graph with one

point in the center in two dimensions with n�1 points
surrounding it in a circle. Further suppose that each of
these points is r units away from the centerpoint, but
s > r units away from the next closest point on the
exterior. Assume that each unit has a residual, ✏ (as in
Assumption 2), which is drawn from a mean zero nor-
mal distribution with standard deviation �c for the
center point and �e for exterior points. The greedy
design would ensure that the center and the exterior
points received di↵erent treatments. The matched pair
design would pair the center with one random exterior
point, and then match all other exterior points with
a neighboring exterior point. Then we can write the
expectation of the bound in equation 2 for the center
point in the matched-pair design as �e + Lr. For one
point in the exterior, that quantity is �c + Lr, while
for all others it is �e + Ls. For the greedy design,
this quantity would instead be �e

n�1 + Lr for the cen-
ter point. For all exterior points, the bound would be
�c + Lr.

Depending on the relative values of �c versus �e and
the distance s versus r, either the greedy design or the
matched-pair design could minimize the bound. That
is, if �c is very large, then the greedy design will tend
to exhibit variance properties that overwhelm its low
bias. Similarly, if �e tends to be larger (or s � r),
then the matched-pair design will tend to have un-
acceptably large biases that will overwhelm its vari-
ance properties. Of course, in the asymptotic regime,
only bias matters and thus the greedy design will min-
imize this bound. In finite samples, this thoroughly
unsatisfying bias-variance tradeo↵ demonstrates that
the optimal design depends crucially on properties of
the data which are unknowable a priori. In short, we
do not seek an optimal design, but instead simply de-
signs that make a reasonable tradeo↵ between bias and
variance for many applied situations.

Practitioners who understand more about their data,
such as the extent of heteroskedasticity and the
smoothness of the conditional expectation function
can therefore make better decisions about design than
any overarching theoretical statement that we can pro-
vide here.

5 Novel Designs through Cutting

Spanning Trees

We begin by limiting our space of algorithms to sce-
narios in which Maxcut can be e�ciently solved. Since
trees and forests admit linear-time solutions to Max-
cut, we focus on them.

In proposition 2, it is clear that integrated absolute
bias is minimized when, for each unit, the similarity to
the units with positive weights (i.e. the impute coun-
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(a) Matched Pairs (b) Greedy Neighbors (c) SoftBlock

Figure 1: Three di↵erent designs on the same data.

terfactual) are maximized, as discussed in Section 4.3.
The easiest way to ensure this is to match each unit
with its closest neighbor in the graph and ensure that
each neighbor in this newly sparsified graph receives
di↵erent treatments than its neighbors. This solution
is where we begin; we call this design “GreedyNeigh-
bors”, because the design is realized by solving Max-
cut exactly on the one-nearest-neighbor graph. The
nearest neighbor graph can be computed e�ciently in
O(n log n) time by using a kd-tree. The one-nearest-
neighbor graph is a forest, so solving Maxcut is triv-
ially accomplished in O(n) by greedily walking the
forest alternating treatment assignment. Thus, this
design is realizable in aggregate O(n log n) time. An
important thing to note about this design in con-
trast to typical matched-pair designs is that a unit
may be “matched” to more than one unit. Note that
there are many realizable assignments with the Gree-
dyNeighbors design, as each disconnected subgraph of
the nearest-neighbor graph is assigned independently.
This implies that there are 2M possible assignments,
where M is the number of disconnected subgraphs of
the nearest-neighbor graph.

Algorithm 1: Deterministic Friedman-Rafsky
Minimizing Design

input : X 2 RD

output: Assignments A, Spanning Tree T

G Similarity matrix constructed from X

T  Maximum Spanning Tree(G)
A MAXCUT(T )

This design, however, despite minimizing bias on the
CATE estimates, is needlessly high variance. Each
added edge will stabilize the variance component in the
decomposition in proposition 1. Thus, adding edges
will reduce the variance of the ultimate solution (at
the expense of some additional possibility for bias).
We propose a design which manages this tradeo↵ in a
computationally tractable way based on the maximal

spanning tree of the original similarity graph. Algo-
rithm 1 summarizes this design. In short, the maximal
spanning tree (MST) is the largest tree over the graph
which contains no loops or cycles. The maximal span-
ning tree always contains the nearest neighbor graph
(as in, all edges of the nearest neighbor graph also are
within the maximal spanning tree). Since the MST is a
tree, it can also be solved trivially by Maxcut in O(n).
The MST itself can be computed in O(n log n). Thus,
the full procedure requires, again, only O(n log n) time
complexity. Adding any additional edge to the MST
which fails to preserve the bi-partiteness of the graph
will make it no longer amenable to a greedy solution
to Maxcut. This makes it the largest graph (in terms
of total edge-weight), for which Maxcut is necessarily
able to be e�ciently solved. We refer to this algo-
rithm as “SoftBlock”, since it softens the idea of a
blocked design by allowing for substantial correlations
between any two units (rather than simply units which
lie within the same block).

In Figure 1, a fixed set of covariate observations in
2 are assigned treatment according to three di↵erent

methods. As can be seen, the graph undergirding the
Greedy Neighbors design is nested within the MST
of SoftBlock. The distinction between Matched Pairs
and the Greedy Neighbors design is that all nodes in
the former have degree one, while the latter design has
no such restriction.

5.1 Probabilistic Interpretation

We now provide a probabilistic interpretation of the
proposed design. Starting with the observation that
the set of all random spanning trees defines a de-
terminantal point process (DPP) where the probabil-
ity of a spanning tree is proportional to the prod-
uct of its edge weights [Lyons and Peres, 2017], i.e.
p(T ) /

Q
i,j2E(T ) ei,j . This can be trivially modified

to represent a distribution where each tree’s probabil-
ity is given by its respective balance by first consid-



David Arbour, Drew Dimmery, Anup Rao

ering an exponentiation of the weights, i.e., p(T ) /
Q

i,j2E(T ) exp (ei,j) = exp
⇣P

i,j2E(T ) ei,j

⌘
.

It’s easily observed that when the sum of the weights is
maximized (that is, the MST), the probability of the
tree is also maximized. Thus, SoftBlock, the design
based on the MST, is the MAP estimate from this
DPP.

5.2 Balance and Graph Two Sample Tests

All designs we have considered correspond to a partic-
ular test of balance between treated and control units.
For example, rerandomization using the Mahalonobis
distance minimizes a t-test, and as we detail in the ap-
pendix, problem 1 corresponds to minimizing an un-
centered version of maximum mean discrepancy [Gret-
ton et al., 2012].

As it turns out, SoftBlock shares an interesting connec-
tion to the minimum spanning tree test of Friedman
and Rafsky [1979] Specifically, the graph based test
addresses the problem of detecting di↵erences between
two distributions by viewing the problem in terms of
a cut on a minimum spanning tree. The procedure is
as follows. The two samples X0, and X1 are pooled
and a similarity graph, G is constructed according to
an analyst specified similarity metric. The minimum
spanning tree, T for G is then found. The test statis-
tic is defined as the number of edges in T that con-
nect samples from X0 and X1, i.e., FR(X0,X1) =P

xi2X0,xj2X1

(xi,xj)2E(T )
N�1 , where E(T ) are the set

of edges in the minimum spanning tree, T , and N

are the total number of samples in the pooled dataset.
The test is minimized if the two samples share only one
edge in the spanning tree, and maximized when edges
connect units from di↵erent samples as much as pos-
sible. This procedure was shown to be asymptotically
normal and consistent by Henze et al. [1999]. The
SoftBlock assignment mechanism directly minimizes
the Friedman-Rafsky test statistic. By optimizing a
consistent test of balance, our procedure asymptoti-
cally guarantees balance on covariates between groups.
Given that this is a consistent test, we can be sure that
even though we aren’t directly optimizing linear bal-
ance, we will converge to linear balance in the limit. In
finite samples, this procedure may sacrifice some de-
gree of linear balance relative to traditional blocking
procedures. Essentially, linear balance implies a com-
putationally intractable (i.e. NP-hard) exact solution,
while the use of a di↵erent metric of balance provides
a simple polynomial time algorithm (with equivalence
to the linear problem in the limit).
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Figure 2: Runtime of various methods for experimen-
tal design. Both axes are logarithmic.

6 Experiments

In this section, we present experiments demonstrating
the e↵ectiveness of SoftBlock. We begin by describing
the methods we benchmark against:

• Bernoulli randomization. This method flips a fair
coin for each unit. This method is minimax optimal
for the ATE as per Kallus [2018].

• Rerandomization. The method of Morgan et al.
[2012] randomizes, checks balance (by Mahalanobis
distance) and, if it’s too high, repeats. In our im-
plementation, we use the heuristic of Kallus [2018],
which accepts a randomization with only 1% prob-
ability. Thus, it ensures that the chosen design has
one of the 1% most balanced designs (in terms of
Mahalanobis distance).

• QuickBlock. The method of Higgins et al. [2016]
finds an approximate blocking solution based on a
k nearest neighbor graph. They find that it per-
forms comparably or better to Greevy et al. [2004]
“optimal” blocking.

• Kallus’ PSOD and Heuristic Designs. These designs
of Kallus [2018] optimize assignments to minimize
mean imbalance in an RKHS.

• Optimal matched pair designs. These designs solve
the maximum weight matching problem and then
randomize which unit in each pair receives treat-
ment [Kallus, 2018, Imai, 2008].

We consider a variety of linear and non-linear data
generating processes, defined in detail in Table 1 in the
Appendix. The QuickBlockDGP was the primary sim-
ulation used in Higgins et al. [2016], consisting of four
uniform random variables multipled together. We ad-
ditionally provide a simulation with a linear outcome,
one based on a sinusoid, and one with covariates dis-
tributed along two circumscribed circles.

Figure 2 shows the runtimes of these various meth-
ods on the TwoCircles data generating process. At
very low sample sizes, Kallus’s [2018] PSOD method
is the fastest way to design an experiment and es-
timate e↵ects, but by moderate sample sizes is out-
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Figure 3: SoftBlock performs well across a wide-array
of data-generating-processes and sample sizes. These
plots display mean squared-error and mean integrated-
squared-error for the ATE and CATE, respectively.
These values are multiplied by a function of sample
size for ease of comparison.

paced by QuickBlock, SoftBlock and the GreedyNeigh-
bors methods. SoftBlock is faster than QuickBlock
at nearly all sample sizes, but the two approaches in-
crease computational time at a similar rate.

Figure 3 shows the performance of the methods on the
simulation setups in Table 1. Note that values in this
chart are normalized for sample size (errors are mul-
tiplied by n

1/K to allow for easier comparison across
a wide array of sample sizes). In the LinearDGP, the
methods which estimate the ATE with Lin’s [2013]
regression-adjustment method are, in fact, correctly

specified parametric models. As such, they (Reran-
domization, Greedy Nearest Neighbors and Bernoulli
randomization) have much lower error than competi-
tor methods. SoftBlock, however, converges to nearly
the same error by around n = 10000. In the Lin-
earDGP, SoftBlock and Greedy Nearest Neighbors are
substantially more e↵ective at estimating the CATEs
than competitor methods, with SoftBlock outperform-
ing Greedy Nearest Neighbors. Similar patterns hold
in terms of the CATE on all DGPs, with QuickBlock
performing the closest to SoftBlock, particularly at
higher sample sizes. For estimating the ATE on the
non-linear DGPs, SoftBlock is nearly always the most
e↵ective method, often substantially so, for example
in moderate sample sizes on the QuickBlockDGP. The

comparison between the GreedyNeighbors design and
SoftBlock is informative, since the MST always con-
tains the nearest neighbor graph. SoftBlock has two
main advantages over this design. First, it reduces
variance by using more than just the closest neigh-
bor (for instance, sometimes the two nearest neigh-
bors are both very close, so it would be wise to use
both of them). Second, by being a single connected
graph, it ensures that the assignments across di↵er-
ent pairs of nearest neighbors are “lined up”. That
is, it avoids certain bad randomizations, in which, for
example, two nearby edges are oriented in the same di-
rection wherein the unit with larger covariate value is
assigned treatment in both pairs. The cut on the MST,
on the other hand, is more likely to insulate against
this eventuality by connecting these subgraphs and en-
suring the orientation of treatments do not match.

Figure 4 shows the performance of the design-based
estimators for CATEs. In contrast to the previous
figure, which estimates CATEs with a random for-
est T-learner, this figure shows the CATEs estimated
by only the specific estimator implied by the design.
This means that, for a blocking estimator, a di↵erence-
in-means estimator is used within each block to im-
pute conditional e↵ects (which are assumed constant
within blocks). For SoftBlock, the CATE estimator
is the di↵erence of the observed ego unit and its syn-
thetic counterfactual constructed by the weighted av-
erage of its neighbors in the minimum-spanning-tree
as analyzed in section 4.1. In this comparison, Soft-
Block performs substantially and consistently better
than other designs. The comparison to blocking meth-
ods in this experiment demonstrate why SoftBlock is
able to do better at estimating the CATE than other
methods: it is optimized to ensure good interpolation
across the entire space. In particular, we can once
again see as informative its comparative stability rela-
tive to the matched-pair designs (note that the Kallus
[2018] matched-pair design is infeasibly slow to display
above sample sizes of 100 in this simulation).

Figure 5 shows the performance of various methods
on the IHDP simulation study, as introduced by Hill
[2011]. We compare using setting “B”, in which the
outcome model is nonlinear and the treatment e↵ect
is not constant. In this data, SoftBlock provides the
lowest error estimates of the ATE, and all methods
tend to perform well for estimating the CATE with a
random forest T-learner.

In the appendix, figure 6 shows the sensitivity of the
Kallus [2018] methods and SoftBlock to hyperparame-
ters (SoftBlock is very robust, while the Kallus [2018]
PSOD method only performs comparably when hyper-
parameters are chosen optimally).
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Figure 4: The design-based estimators from SoftBlock
are appreciably better than existing methods. Mean
squared-error and mean integrated-squared-error for
the design-based estimators of the ATE and CATE,
respectively. These values are multiplied by a function
of sample size for ease of comparison.
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Figure 5: Mean squared-error of the ATE, mean
integrated-squared-error of the CATE and time to cal-
culate a design and perform estimation.

7 Conclusion

In this paper, we’ve provided a framework through
which to think about designs for conditional average
treatment e↵ect estimation and provided a formula-
tion of the problem as graph cutting. Through this
framework we presented two novel experimental de-
signs which are well-suited to estimating CATEs and
compare them to prior work. Simulations demonstrate
that this method provides an improvement in terms of
both computational tractability as well as e�ciency.
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