
Setareh Ariafar, Zelda Mariet, Dana Brooks, Jennifer Dy, and Jasper Snoek

A Sub-sampling Noise Analysis

As mentioned in Section 2, many multi-task BO meth-
ods, including Fabolas, treat the training data size as a
an additional hyperparameter and use the performance
of one subset of training data to extrapolate to the per-
formance over the entire dataset. To prevent bias, these
methods shu✏e the data before each sub-sampling step.
This shu✏ing, as well as the fact that these methods
rely on one subset of data for each round of training,
adds further sub-sampling noise to the observations;
this noise is non-stationary relative to the subset size,
as mentioned in Klein et al. [2016a,b].

Typically, GPs in the context of BO consider a homoge-
neous noise which is added to the diagonal of the Gram
matrix (see Eq. (1)) and is estimated either with maxi-
mum likelihood or MCMC. Klein et al. [2016b] show
that the sub-sampling noise is negligible relative to this
homogeneous noise for an SVM on MNIST. Here, we
further investigate this for neural networks. We con-
sider a ResNet on CIFAR-10 with four hyperparameter
(see 4.2 for details). We drew 10 hyperparameter sets
from a Latin hypercube design and divided the training
size 2 [128, 50000] into 5 linearly spaced intervals.

Given a hyperparameter set xi and the subset size
sj , we trained on xi with 5 di↵erent randomly chosen
training subsets with size sj . Let yk(xj , si) denote the
validation error of each such run. We estimated the
sub-sampling noise as

�2

subsampling
(xi, sj) =

1

5

5X

k=1

(yk(xi, sj)� µi,j)
2,

where µi,j = 1/5
P

k yk(xi, sj). Moreover, using the
collected data, we have estimated the noise of GP
using maximum likelihood and MCMC assuming a
horseshoe prior with length scale 0.1. Fig. 4 (right)
shows the mean and the standard deviation (over all
hyperparameter set) of the estimated noises given each
subset size (mean and standard deviation are taken over
the results of all hyperparameter sets at a fixed subset
size). For the smallest and largest subset sizes (s=128
and s=50000), the GP noise has mostly captured the
sub-sampling noise, since the validation error results
are more consistent (i.e., given a very small data subset,
the error is likely to be high).

However, for intermediate subset sizes, the GP noise
has significantly underestimated the sub-sampling noise.
This shows that selected training examples can signifi-
cantly a↵ect the GP model and hence negatively impact
BO performance. Hence, although relying on one ran-
domly chosen subset of data decreases the training cost,
it may also significantly hinder optimization. On the
other hand, spending additional e↵ort to select more

Figure 4: Estimated sub-sampling noise and GP noise on
the collected validation errors using US. The sub-sampling
noise is larger than the estimated GP noise particularly for
intermediate sizes.

informative training examples, as done by IBO, can
benefit the overall multiround optimization process.

B Multi-task Kernel Design

We define the multi-task kernel for the GP that models
fn(xi | Bi) as

k(f)
�
(x,B), (x0, B0)

�
= k(f)X (x, x0) · k(f)B (B,B0),

with the sub-task kernels defined as

k(f)X (x, x0) = Matérn5/2(x, x
0)

k(f)B (B,B0) = (1�B)⌫(1�B0)⌫ + 1.
(7)

We choose the covariance function

k(c)
�
(x,B), (x0, B0)

�
= k(c)X (x, x0) · k(c)B (B,B0),

where this time we modify the kernel on B to reflect
that larger B increases training time:

k(c)X (x, x0) = Matérn5/2(x, x
0),

k(c)B (B,B0) = B�B0� + 1.
(8)

C Implementation Details

For IBO, we use task kernels k(f)B (Eq. 7) and k(c)B
(Eq. 8), with kernel hyperparameters � = 1 and ⌫ = 2.
Following [Snoek et al., 2012], we marginalize over the
GPs’ hyperparameters using MCMC for all methods.
To set the time budget, we fix a total number of BO it-
erations for each method; the time at which the fastest
method completes its final iteration acts as the max-
imum amount of time available to any other method.



Faster & More Reliable Tuning of Neural Networks: Bayesian Optimization with Importance Sampling

All initial design evaluations also count towards the run-
time; this slightly advantages non-IS methods, which
have cheaper initializations.

We report the performance of each method as a func-
tion of wall-clock time, since the methods di↵er in
per-iteration complexity (App. 5 reports results vs. it-
eration number). We measure the performance of each
method by taking the predicted best hyperparameter
values x⇤ after each BO iteration, then training a model
with hyperparameters x⇤, using the entire training set
and vanilla SGD. Recall that for Fabolas, Fabolas-IS,
and IBO, the incumbent x⇤ is the set of hyperparam-
eters with the best predicted objective on the target
task (e.g., using the full training data for Fabolas).

We run each method five times unless otherwise stated,
and report the median performance and 25th and 75th

percentiles (mean and standard deviation results are
included in Appendix F.1 for completeness). We have
included the following baselines:

– ES: Bayesian optimization with the entropy search
acquisition function [Hennig and Schuler, 2012],

– Hyperband: the bandits-based hyperparameter tun-
ing method introduced in [Li et al., 2016],

– ES-IS: BO with entropy search; inner optimization
is performed using IS. For each black-box query, we
draw the presample size B uniformly at random from
{2, . . . , 6}⇥ batch size as prescribed in [Katharopou-
los and Fleuret, 2018]; B is constant during the n
rounds of SGD.

– Fabolas-IS: Fabolas, training with SGD-IS. For this
method, a fraction s of the training data is uniformly
chosen as in Fabolas, but training is performed with
SGD-IS. The pre-sample batch size B is the randomly
uniformly sampled in {2, . . . , 6}⇥ batch size.

All methods are initialized with 5 hyperparameters
drawn from a Latin hypercube design. For IBO, we
evaluate each configuration on the maximum value of
its target task B. For Fabolas, Klein et al. [2016a] sug-
gest initializing by evaluating each hyperparameter on
an increasing series of task values. This aims to capture
the task variable’s e↵ect on the objective. However,
we empirically observed that following an initial design
strategy similar to IBO’s, i.e., evaluating each hyperpa-
rameter on the maximum target value s, worked better
in practice for both Fabolas and Fabolas-IS. This is the
method we use in our experiments; App. F includes
results for both initialization schemes.

For IBO, Fabolas-IS and ES-IS, we reparameterize the
pre-sample size B as B = b⇥ sB . As recommended by
Katharopoulos and Fleuret [2018], we set sB 2 [2, 6].
For Fabolas-IS, if B is larger than the training subset

size, we use the entire subset to compute the importance
distribution.

In experiment 4.1, following [Dai et al., 2019], we
tune six hyperparameters: number of convolutional
filters nc 2 {128, . . . , 256}, number of units in the
fully connected layer nu 2 {256, . . . , 512}, batch size
b 2 {32, . . . , 512}, initial learning rate ⌘ 2 [10�7, 0.1],
weight decay � 2 [10�7, 10�3], and regularization
weight � 2 [10�7, 10�3]

In experiments 4.2 and 4.3, we tune four hyperparame-
ters: initial learning rate ⌘ 2 [10�6, 1], weight decay
� 2 [10�4, 1], momentum ! 2 [0.1, 0.999] and L2 regu-
larization weight � 2 [10�6, 1]. Following Klein et al.
[2016a], all but the momentum are optimized over a
log-scale search space. ES and Fabolas variations are
run using RoBO. For importance sampling, we used the
code provided by Katharopoulos and Fleuret [2018].

D Feed-forward Neural Network on

MNIST

Our first experiment is based on a common Bayesian
optimization benchmark problem [Falkner et al., 2018,
Domhan et al., 2015, Hernández-Lobato et al., 2016].
We tune a fully connected neural network using RM-
SProp on MNIST [LeCun, 1998]. The number of train-
ing epochs n and the number of BO rounds are set to
50. We tune six hyperparameters: number of hidden
layers, number of units per layer, batch size, learning
rate, weight decay, and dropout rate (see App. D).

Given the well-known straightforwardness of the
MNIST dataset, we do not expect to see significant
gains when using importance sampling during training.
Indeed, we see that all methods perform similarly after
exhausting their BO iteration budget, although Fabo-
las does reach a low validation error slightly earlier on,
since training on few data points is su�cient.

Per BO iteration (Fig. 5, last row), IBO is amongst
the best performing methods gaining higher utility
compared to the others. However, since performing
importance sampling is expensive, IBO’s performance
degrades over wall-clock time. After spending roughly
30% of the time budget (around two hours), Fabolas
outperforms the other methods. This is expected since
Fabolas utilizes cheap approximations by using train-
ing subsets. Although such approximations are noisy,
we speculate that it does not significantly harm the
performance, specially for simpler datasets and models
such as a feed-forward network on MNIST.

We tune six hyperparameters: number of hidden
layers n` 2 {1, . . . , 5}, number of units per layer
nu 2 {16, . . . , 256}, batch size b 2 {8, . . . , 256}, ini-
tial learning rate ⌘ 2 [10�7, . . . , 10�1], weight decay



Setareh Ariafar, Zelda Mariet, Dana Brooks, Jennifer Dy, and Jasper Snoek

� 2 [10�7, 10�3] and dropout rate ⇢ 2 [0, 0.5]. Fol-
lowing [Falkner et al., 2018], the batch size, number of
units, and learning rate are optimized over a log-scale.

All methods are run for 50 BO iterations. The perfor-
mance is averaged over five random runs and shown
in the last row of Figure 5 (median with 25 and 75
percentiles over time and iteration budget) and Figure
6 (mean with standard deviation over time).

E IBO scales with dataset and

network complexity

IBO improves upon existing BO methods, moreso when
tuning on large complex datasets and architectures. To
illustrate, Figure 5 includes the results of all experi-
ments over iteration budget (left column) and wall-clock
time budget (right column). Moreover, the plots are
sorted such that complexity of dataset and model archi-
tecture decreases along the rows; i.e., the most straight-
forward problem, FCN on MNIST, lies in the bottom
row and the most challenging experiment, ResNet on
CIFAR100 is in the top row. In the iteration plots (left
column), IBO is consistently amongst the best meth-
ods (lower curve denotes better performance), achieving
high utility per BO iteration. However, since doing
importance sampling is inherently expensive, the ad-
vantage of IBO over wall-clock time gradually manifests
once the tuning becomes more challenging. Specifically,
moving from the bottom to the top, as the complex-
ity level of tuning increases, IBO starts to outperform
the rest from and earlier stage and with an increasing
margin over wall-clock time (right column).

F Initializing Fabolas

Conventionally, Bayesian optimization starts with eval-
uating the objective at an initial set of hyperparame-
ters chosen at random. To leverage speedup in Fabo-
las, [Klein et al., 2016a] suggests to evaluate the ini-
tial hyperparameters at di↵erent, usually small, sub-
sets of the training data. In our experiments, we
randomly selected 5 hyperparameters and evaluated
each on randomly selected training subsets with sizes
{ 1

128
, 1

64
, 1

32
, 1

16
} of the entire training data. However,

our experimental results show that Fabolas achieves
better results faster if during the initial design phase,
the objective evaluation use the entire training data.
Figure 7 illustrates this point for CNN and ResNet
on CIFAR-10. Fabolas with the original initializa-
tion scheme performs 20 evaluations (5 hyperparame-
ters each evaluated at 4 budgets) where with the new
scheme, Fabolas initializes with 5 evaluations (5 hy-
perparameters each evaluated at 1 budget). The plots
show the mean results (with standard deviation) av-

eraged over five and three runs for CNN and ResNet.
Overall, the Fabolas with new initialization achieves
better average performance.

Figure 6: These plots show the mean performance (with
standard deviation) of all methods for all the experiments.
IBO consistently achieves amongst the lowest validation
errors at the maximum budget. For CNN on CIFAR10,
IBO su↵ers 1 relatively weak run (out of 5 total runs) which
a↵ects the mean and standard deviation . For a di↵erent
perspective, see Fig. 5 reporting median and 25/75 %.

F.1 Mean and Standard Deviation Results

For completeness, we include mean and standard devi-
ation of the results in Fig. 6.

Figure 7: Comparison between two initialization schemes
of Fabolas for CNN and ResNet on CIFAR-10. The dashed
lines (left column) show the number of initial design evalu-
ations for each method, immediately followed by the start
of BO. We observe that with the new initial design scheme,
Fabolas can potentially start progressing at a smaller itera-
tion and a lower time, and achieve a reduced variance.



Faster & More Reliable Tuning of Neural Networks: Bayesian Optimization with Importance Sampling

Figure 5: Average performance of all methods for all experiments as a function of both iteration budget (left column) and
wall-clock time (right column). Each row represents one experiment such that the di�culty of tuning increases from the
bottom row to the top i.e., the most straight-forward problem, FCN on MNIST, lies in the bottom row and the most
challenging benchmark, ResNet on CIFAR100 is in the top row. In the iteration plots, IBO is consistently amongst the
best methods (lower curve denotes better performance), achieving high utility per BO iteration. However, since doing
importance sampling is inherently expensive, the advantage of IBO over wall-clock time gradually manifests once the
tuning becomes more challenging. Specifically, IBO starts to outperform the rest earlier with an increasing margin over
wall-clock time, the more di�cult benchmarks become (from the bottom row to the top).


	Introduction
	Related work
	Importance sampling for BO
	Surrogate model quality vs. computational budget
	Importance sampling for loss minimization
	Multi-task BO for importance sampling

	Experiments
	CNN on CIFAR-10
	Residual Network on CIFAR-10
	Residual Network on CIFAR-100

	Conclusion
	Sub-sampling Noise Analysis
	Multi-task Kernel Design
	Implementation Details
	Feed-forward Neural Network on MNIST
	IBO scales with dataset and network complexity
	Initializing Fabolas
	Mean and Standard Deviation Results


