Faster & More Reliable Tuning of Neural Networks: Bayesian
Optimization with Importance Sampling

Zelda Mariet
Google

Setareh Ariafar*
Google

Abstract

Many contemporary machine learning models
require extensive tuning of hyperparameters
to perform well. A variety of methods, such
as Bayesian optimization, have been devel-
oped to automate and expedite this process.
However, tuning remains costly as it typi-
cally requires repeatedly fully training mod-
els. To address this issue, Bayesian optimiza-
tion has been extended to use cheap, partially
trained models to extrapolate to expensive
complete models. This approach enlarges the
set of explored hyperparameters, but includ-
ing many low-fidelity observations adds to
the intrinsic randomness of the procedure and
makes extrapolation challenging. We propose
to accelerate tuning of neural networks in a
robust way by taking into account the rel-
ative amount of information contributed by
each training example. To do so, we leverage
importance sampling (IS); this significantly
increases the quality of the function evalu-
ations, but also their runtime, and so must
be done carefully. Casting hyperparameter
search as a multi-task Bayesian optimization
problem over both hyperparameters and IS
design achieves the best of both worlds. By
learning a parameterization of IS that trades-
off evaluation complexity and quality, our
method improves upon validation error, in
the average and worst-case, while using higher
fidelity observations with less data. We show
that this results in more reliable performance
of our method in less wall-clock time across a
variety of datasets and neural architectures.

*Work done while at Northeastern University.

Proceedings of the 24'" International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2021, San Diego,
California, USA. PMLR: Volume 130. Copyright 2021 by
the author(s).

Dana Brooks
Northeastern University Northeastern University

Jennifer Dy Jasper Snoek

Google

1 Introduction

The incorporation of more parameters and more data,
coupled with faster computing and longer training
times, has driven state-of-the-art results across a vari-
ety of benchmark tasks in machine learning. However,
careful model tuning remains critical in order to find
promising hyperparameters, architecture and optimiza-
tion settings. This tuning requires significant experi-
mentation, training many models, and is often guided
by expert intuition, grid search, or random sampling.
Such experimentation multiplies the cost of training,
and incurs significant financial, computational, and
even environmental costs.

Bayesian optimization (BO) offers an efficient alter-
native when the tuning objective can be modeled by
a surrogate regression [Bergstra et al., 2011, Snoek
et al., 2012], or when one can take advantage of re-
lated tasks [Swersky et al., 2013] or strong priors over
problem structure [Swersky et al., 2014, Domhan et al.,
2015]. BO optimizes an expensive function by itera-
tively building a relatively cheap probabilistic surrogate
and evaluating a balanced combination of uncertain and
promising regions (exploration vs. exploitation). In the
context of neural network hyperparameter optimiza-
tion, BO typically involves an inner loop of training a
model given a hyperparameter configuration, and then
evaluating validation error as the objective to be opti-
mized. This inner loop is expensive and its cost grows
with the size of the dataset. Training modern models
even once may require training for days or weeks.

One strategy to mitigate the high cost of hyperparam-
eter tuning is to enable the BO algorithm to trade
off between the value of the information gained from
evaluating a hyperparameter setting and the cost of
that evaluation. [Swersky et al., 2013] and [Klein et al.,
2016a] use multi-task BO, evaluating models trained
on randomly chosen subsets of data to obtain more
numerous, but noisier and less informative, evaluations.

The intrinsic randomness of BO is a less explored as-
pect which can significantly affect optimization per-
formance [Lindauer et al., 2019, Bossek et al., 2020].

Faster & More Reliable Tuning of Neural Networks: Bayesian Optimization with Importance Sampling

Sources of randomness include the size and selection
of the initial design and modeling choices of the proba-
bilistic surrogate. Sub-sampling data also introduces
an additional source of noise, which is non-stationary
relative to the subset size and data distribution.

To alleviate the high cost of tuning and control the ran-
domness due to data sampling, we propose Importance-
based Bayesian Optimization (IBO). Rather than de-
faulting to cheap evaluations, BO identifies situations
where spending additional effort during training to ob-
tain a higher fidelity observation is worth the incurred
computational cost. To achieve this, IBO takes into
account the training data and focuses the computa-
tion on more informative examples. Specifically, IBO
models a distribution over the location of the optimal
hyperparameter configuration, and allocates experimen-
tal budget according to cost-adjusted expected reduc-
tion in entropy [Hennig and Schuler, 2012]. Therefore,
higher fidelity observations provide a greater reduction
in entropy, albeit at a higher evaluation cost. At

each training step, IBO allocates effort while training
a network based on which training examples should be
prioritized. IBO starts from treating the training ex-
amples uniformly while keeping track of the estimated
impact of each example on the model, and switches
to importance-weighted updates when this impact has
become sufficiently large.

Although such higher-fidelity evaluations benefit the
surrogate model and the extrapolation procedure, they
also add significant overhead cost, which counts towards
the total available computational budget. Balancing
the cost of the training inner loop with BO outer loop is
non-trivial; if done naively, the overall tuning procedure
will be substantially slower. To address this issue, we
adopt a multi-task Bayesian optimization formulation
for IBO which dynamically adjusts a trade-off between
the cost of training a network at higher fidelity and
getting more but noisier evaluations (Fig. 1).

This approach allows us to obtain higher quality black-
box function evaluations only when worthwhile, while
controlling the average cost of black-box queries. There-
fore, we are able to tune complex network architectures
over challenging datasets in less time and with better
results compared to the existing state-of-the-art BO
methods . Tuning a ResNet on CIFAR-100, IBO im-
proves the validation error by > 4% over the next best
method; other baselines are not able to reach IBO’s
performance, even with additional computational bud-
get. Furthermore, by prioritizing more informative
training examples, IBO also improves the worst-case
performance of hyperparameter tuning.

Contributions. We introduce a multi-task Bayesian
optimization framework, IBO, which takes into ac-
count the contribution of each training point during
the evaluation of a candidate hyperparameter. To do
0, IBO optimizes the importance sampling (IS) trade-
off between quality and runtime while simultaneously
searching hyperparameter space. We show empirically
that the computational burden incurred by IS is more
than compensated for by the principled search through
hyperparameter space that it enables. We observe
that IBO consistently improves over a variety of base-
line BO methods. On more complex datasets, IBO
converges significantly faster in wall-clock time than
existing methods and furthermore reaches lower valida-
tion errors, even as other methods are given larger time
budgets. Moreover, IBO improves upon worst-case
error, proving to be reliable for tuning neural networks.

2 Related work

Several different methods have been proposed to ac-
celerate the hyperparameter tuning process. Swersky
et al. [2013] proposed Multi-Task Bayesian Optimiza-
tion (MTBO), which performs surrogate cheap func-
tion evaluations on a randomly chosen small subset of
training data which is then used to extrapolate the per-
formance on the entire training set. Motivated by this
work, Klein et al. [2016a] introduced Fabolas, which
extends MTBO to also learn the sufficient size of train-
ing data. MTBO and Fabolas avoid costly evaluations
by training on small datasets uniformly chosen at the
beginning of each training round.

Another body of work involves modeling the neural
network’s loss as a function of both the hyperparame-
ters and the inner training iterations. Then, the goal
is to extrapolate the ultimate objective value and stop
underperforming training runs early. Work such as
[Swersky et al., 2014, Domhan et al., 2015, Dai et al.,
2019, Golovin et al., 2017] falls under this category.
These methods generally have to deal with the cubic
cost of Gaussian processes — O(n3t3), for n observed
hyperparameters and t iterations. In practice, these
methods typically apply some type of relaxation. For
example, the freeze-thaw method [Swersky et al., 2014]
assumes that training curves for different hyperparam-
eters are independent conditioned on their prior mean,
which is drawn from another global Gaussian process.

Moreover, an alternative approach to Bayesian opti-
mization solves the hyperparameter tuning problem
through enhanced random search. Hyperband [Li et al.,
2016] starts from several randomly chosen hyperparam-
eters and trains them on a small subset of data. Fol-
lowing a fixed schedule, the algorithm stops underper-
forming experiments and then retrains the remaining
ones on larger training sets. Hyperband outperforms

Setareh Ariafar, Zelda Mariet, Dana Brooks, Jennifer Dy, and Jasper Snoek

----- Real Function —— GP Posterior Mean

20

15 =

10 -

f(x)

GP Confidence Interval

¢ Observations # Predicted Minimum Global Minimum

20

15 =

f(x)

=15 T T T T T T T T T 1

Figure 1: Motivating example; left: GP with many noisy points, right: GP with few noiseless points (motivated by
minimizing the validation error, here the noisy observations have overestimated the real objective value). Compared to
querying many points with lower fidelity (left), observing few points with higher fidelity (right) can significantly improve
the predicted argmin but incurs a significant overhead cost; by learning to optimize the trade-off between the value and
cost of high-fidelity estimates, we show in Section 4 that IBO achieves the best of both worlds.

standard BO in some settings, as it is easily parallelized
and not subject to model misspecification. However,
Hyperband’s exploration is necessarily limited to the
initial hyperparameter sampling phase: the best set-
tings chosen by Hyperband inevitably will correspond
to one of initial initializations, which were selected uni-
formly and in an unguided manner. To address this
issue, several papers, including [Falkner et al., 2018,
Wang et al., 2018, Bertrand et al., 2017], have proposed
the use of Bayesian optimization to warm-start Hyper-
band and perform a guided search during the initial
hyperparameter sampling phase.

Finally, IBO belongs to the family of multi-fidelity
BO methods [Kandasamy et al., 2016, Forrester et al.,
2007, Huang et al., 2006, Klein et al., 2016a], which
take advantage of cheap approximations to the target
black-box function. Of those methods, Fabolas [Klein
et al., 2016a] focuses specifically on hyperparameter
tuning, and is included as a baseline in our experiments.
Fabolas uses cheap evaluations of the validation loss by
training on a randomly sampled subset of the training
data. Hence, both IBO and Fabolas depend directly
on training examples to vary the cost of querying the
black-box function; Fabolas by using fewer examples
for cheap queries, whereas IBO uses the per-example
contribution to training to switch to costlier queries.

Existing literature on tuning weighs all training exam-
ples equally and does not take advantage of their decid-
edly unequal influence. To the best of our knowledge,
IBO is the first method to exploit the informativeness
of training data to accelerate tuning, merging Bayesian
optimization with importance sampling.

3 Importance sampling for BO

Bayesian optimization is a strategy for the global op-
timization of a potentially noisy, and generally non-
convex, black-box function f: X — R. The function
f is presumed to be expensive to evaluate in terms of
time, resources, or both. In the context of hyperparam-
eter tuning, X is the space of hyperparameters, and
f(z) is the validation error or loss of a neural network
trained with hyperparameter configuration x.

Given a set D = {(z,y; = f(x;))}, of hyperparame-
ters z; and associated function evaluations y; (which
may be subject to observation noise), Bayesian opti-
mization starts by building a surrogate model for f over
D. Gaussian processes (GPs), which provide a flexible
non-parametric distribution over smooth functions, are
a popular choice, because they provide tractable closed-
form inference and facilitate the specification of a prior
over the functional form of f [Rasmussen, 2003].

3.1 Surrogate model quality vs.
computational budget

Given a zero-mean prior with covariance function k,
the GP’s posterior belief about the unobserved output
f(z) at a new point z after seeing data D = {z;,y; } ¥,
is a Gaussian distribution with mean p(x) and variance
o?(x) such that

(u(2),0*()) = K@) (K + 02)

A (1)
k(z,) — k(z)T (K + aﬁoiseI) k(z)

where k(z) = [k(z,2;)|,, K = [k(z;, z;)]Y

irj=17
is the variance of the observation noise, that is,

and

2
O hoise

Faster & More Reliable Tuning of Neural Networks: Bayesian Optimization with Importance Sampling

yi ~ N (f(2:),02,). Given this posterior belief over
the value of unobserved points, Bayesian optimization
selects the next point x to query by solving

x = argmax oz | D), (2)
zeX

where «(-) is the acquisition function, which quantifies
the expected added value of querying f at point x,
based on the posterior belief on f(x) given by Eq. (1).
Typical choices for the acquisition function « include
entropy search (ES) [Hennig and Schuler, 2012] and its
approximation predictive entropy search [Hernandez-
Lobato et al., 2014], knowledge gradient [Wu et al.,
2017], expected improvement [Mockus, 1975, Jones
et al., 1998] and upper/lower confidence bound [Cox
and John, 1992, 1997].

Entropy search quantifies how much knowing f(x) re-
duces the entropy of the distribution P[z* | D] over the
location of the best hyperparameter x*:

ags(z | D) =Eyep[H(PE"| D) (3)
SHPE [DUy))|, @

where H is the entropy function and the expectation
is taken with respect to the posterior distribution over
the observation y at hyperparameter x.

The more accurate the observed values y, the more
accurate the GP surrogate model (1). A more accurate
surrogate model, in turn, defines a better acquisition
function (2), and, finally, a more valuable Bayesian
optimization outer loop with better predicted optima.

Crucially, hyperparameter tuning for neural networks
is not an entirely black-box optimization setting, as we
know the loss minimization framework in which neural
networks are trained. We take advantage of this by
allocating computational budget at each SGD iteration;
based on the considered training points, IBO switches
from standard SGD updates to the more computation-
ally intensive importance sampling updates. This is
the focus of the following section.

3.2 Importance sampling for loss
minimization

The impact of training examples on one (batched) SGD
iteration has received significant attention in machine
learning [Needell et al., 2014, Schmidt et al., 2015,
Zhang et al., 2017, Fu and Zhang, 2017]. For the pur-
poses of IBO, we focus on importance sampling [Needell
et al., 2014, Zhao and Zhang, 2015]. IS minimizes the
variance in SGD updates;' however, IS is parameter-

1S also benefits SGD with momentum [Johnson and
Guestrin, 2018]. Although focusing on pure SGD, IBO also
extends to certain SGD variants.

ized by the per-example gradient norm for the current
weights of the neural network incurring a significant
computational overhead.

Specifically, let g(w) = % >, gi(w) be the training

loss, where m is the number of training points and g;
is the loss at point . To minimize g(w), SGD with IS
computes estimate wyy1 of w* = argmin g by sampling
i € {1,...,m} with probability p; ||Vg;(w;)||, then
applying the update we41 = wy — nmiingi(wt) where
7 is the learning rate (standard SGD is recovered by
setting p; = 1/m). This update provably minimizes
the variance of the gradient estimate, hence improving
the convergence speed of SGD.

Since evaluating the per-example gradient norm
IVgi(w,)| is prohibitively expensive, various surro-
gates have been suggested [Zhao and Zhang, 2015,
Loshchilov and Hutter, 2015]. We leverage recent work
by Katharopoulos and Fleuret [2018], which proposes a
tractable upper-bound on |Vg;|| as proxy for the true
per-example gradient norm.

To further speed up IS, [Katharopoulos and Fleuret,
2018] introduce a pre-sample batch size hyperparame-
ter B. At each SGD step, B points are first sampled
uniformly at random, from which a batch of size b < B
is then sub-sampled. These b points are sampled either
uniformly or, when the additional variance reduction
justifies the incurred computation cost, they are sam-
pled with importance sampling.

3.3 Multi-task BO for importance sampling

In [Katharopoulos and Fleuret, 2018], the authors state
that their importance sampling algorithm is highly
sensitive to the number B of the pre-sampled data
points: indeed, B controls when to switch from uniform
sampling to IS. We verify this empirically in section 4,
showing that naively replacing standard SGD with the
IS algorithm of Katharopoulos and Fleuret [2018] does
not improve upon standard BO hyperparameter tuning.
To maximize the utility of importance sampling, we
instead opt for a multi-task BO framework, within
which the search through hyperparameter space X is
done in parallel to a second task: optimization over B.

Multi-task Bayesian optimization [Swersky et al., 2013]
extends BO to share observations across multiple cor-
related tasks. This can be used e.g. to optimize an
objective function over an expensive target task by
extrapolating from related cheaper tasks. Here, our
target task evaluates f(z) using batched-SGD, where
batches are sampled with IS from the entire training
set; the cheaper related task f(x) samples batches with
IS from a uniformly sub-sampled set of B data points.

MTBO uses the entropy search acquisition function

Setareh Ariafar, Zelda Mariet, Dana Brooks, Jennifer Dy, and Jasper Snoek

(Eq. 3), and models an objective function over points
x € X and tasks t € T via a multi-task GP [Journel and
Huijbregts, 1978, Bonilla et al., 2008]. The covariance
between two pairs of points and corresponding tasks is
defined through a Kronecker product kernel:

k((z,t), (a',t) = kx(z,2") - kr(t, 1), (5)

where kx models the relation between the hyperparam-
eters and kr is the covariance between tasks.

For our case, the sub-sampling size B is the task vari-
able while the optimal task sets B* to the size of the
entire training set. Let f,(x; | B;) denote the valida-
tion error value at hyperparameter x; after n training
iterations using IS with pre-sample size B;. We define
a multi-task GP that models f,(z; | B;) over the joint
space of x and B. Additionally, following Snoek et al.
[2012], we penalize the evaluation of any point (z, B)
by the computational cost ¢, (z | B) of training a model
for n SGD iterations at hyperparameter x with sub-
sampling size B. This penalty guides the hyperparame-
ter search towards promising yet relatively inexpensive
solutions. We model the training cost ¢, (z | B) using
a multi-task GP fitted to the log cost of observations
¢ijn that are collected during BO rounds while modify-
ing the kernel on B to reflect that larger B increases
training time. Our choice of kernel functions follows
[Klein et al., 2016a] and a detailed description can be
found in Appendix. B.

Our resulting acquisition function is thus:

_
uea(] B))
~E, [H(Pla" | B*, D, U{a, B,y}))]

an(z, B) = [H(PL" | B, D)) (6)

where p(cn,(z | B)) is the posterior mean of the
GP modeling the training cost; as previously, P(z* |
B*,D,,) is the probability that z* is the optimal
solution at the target task B* given data D, =
{z4, Bi, Yijn, Cz‘\n}i]\;r Our algorithm is presented in Al-
gorithm 1. The initialization phase follows the MTBO
convention: we collect initial data at randomly chosen
inputs x, and evaluate each hyperparameter config-
uration with a randomly selected B. DoSGD is the
subroutine proposed by [Katharopoulos and Fleuret,
2018]; it determines if the variance reduction enabled
by importance sampling is worth the additional cost
at the current SGD iteration.

Algorithm 1 Importance-based BO

Obtain initial data D,, = {4, By, Yijn, Cijn }
fori=1,...,ngo do
Fit multi-task GPs to f, and ¢, given D,
x, B + argmax a,(z, B | Dy)
M < model initialized with hyperparams x
for j=1,...,ndo
Sp < B uniformly sampled training points
if DoSGD(M, B, Sp) then
M « IS_SGD(M, Sp, x)
else
M < Vanilla SGD(M, Sg,)
end if
end for
y < validation error of M
¢ + time used to train M
D, < DpU{(z,B,y,c)}
end for
return z* € {z;} with best predicted error at B*

Although IBO and Fabolas have a similar multi-task
acquisition function, they are intrinsically different.
Given a hyperparameter x, whereas Fabolas speeds up
the evaluation of f(z) by choosing one subset of train-
ing examples, IBO potentially uses the entire training
data, reweighting points based on their relevance to the
training task. Thus, each IBO iteration is slower than
a Fabolas iteration. However, because IBO carries out
a more directed search through hyperparameter space
and queries higher fidelity evaluations, IBO requires
less BO iterations — and hence potentially less time —
to find a good configuration.

This difference in how data is sampled and used has
downstream consequences: as Fabolas sample subsets of
data of varying size, it introduces non-stationary noise
into the observations modeled by the surrogate model.
However, the typical GP formulation only incorporates
a homogeneous noise term o2, in Eq. (1). Klein et al.
[2016a] show that the sub-sampling noise is negligible
for an SVM on MNIST, but we observe significant
noise for more complex models and datasets (Fig. 4).
By leveraging IS, IBO decreases its sensitivity to the
randomness caused by data sub-sampling.

Our proposed algorithm can be extended in different
ways. First, exploiting parallel computation is a de-
sired criterion for recent hyperparameter optimization
methods [Falkner et al., 2018], which IBO can satisfy
by parallel estimation of the importance distribution
at each round of training. Moreover, IBO can be ex-
tended to incorporate other optimization methods and
importance criteria beyond SGD and per-example gra-
dient norm. Particularly, the gist of IBO is to learn
a cost-quality trade-off for leveraging higher-fidelity

Faster & More Reliable Tuning of Neural Networks: Bayesian Optimization with Importance Sampling

evaluations, which are enabled by weighting the more
informative training examples. Although we defined
the weights as per-example gradient norm to speed up
SGD, these weights can be defined in accordance with
other optimization algorithms. For example, Loshchilov
and Hutter [2015] proposed to use per-example loss
value to speed up Adam and AdaDelta. An interesting
extension of IBO is to jointly optimize over the hy-
perparameters and the trade-off parameter as well as
the type of inner optimization algorithm (SGD, Adam,
AdaDelta, etc) and its corresponding weighting crite-
rion of data points (per-example gradient norm, loss,
etc), which remains an open avenue for future research.

4 Experiments

We evaluate our proposed method, IBO, on four bench-
mark tuning tasks: a feed-forward network on MNIST,
a convolutional neural network (CNN) on CIFAR-10, a
residual network on CIFAR-10, and a residual network
on CIFAR-100. We include the following baselines: ES
[Hennig and Schuler, 2012] and Fabolas [Klein et al.,
2016a] as well as their IS-extended versions, ES-IS and
Fabolas-IS, where training is performed with SGD-IS
without a multitask formulation (see Appendix C).

ES-IS acts as an ablation test for IBO’s multi-task
framework, as it does not reason about the cost-fidelity
tradeoff of IBO. Thus, we keep the training procedure
for ES-IS and Fabolas-IS similar to IBO, switching to
IS only if variance reduction is possible and using IS is
advantageous (Alg. 1, lines 8 —11). We run all methods
on a PowerEdge R730 Server with NVIDIA Tesla K80
GPUs (experiment in Appendix D) or on a DGX-2
server with NVIDIA Tesla V100 GPUs (rest).

Following Snock et al. [2012], we marginalize over the
GPs’ hyperparameters using MCMC for all methods.
We report performance as a function of wall-clock time,
since the methods differ in per-iteration complexity
(App. 5 reports results vs. iteration number). All ini-
tial design evaluations are counted towards the runtime.
We measure the performance of each method by taking
the predicted best hyperparameter values x* after each
BO iteration, then training a model with hyperparam-
eters x*, using the entire training set and vanilla SGD.
We run each method five times unless otherwise stated,
and report the median performance and 25" and 75"
percentiles (mean and standard deviation results are in-
cluded in Appendix F.1 for completeness). For brevity,
additional implementation details and description of
all hyperparameter ranges can be found in Appendix C
and the results of the feed-forward network on MNIST
in Appendix D. The code is available open-source.?

2https://github.com/SetarehAr/IBO.

4.1 CNN on CIFAR-10

We tune a convolutional neural network (CNN) using
RMSProp on the CIFAR-10 dataset [Krizhevsky et al.,
2009]. We fix an architecture of three convolutional
layers with max-pooling, followed by a fully connected
layer, in line with previous benchmarks on this prob-
lem [Falkner et al., 2018, Klein et al., 2016a, Dai et al.,
2019]. Following Dai et al. [2019], we tune six hyper-
parameters: number of convolutional filters, number
of units in the fully connected layer, batch size, initial
learning rate, weight decay, and regularization weight.

All methods are run for 100 BO iterations and trained
using n = 50 SGD epochs.

IBO, Fabolas and ES-IS exhibit the best performance
(Fig. 2, left) but switch ranking over the course of
time. However, after spending roughly half of the
budget, IBO outperforms Fabolas and all other base-
lines, achieving the best final error with the lowest
uncertainty. ES-IS shows that adding IS naively can
improve upon ES; however, IBO outperforms both ES
and ES-IS, confirming the importance of a multi-task
setting that optimizes IS. Furthermore, simply adding
IS during SGD is not guaranteed to improve upon any
method: Fabolas-IS performs poorly w.r.t. Fabolas.

4.2 Residual Network on CIFAR-10

We next tune the a residual network trained on
CIFAR-10. We follow the wide ResNet architecture
in [Zagoruyko and Komodakis, 2016], and tune four
hyperparameters: initial learning rate, weight decay,
momentum and regularization weight. Following Klein
et al. [2016a], all but the momentum are optimized
over a log-scale search space.

We set n = 50 and multiply the learning rate by the
weight decay after n = 40 epochs. Experimentally, we
saw that n = 50 epochs is insufficient for the inner
(SGD) optimization to converge on the ResNet archi-
tecture; this experiment evaluates BO in the setting
where f is too computationally intensive to compute
exactly. We ran all the methods using 80 BO iterations
for Fabolas and Fabolas-IS and 50 iterations for the
rest. This difference in budget iteration is to compen-
sate for the different cost of training on a subset of
data versus on the entire data.’

Consistently with previous results, Fabolas achieves
the lowest error in the very initial stage, due to its
cheap approximations (Fig. 2, middle). However, IBO

3For experiment D, we observed that keeping the BO
iteration budget consistent is sufficient since the training
costs are not very different. For experiment 4.1, we set this
budget to 100, and since ResNet experiments are generally
more costly, we stopped reporting the results once the first
method exhausted its budget.

https://github.com/SetarehAr/IBO

Setareh Ariafar, Zelda Mariet, Dana Brooks, Jennifer Dy, and Jasper Snoek

CNN on CIFAR-10

= Fabolas 1 l
= Fabolas_IS
] \ ES!
ES_IS ‘
= IBO

4x107!

2x 107!

Validation Error

3x107t

ResNet on CIFAR-10

ResNet on CIFAR-10 (worst-case)

= Fabolas — Fabolas
—— Fabolas_IS
ES
ES_IS
= |BO

\ = Fabolas_IS
ES
ES_IS
= IBO

3x 107!

2x107!

107!

0 2 4 6 8 10 12 14 16 2 a4 6 8
Time (hour)

Time (hour)

\l\/m

10 12 14 16 18 00 25 50

75 100 125 150 175 20.0
Time (hour)

Figure 2: (Left) Best found error for CNN on CIFARI10 v.s. runtime. After around 9 hours, IBO outperforms the rest
with a negligible variance while Fabolas-IS shows the weakest performance with a large uncertainty. (Middle) IBO finds

the best error for ResNet on CIFAR-10 at 1/3 of the time budget and keep improving while Fabolas & Fabolas-IS achieves
a minor improvement after 6 hours. (Right) IBO improves the worst-case error specially over that of ES & ES-IS, showing

that simply augmenting BO with importance sampling is not robust.

quickly overtakes all other baselines, and attains a value
that other methods cannot achieve with their entire
budget consumption. Fabolas-IS also performs well,
but suffers a large variance.

The ablation tests (ES-IS and Fabolas-IS) consistently
have high variance, likely because these methods do not
learn the optimal batch size for IS and opt for a random
selection within the recommended range. In contrast,
IBO specifically learns the batch size parameter which
controls the cost-benefit trade off in IS and hence,
enjoys better final results and lower variance. IBO
offers the smallest uncertainty and improves the worst-
case error among all the other methods demonstrating
robustness, while ES and ES-IS suffer from a large
variance (Fig. 2, right).

4.3 Residual Network on CIFAR-100

Finally, we tune the hyperparameters of a residual
network trained on CIFAR-100. The architecture of
the network, hyperparameters and ranges are the same
as Section 4.2. We set n = 200 and multiply the
learning rate by the weight decay every 40 epochs. For
Fabolas and Fabolas-IS, a budget of 150 iterations is
provided while the rest of the methods are given 50
iterations.

Clearly, IBO outperforms the rest of the methods af-
ter spending roughly 1/4 of the time budget (Fig. 3,
left); Fabolas and ES-IS are the second best methods.
Similar to the experiment 4.1, Fabolas-IS is outper-
formed by the other baselines, and once again incurs
a large variance; This is likely because as a variant of
Fabolas, Fabolas-IS depends on only one data subset
for each training round. Interestingly, for Fabolas and
Fabolas-IS, the additional budget does not cause an
improvement in their performance. This is yet fur-
ther evidence that for complex datasets, neither vanilla

multi-task frameworks nor simple importance sampling
is sufficient to gain the advantages of IBO. IBO im-
proves upon the worst-case error after spending 1/4 of
the time budget (Fig.3, right). From halfway of the
time onwards, the largest error found by IBO is smaller
than the smallest error of the other methods, highlight-
ing the robustness of IBO for complex datasets.

Overall, both IBO and Fabolas were amongst the best
performing methods in our experiments, with IBO con-
sistently outperforming Fabolas. Table 1 shows the
error of the final incumbent of Fabolas and its corre-
sponding training data size learned by the algorithm.
Although Fabolas allows for incorporating cheap ap-
proximations, it has achieved its best performance using
93% and 98% of the entire training data for ResNet on
CIFAR-100 and CNN on CIFAR-10. Interestingly, for
FCN on MNIST and ResNet on CIFAR-10, for which
Fabolas achieved relatively lower errors, the required
data is also smaller (30% and 46%). This suggests
that using low-fidelity evaluations to speed up tuning,
although advantageous in some scenarios, is not consis-
tently effective, and that higher-fidelity evaluations, as
used by IBO, provide a robust alternative.

5 Conclusion

Hyperparameter tuning using Bayesian optimization
involves an expensive inner loop which repeatedly trains
a model with new hyperparameters. Unlike prior work,
which has scaled BO by using cheap evaluations to
the black-box function, our method, IBO, takes the
opposite approach, increasing the time spent obtaining
higher-fidelity evaluations while requiring much fewer
outer BO iterations.

Leveraging recent developments in importance sam-
pling, IBO takes into account the contribution of each
training point to decide whether to run vanilla SGD or

Faster & More Reliable Tuning of Neural Networks: Bayesian Optimization with Importance Sampling

ResNet on CIFAR-100 “ResNet on CIFAR-100 (worst-case)

T T
2 = Fabolas 2 = Fabolas
X —
5 A - Fabolas_IS n Fabolas_IS
- ES ES
w ES_IS \ AU A ESTIS
5 — |BO m——_|BO
p—
A —
c o — o
(@] —~ e — —~
= X X
o < e e . <
o
©
>
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80

Time (hour) Time (hour)

Figure 3: (Left) Best found error for ResNet on CIFAR-~100 v.s. runtime. IBO outperforms all other methods roughly
after spending 20 % of the time budget. Moreover, IBO is able to further improve after 60 hours while both Fabolas and
Fabolas-IS are unable to progress after an early stage (around 15 hours). ES-IS exhibits the second best performance after
IBO with 4-5 % margin, but with larger uncertainty. (Right) IBO achieves the best worst-case error among different runs
followed by ES-IS while Fabolas-IS is outperformed by the rest.

Table 1: The best error found by Fabolas and the corresponding training data size of the incumbent. For CNN on
CIFAR-10 and ResNet on CIFAR-100, Fabolas uses almost the entire training data while for the other two experiments,

less than half of the data is shown to be sufficient.

PRrROBLEM BEST ERROR # OF EXAMPLES % OF EXAMPLES
FCN (MNIST) 0.06 18034 30%
CNN (CIFAR10) 0.29 46533 93 %
RESNET (CIFAR10) 0.11 23136 46 %
RESNET (CIFAR100) 0.40 49121 98 %

a more involved but higher quality variant. Although
this results in costlier network training, the additional
precision obtained for the black-box estimates allows
a more principled search through the hyperparameter
space, significantly decreasing the amount of wall-clock
time necessary to obtain a high-quality result. By opt-
ing for a multi-task parameterization of the problem,
IBO learns to dynamically adjust the trade-off between
training time and high precision, producing faster over-
all runtimes as well as better hyperparameters.

We show on four benchmark tasks of increasing com-
plexity that IBO achieves the lowest error compared to
the other methods, and scales gracefully with dataset
and neural architecture complexity. When tuning a
ResNet on CIFAR-100, IBO outperforms the rest by a
significant margin, both as a function of runtime and
number of training rounds.

References

James S. Bergstra, Rémi Bardenet, Yoshua Bengio,
and Baldzs Kégl. Algorithms for hyper-parameter
optimization. In Advances in Neural Information
Processing Systems 24, pages 2546-2554. 2011.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams.

Practical bayesian optimization of machine learn-
ing algorithms. In Advances in neural information
processing systems, pages 2951-2959, 2012.

Kevin Swersky, Jasper Snoek, and Ryan P Adams.
Multi-task bayesian optimization. In Advances in
neural information processing systems, pages 2004—
2012, 2013.

Kevin Swersky, Jasper Snoek, and Ryan Prescott
Adams. Freeze-thaw bayesian optimization. arXiv
preprint arXiw:1406.3896, 2014.

Tobias Domhan, Jost Tobias Springenberg, and Frank
Hutter. Speeding up automatic hyperparameter op-
timization of deep neural networks by extrapolation
of learning curves. In Twenty-Fourth International
Joint Conference on Artificial Intelligence, 2015.

Aaron Klein, Stefan Falkner, Simon Bartels, Philipp
Hennig, and Frank Hutter. Fast bayesian optimiza-
tion of machine learning hyperparameters on large
datasets. arXiv preprint arXiv:1605.07079, 2016a.

Marius Lindauer, Matthias Feurer, Katharina
Eggensperger, André Biedenkapp, and Frank Hut-
ter. Towards assessing the impact of bayesian op-
timization’s own hyperparameters. arXiv preprint
arXiw:1908.06674, 2019.

Setareh Ariafar, Zelda Mariet, Dana Brooks, Jennifer Dy, and Jasper Snoek

Jakob Bossek, Carola Doerr, and Pascal Kerschke.
Initial design strategies and their effects on se-
quential model-based optimization. arXiv preprint
arXww:2003.13826, 2020.

Philipp Hennig and Christian J Schuler. Entropy search
for information-efficient global optimization. Journal
of Machine Learning Research, 13(Jun):1809-1837,
2012.

Zhongxiang Dai, Haibin Yu, Bryan Kian Hsiang Low,
and Patrick Jaillet. Bayesian optimization meets
bayesian optimal stopping. In International Confer-
ence on Machine Learning, pages 1496-1506, 2019.

Daniel Golovin, Benjamin Solnik, Subhodeep Moitra,
Greg Kochanski, John Elliot Karro, and D. Sculley,
editors. Google Vizier: A Service for Black-Box
Optimization, 2017.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Ros-
tamizadeh, and Ameet Talwalkar. Hyperband: A
novel bandit-based approach to hyperparameter op-
timization. arXiv preprint arXiv:1603.06560, 2016.

Stefan Falkner, Aaron Klein, and Frank Hutter. Bohb:
Robust and efficient hyperparameter optimization at
scale. arXiv preprint arXiv:1807.01774, 2018.

Jiazhuo Wang, Jason Xu, and Xuejun Wang. Combi-
nation of hyperband and bayesian optimization for
hyperparameter optimization in deep learning. arXiv
preprint arXiw:1801.01596, 2018.

Hadrien Bertrand, Roberto Ardon, Matthieu Perrot,
and Isabelle Bloch. Hyperparameter optimization
of deep neural networks: Combining hyperband
with bayesian model selection. In Conférence sur
l’Apprentissage Automatique, 2017.

Kirthevasan Kandasamy, Gautam Dasarathy, Junier B
Oliva, Jeff Schneider, and Barnabas Poczos. Gaus-
sian process bandit optimisation with multi-fidelity
evaluations. In Advances in Neural Information Pro-
cessing Systems. 2016.

Alexander I.J. Forrester, Andras Sébester, and Andy J.
Keane. Multi-fidelity optimization via surrogate mod-
elling. Proceedings of the Royal Society A, 463(2088):
3251-3269, December 2007.

Deng Huang, T. T. Allen, W. I. Notz, and R. A.
Miller. Sequential kriging optimization using
multiple-fidelity evaluations. Structural and Mul-
tidisciplinary Optimization, 32:369-382, 2006.

Carl Edward Rasmussen. Gaussian processes in ma-
chine learning. In Summer School on Machine Learn-
ing, pages 63-71. Springer, 2003.

José Miguel Herndndez-Lobato, Matthew W Hoffman,
and Zoubin Ghahramani. Predictive entropy search

for efficient global optimization of black-box func-
tions. In Advances in neural information processing
systems, pages 918-926, 2014.

Jian Wu, Matthias Poloczek, Andrew G Wilson, and
Peter Frazier. Bayesian optimization with gradients.
In Advances in Neural Information Processing Sys-
tems, pages 52675278, 2017.

Jonas Mockus. On bayesian methods for seeking the ex-
tremum. In Optimization Techniques IFIP Technical
Conference, pages 400-404. Springer, 1975.

Donald R Jones, Matthias Schonlau, and William J
Welch. Efficient global optimization of expensive
black-box functions. Journal of Global optimization,
13(4):455-492, 1998.

Dennis D Cox and Susan John. A statistical method
for global optimization. In [Proceedings] 1992 IEEE
International Conference on Systems, Man, and Cy-
bernetics, pages 1241-1246. IEEE, 1992.

Dennis D. Cox and Susan John. Sdo: A statistical
method for global optimization. In in Multidisci-
plinary Design Optimization: State-of-the-Art, pages
315-329, 1997.

Deanna Needell, Rachel Ward, and Nati Srebro.
Stochastic gradient descent, weighted sampling, and
the randomized kaczmarz algorithm. In Advances

in Neural Information Processing Systems 27, pages
1017-1025. Curran Associates, Inc., 2014.

Mark Schmidt, Reza Babanezhad, Mohamed Ahmed,
Aaron Defazio, Ann Clifton, and Anoop Sarkar. Non-
Uniform Stochastic Average Gradient Method for
Training Conditional Random Fields. In Proceed-
ings of the Eighteenth International Conference on
Artificial Intelligence and Statistics, Proceedings of
Machine Learning Research, pages 819-828, 2015.

Cheng Zhang, Hedvig Kjellstrom, and Stephan Mandt.
Determinantal point processes for mini-batch diver-
sification. In UAI 2017, 2017.

Tianfan Fu and Zhihua Zhang. CPSG-MCMC:
Clustering-Based Preprocessing method for Stochas-
tic Gradient MCMC. In Proceedings of the 20th
International Conference on Artificial Intelligence
and Statistics, volume 54 of Proceedings of Machine
Learning Research, pages 841-850. PMLR, 20-22
Apr 2017.

Peilin Zhao and Tong Zhang. Stochastic optimization
with importance sampling for regularized loss mini-
mization. In Proceedings of the 32nd International
Conference on Machine Learning, 2015.

Tyler B Johnson and Carlos Guestrin. Training deep
models faster with robust, approximate importance
sampling. In Advances in Neural Information Pro-
cessing Systems 31, pages 7265-7275. Curran Asso-
ciates, Inc., 2018.

Faster & More Reliable Tuning of Neural Networks: Bayesian Optimization with Importance Sampling

Ilya Loshchilov and Frank Hutter. Online batch selec-
tion for faster training of neural networks. arXiv
preprint arXiw:1511.06343, 2015.

Angelos Katharopoulos and Francgois Fleuret. Not all
samples are created equal: Deep learning with im-
portance sampling. arXiv preprint arXiv:1803.00942,
2018.

Andre G Journel and Charles J Huijbregts. Mining
geostatistics, volume 600. Academic press London,
1978.

Edwin V Bonilla, Kian M Chai, and Christopher
Williams. Multi-task gaussian process prediction.
In Advances in neural information processing sys-
tems, pages 153-160, 2008.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning mul-
tiple layers of features from tiny images. Technical
report, Citeseer, 2009.

Sergey Zagoruyko and Nikos Komodakis. Wide residual
networks. arXiv preprint arXiv:1605.07146, 2016.

Aaron Klein, Stefan Falkner, Simon Bartels, Philipp
Hennig, and Frank Hutter. Supplementary material
for fast bayesian optimization of machine learning
hyperparameters on large datasets. 2016b.

Daniel Hernandez-Lobato, Jose Hernandez-Lobato,
Amar Shah, and Ryan Adams. Predictive entropy
search for multi-objective bayesian optimization.
In International Conference on Machine Learning,
pages 1492-1501, 2016.

Yann LeCun. The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/, 1998.

	Introduction
	Related work
	Importance sampling for BO
	Surrogate model quality vs. computational budget
	Importance sampling for loss minimization
	Multi-task BO for importance sampling

	Experiments
	CNN on CIFAR-10
	Residual Network on CIFAR-10
	Residual Network on CIFAR-100

	Conclusion
	Sub-sampling Noise Analysis
	Multi-task Kernel Design
	Implementation Details
	Feed-forward Neural Network on MNIST
	IBO scales with dataset and network complexity
	Initializing Fabolas
	Mean and Standard Deviation Results

