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Appendices

We present supplemental results and discussions. Appendix [A] expands Section [2] regarding Monte Carlo
efficiency and variance reduction. Appendix [B provides further details on Algorithm [I} in particular the mixed
integer formulation used to solve the underlying optimization problems. Appendix [C expands the efficiency
and conservativeness results in Section [3. Appendix [D] presents the lower-bound relaxed efficiency certificate
and estimators in parallel to the upper-bound results in Section [3. Appendix [E] provides an overview of the
cross-entropy method and multi-level splitting (or subset simulation) and discusses their perils for black-box
problems. Appendix [F]illustrates further experimental results. Finally, Appendix [G] shows all technical proofs.

A Further Details for Section [2]

This section expands the discussions in Section [2, by explaining in more detail the notion of relative error,
challenges in naive Monte Carlo, the concept of dominating points, and the perils of black-box variance reduction
algorithms.

A.1 Explanation of the Role of Relative Error

As described in Section [2, to estimate a tiny p using fi,,, we want to ensure a high accuracy in relative term,
namely, (I). Suppose that fi,, is unbiased and is an average of n i.i.d. simulation runs, i.e., fi, = (1/n) Y1 | Z;
for some random unbiased output Z;. The Markov inequality gives that

Var(fiy,) _ Var(Z;)

P(|fin — p| > ep) <

€22 ne2 2
so that Var(Z
ar(Z;) <5
ne2u?
ensures . Equivalently,
. Var(Z;) ~ RE
= 6e2u? e

is a sufficient condition to achieve , where RE = Var(Z;)/u? is the relative error defined as the ratio of
variance (per-run) and squared mean.

Note that replacing the second p with fi,, in the left hand side of does not change the condition fundamentally,
as either is equivalent to saying the ratio fi,/u should be close to 1. Also, note that we focus on the nontrivial
case that the target probability p is non-zero but tiny; if 4 = 0, then no non-zero Monte Carlo estimator can
achieve a good relative error.

A.2 Further Explanation on the Challenges in Naive Monte Carlo

We have seen in Section Ethat for the naive Monte Carlo estimator, where Z; = I(X,; € Sy), the relative error
is RE = p(1 — p)/p? = (1 — p)/p. Thus, when p is tiny, the sufficient condition for n to attain scales at
least linearly in 1/p. In fact, this result can be seen to be tight by analyzing nji, as a binomial variable. To be
more specific, we know that P(|f, — p| > epn) = P(|nfi, — nu| > enp) and that njfi, takes values in {0,1,...,n}.
Therefore, if ny — 0, then P(|jt,, — p| > ep) — 1, and hence (1)) does not hold.

Moreover, the following provides a concrete general statement that an n that grows only polynomially in v would
fail to estimate p that decays exponentially in « with enough relative accuracy, of which fails to hold is an
implication.

Proposition 2. Suppose that p = P(X € S,,) is exponentially decaying in v and n is polynomially growing in .
Define i, = (1/n) Y1 I(X; € Sy). Then for any 0 < e < 1,

lim P(|fn, — p| >ep) = 1.
y—00
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We have used the term efficiency certificate to denote an estimator that achieves with n = O(log(l /1) In
the rare-event literature, such an estimator is known as “logarithmically efficient” or “weakly efficient” (Juneja
and Shahabuddin, 2006; Blanchet and Lam), [2012).

A.3 Further Explanations of Dominating Points

We have mentioned that a certifiable IS should account for all dominating points, defined in Definition 2. We
provide more detailed explanations here. Roughly speaking, for X ~ N(A, X) and a rare-event set S,, the Laplace
approximation gives P(X € S,) ~ e~ Macs, 3(a=N"7 (a=N) (see the proof of Theorem E) Thus, to obtain an
efficiency certificate, IS estimator given by Z = L(X)I(X € Sy), where X ~ p and L = dp/dp, needs to have
%(Z) < E[Z% ~ e~ infaes, (a=2) "8 (@=3) (where \7a/r() and E[] denote the variance and expectation under
and ~ is up to some factor polynomial in inf,cs (a — AT 71 (a — \); note that the last equality relation cannot
be improved, as otherwise it would imply that %(Z) = E[Z2%] - (E[Z])? < 0).

Now consider an IS that translates the mean of the distribution from p to a* = argmin,eg. (a— NS (a—N),
an intuitive choice since a* contributes the highest density among all points in S, (this mean translation also
bears the natural interpretation as an exponential change of measure; (Bucklew| 2013))). The likelihood ratio is
L(z) = en=a) "= @=N)+3(A=a") "B (A=a") giving

E[Z%) = B[L(X)?I(X € 8,)] = e~ (@ V270" =X pe=2a”- 0" e ) (X € S.)] (3)

If the “overshoot” (a* — \)TX~!(z — a*), i.e., the remaining term in the exponent of L(x) after moving out
—(a* = N)TS 1 (a* — \), satisfies (a* — \)TS 71 (z —a*) > 0 for all x € S,,, then the expectation in the right hand
side of @ is bounded by 1, and an efficiency certificate is achieved. This, however, is not true for all set S,
which motivates the following definition of the dominant set and points in Definition

For instance, if S, is convex, then, noting that (z — \)”X 7! is precisely the gradient of the function (1/2)(z —
MNTES71(z — \), we get that a* gives a singleton dominant set since (a* — A\)TS 1 (x —a*) > 0 for all z € S,
is precisely the first order optimality condition of the involved quadratic optimization. In general, if we can
decompose S, = |J; 87 where 8] = {z : (a; — \)"27'(z — a;) > 0} for a dominating point a; € A,, then each
SZ; can be viewed as a “local” region where the dominating point a; is the highest-density, or the most likely
point such that the rare event occurs.

The following is the detailed version of Theorem

Theorem 4 (Certifiable IS). Suppose that A, is the dominant set for S., associated with the distribution N (A, X).
Then we can decompose Sy = J, 87 where SI’s are disjoint, a; € S and 8 C {x : (a; — \)TE " (z — a;) > 0}
for aj € A,. Denote a* = argmin{(a; — \) TS (a; — \) : a; € A,}. Assume that each component of a* is
of polynomial growth in v. Moreover, assume that there exist invertible matriz B and positive constant € such
that {z : B(x —a*) > 0,(z — a*)TS Yz — a*) < €2} C S,. Then the IS distribution >_;ajN(a;,X) achieves
an efficiency certificate in estimating p = P(X € Sy), i.e., if we let Z = I(X € S,)L(X) where L is the
corresponding likelihood ratio, then E|Z?|/E[Z)? is at most polynomially growing in ~. This applies in particular
to Sy ={x: f(x) >~} where f(x) is a piecewise linear function.

We contrast Theorem [4 with existing works on dominating points. The latter machinery has been studied in
(Sadowsky and Bucklew, |1990; Dieker and Mandjes|, 2006). These papers, however, consider regimes where the
Gartner-Ellis Theorem (Gartner), (1977; [Ellis|, [1984) can be applied, which requires the considered rare-event set to
scale proportionately with the rarity parameter. This is in contrast to the general conditions on the dominating
points used in Theorem

A.4 Further Explanation of the Example in Theorem

In the theorem, there are two dominating points v and —k+ but the IS design only considers the first one. As a
result, there could exist “unlucky” scenario where the sample falls into the rare-event set, so that I(X € S,) =1,
while the likelihood ratio L(X) explodes, which leads to a tremendous estimation variance. Part 2 of the theorem
further shows how this issue is undetected empirically, as the empirical RE appears small (polynomially in n and
hence v by our choice of n) while the estimation concentrates at a value that can be severely under the correct
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one (especially when k < 1). This is because the samples all land on the neighborhood of the solely considered
dominating point. If the missed dominating point is a significant contributor to the rare-event probability, then
the empirical performance would look as if the rare-event set is smaller, leading to a systematic under-estimation.
Note that this phenomenon occurs even if the estimator is unbiased, which is guaranteed by IS by default.

B Further Details on Implementing Algorithm

We provide further details on implementing Algorithm [I} In particular, we present how to solve the optimization
problem
z* =argmin (z - N7 Nz -\ st gz) >k, (z; — NTe e — z;) <0Vzj € A, (4)

to obtain the next dominating point in the sequential cutting-plane approach in Stage 2. Moreover, we also

present how to tune -
kR =max{k €R: (Si)c C H(To)} (5)

in Stage 1.

MIP formulations for ReLU-activated neural net classifier. The problem can be reformulated into
a mixed integer program (MIP), in the case where g(x) is trained via a ReLU-activated neural net classifier,
which is used in our deep-learning-based IS. Since the objective is convex quadratic and second set of constraints
is linear in , we focus on the first constraint §(z) > 7. The neural net structure §(z) in our approach (say
with ng layers) can be represented as §(x) = (gn, © ... © g1)(x), where each g;(-) denotes a ReLU-activated layer
with linear transformation, i.e. §;(-) = max{LT(-),0}, where LT(-) denotes a certain linear transformation in the
input. In order to convert g(-) into an MIP constraint, we introduce M as a practical upper bound for 1, ..., z,
such that |z;] < M. The key step is to reformulate the ReLU function y = max{z, 0} into

y<z+M(l-z2)
y=>w

y< Mz

y=>0

z € {0,1}.

For simple ReLLU networks, the size of the resulting MIP formulation depends linearly on the number of neurons
in the neural network. In particular, the number of binary decision variables is linearly dependent on the number
of ReLU neurons, and the number of constraints is linearly dependent the total number of all neurons (here we
consider the linear transformations as independent neurons).

The MIP reformulation we discussed can be generalized to many other popular piecewise linear structures in deep
learning. For instance, linear operation layers, such as normalization and convolutional layers, can be directly
used as constraints; some non-linear layers, such as ReLU and max-pooling layers, introduce non-linearity by the
“max” functions. A general reformulation for the max functions can be used to convert these non-linear layers to
mixed integer constraints.

Consider the following equality defined by a max operation y = max{x, g, ..., Z, }. Then the equality is equivalent
to

y<ax;+2M(1—2),i=1,..,n

y>zi,t=1,...,n
> ae
i=1,...,n

Zi € {0, 1}

Tuning #. We illustrate how to tune & to achieve (5)). This requires checking, for a given k, whether
(S,)¢ C H(Tp). Then, by discretizing the range of  or using a bisection algorithm, we can leverage this check to

obtain .
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We use an MIP to check (3:)0 C H(Ty). Recall that H(Tp) = Uy, —o{z € RL : 2 < X;}. We want to check if
{z € R% : §(x) < K} for a given x lies completely inside the hull, where §(z) is trained with a ReLU-activated
neural net. This can be done by solving an optimization problem as follows. First, we rewrite H(Tp) as
{z € Ri ming—y,, max;j—1, a{z’ — )N(f} < 0}, where 27 and z! refer to the j-th components of z and X;
respectively. Then we solve

maxg,erd min;—i,. p man:L...,d{l‘j - Xf}
subject to  g(z) <k (6)
z>0

If the optimal value is greater than 0, this means {z € R : §(z) < x} is not completely inside #(7Tp), and vice
versa. Now, we rewrite @ as

max,crd ger D .

subject to max;—1, . a{z? — X!} >BVi=1,...,n
g(x) <k
x>0

(7)

We then rewrite as an MIP by introducing a large real number M as a practical upper bound for all coordinates
of x:

max,erd ger B o
subject to ol — X! +AM(1 —z) > B Vi=1,...,n,j=1,....d
Zj:l,.‘.7dzij21 Vi:l,...,n
2 €401} Wi=1,...nj=1,....d
9(x) <k
x>0

Note that the set of points Ty to be considered in constructing H(7p) can be reduced to its “extreme points”.
More concretely, we call a point x € Ty an extreme point if there does not exist any other point 2’ € Ty such that
x < z'. We can eliminate all points x € Ty such that z < 2z’ for another 2’ € Ty, and the resulting orthogonal
monotone hull would remain the same. If we carry out this elimination, then in we need only consider X;
that are extreme points in H(7p), which can reduce the number of integer variables needed to add. In practice,
we can also randomly remove points in Ty to further reduce the number of integer variables. This would not
affect the correctness of our approach, but would increase the conservativeness of the final estimate.

C Further Results for Section [3]

Here we present and discuss several additional results for Section [3| regarding estimation efficiency and conserva-
tiveness. The latter includes further theorems on the lazy-learner classifier and classifiers constructed using the
difference of two functions, translation of the false positive rate under the Stage 1 sampling distribution to under
the original distribution, and interpretations and refinements of the conservativeness results.

C.1 Extending Upper-Bound Relaxed Efficiency Certificate to Two-Stage Procedures

We present an extension of Proposition [I] to two-stage procedures, which is needed to set up Corollary

Proposition 3 (Extended relaxed efficiency certificate). Suppose constructing fin, = fin,(Dn,) consists of
two stages, with n = ny + ny: First we sample D,, = {X1,...,X,,}, where X; are i.i.d. (following some
sampling distribution), and given D,,, we construct fin,(Dyn,) = (1/n2)> 12, Z; where Z; are i.i.d. con-
ditional on D, (following some distribution). Suppose [i, is conditionally upward biased almost surely,
i.e., @(Dyp,) := Eliin|Dn,] > u, and the conditional relative error given D,, in the second stage satisfies
RE(D,,,) := Var(Z;|Dy,)/Ti(Dn,)? = O(log(1/f(Dy,))). If n1 = O(log(1/p)) (such as a constant number), then
iy, possesses the upper-bound relaxed efficiency certificate.
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C.2 Conservativeness of Lazy Learner

We provide a result to quantify the conservativeness of the lazy-learner IS in terms of the false positive rate.
Recall that the lazy learner constructs the outer approximation of the rare-event set using H(7p)¢, which is the
complement of the orthogonal monotone hull of the set of all non-rare-event samples. The conservativeness is
measured concretely by the set difference between #(Tp)¢ and S, for which we have the following result:

Theorem 5 (Conservativeness of lazy learner). Suppose that the density q has bounded support K C [0, M]?,
and 0 < q; < q(x) < gy for any © € K. Then, with probability at least 1 — 4,

Vi d—1
Pxg(X € H(TH)N\S,) < Mg, <2> wg—1t(d,n1)

- \/E <;7r6> - qut(6,n1)(1 +O(d™1)).

Here t(6,n1) =3 (log(n1q1)+:11;g Mﬂog%) , wq 18 the volume of a d—dimensional Euclidean ball of radius 1, and

the last O(-) is as d increases.

-

C.3 Translating the False Positive Rate to under the Original distribution

Theorems 3| and [5| are stated with respect to ¢, the sampling distribution used in the first stage. We explain how
to translate the false positive rate results to under the original distribution p. In the discussion below, we will
consider Theorem |3| (and Theorem [5| can be handled similarly). In this case, our target is to give an upper bound
to Px~p(X € 8¥\S,) based on the result of Theorem

If the true input distribution p does not have a bounded support, we can first choose M to be large to make sure
that Px~,(X ¢ [0, M]?) is small compared to the probability of S,. We argue that we do not need M to be too
large here. Indeed, if p is light tail (e.g., a distribution with tail probability exponential in M), then the required
M grows at most polynomially in .

Having selected M, and with the freedom in selecting ¢ in Stage 1, we could make sure that in [0, M]¢, ¢(z) is
bounded away from 0 (e.g., we can choose g to be the uniform distribution over [0, M]%). Then, by Theorem [3|and
a change of measure argument, we can give a bound for Px.,(X € [0, M]¢, X € 85\87). Finally, we bound the
false positive rate with respect to p by Pxp(X € H(Tp)\S,) < Pxp(X ¢ [0, M]9) + Pxp(X € [0, M]4, X €
H(To)\S)-

C.4 Conservativeness Results for Classifiers Constructed Using Differences of Two Trained
Functions

Theorem E presents a conservativeness result when g is trained with an empirical risk minimization (ERM). In
this subsection, we will show a more sophisticated version of Theorem [3] which corresponds more closely to the §
that we implemented in our experiments. Suppose that the Stage 1 samples are generated in the same way as in
Algorithm [I. We let F := {fs} denote the function class induced by the model. Here a main difference with
previously is that we allow functions in F to be 2-dimensional, and both the loss function and the classification
boundary will be constructed from these 2-dimensional functions.

Suppose that fy is the output a neural network with 2 neurons in the output layer, and denote them as fy 0, fo,1-
Let the loss function evaluated at the i-th sample be £(f(X;),Y;). For example, the cross-entropy loss is given by

fo,0(X3) fo,1(X5) . . .
— [[(YZ =0)log Mm +1(Y; =1)log Mm} Like in the ERM approach in Theorem we
compute f = f5 € F which is the minimizer of the empirical risk, i.e., f = argming,cr Ry, (fg). For each function
fo € F, define function gy as gg := fo,1 — fo,0. In this modified approach, the learned rare-event set would be given
by 8% :={x: g4(z) > k}, and to make sure that S, C S, we would replace x by & = min{gy(x) : v ¢ H(Tp)} as
in Step 1 of Algorithm

We give a theorem similar to Theorem |3| for this more sophisticated procedure. To this end, we begin by giving
some definitions similar to the set up of Theorem [3| Let R(fg) := Ex~gl(fo(X),I(X € S,)) denote the true risk
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function. Let f* = argminscr R(f) denote the true risk minimizer within function class F. Define ¢* = f{ — f;
accordingly and let £* := min,¢s g*(x) denote the true threshold associated with f* in obtaining the smallest
outer rare-event approximation.

Theorem 6. Suppose that the density q has bounded support K C [0, M]% and 0 < q < q(x) < qy for any x € K.
Also suppose that there exists a function h such that for any fo € F, if go(x) > K, we have £(fo(x),0) > h(k) >0
(for the cross entropy loss, this happens if we know that fy has a bounded range). Then, for the set Si;", with
probability at least 1 — 0,

Pxry (X €S Xe 85)

< (s = 16.m)VLiplg") ~ 3~ 4°11.0)) (R(f*) +2 sup |Ru, (fo) = R(fe)I)

fo€F
Here Lip(g*) is the Lipschitz parameter of g*, and t(§,ny1) is defined as in Theorem @

C.5 Implications of Theorem |3| and Related Results in the Literature

First, we explain the trade-off between overfitting and underfitting. If the function class G is not rich, then
R(g*) = infyeg R(g) may be big because of the lack of expressive power. On the other hand, if the function
class is too rich, then the generalization error will be huge. Here, the generalization error is represented by
sup,, cg [Rn, (90) — R(ge)| as well as t(d, n1)Vdlip(g*) + /g — g*||..,, which characterize the difference between the
right hand side of the bound in the theorem and its limit as n; — oo.

Another question is how to give a more refined bound for the false positive rate based on Theorem [3|that depends
on explicit constants of the classification model or training process. This would involve theoretical results for
deep neural networks that are under active research. Let us examine the terms appearing in Theorem [3| and give
some related results. In machine learning theory, the term sup,, g [Rn,(96) — R(go)| is often bounded by the
Rademacher complexity of the function class (some results about the Rademacher complexity for neural networks
are in [Harvey et al. |2017; |Cao and Gu|[2019). The convergence of ||§ — ¢*|| ., to 0 as n; — oo is implied by the
convergence of the parameters, which is in turn justified by the empirical process theory (van der Vaart and
Wellner| [1996). A bound for Lip(g*) could be potentially derived by adding norm constraints to the parameters
in the neural network (Anil et al., |2019). On the other hand, if we let the network size grow to infinity, the class
of neural networks can approximate any continuous function (Lu et al., [2017), and hence R(g*) can be arbitrarily
small when the neural network is complex enough. However, if we restrict the choices of networks, for instance by
the Lipschitz constant, then no results regarding the sufficiency of its expressive power for arbitrary functions are
available in the literature to our knowledge, and thus it appears open how to simultaneously give bounds for
Lip(¢g*) and R(g*). Future investigations on the expressive power of restricted classes of neural networks would
help refining our conservativeness results further.

D Lower-Bound Efficiency Certificate and Estimators

In Section |3] we described an approach that gives an estimator for the rare-event probability with an upper-bound
relaxed efficiency certificate. Here we present analogous definitions and results on the lower-bound relaxed efficiency
certificate. This lower-bound estimator gives an estimation gap for the upper-bound estimator. Moreover, by
combining both of them, we can obtain an interval for the target rare-event probability.

The lower-bound relaxed efficiency certificate is defined as follows (compare with Definition :

Definition 6. We say an estimator [i, satisfies an lower-bound relaxed efficiency certificate to estimate p if
P(fin, — > ep) <6 withn > O(log(1/n)), for given 0 < ¢,6 < 1.

This definition requires that, with high probability, [, is a lower bound of p up to an error of ex. We have the
following analog to Proposition
Corollary 2. Suppose [iy, is downward biased, i.e., i := Elfip] Moreover, suppose [i, takes the form of an

< e
average of n i.i.d. simulation runs Z;, with RE = Var(Z;)/u* = O(log(1/f)). Then fi,, possesses the lower-bound
relazed efficiency certificate.
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This motivates us to learn an inner approximation of the rare-event set in Stage 1 and then in Stage 2, we use IS
as in Theorem [2| to estimate the probability of this inner approximation set. For the inner set approximation, like
the outer approximation case, we use our Stage 1 samples {()N(i, Yi)}i=1,...,n, to construct an approximation set
gﬂy that has zero false positive rate, i.e.,

P(X€S,,Y=0)=0. (9)

To make sure of @, we again exploit the knowledge that the rare event set S, is orthogonally monotone. Indeed,
denote T := {X; : Y; = 1} as the rare-event sampled points and for each point = € R%, let Q(z) := {2’ : ' > x}.
We construct J(71) := Uger, Q(z) which serves as the “upper orthogonal monotone hull” of T;. The orthogonal
monotonicity property of S, implies that J(T1) C S.,. Moreover, J(T}) is the largest choice of S, such that
@ is guaranteed. Based on this observation, in parallel to Section E, depending on how we construct the inner
approximation to the rare-event set, we propose the following two approaches.

Lazy-Learner IS (Lower Bound). We now consider an estimator for y where in Stage 1, we sample a constant
ny i.i.d. random points from some density, say g. Then, we use the mixture IS depicted in Theorem 1 to estimate
P(X € J(T1)) in Stage 2. Since J(T1) takes the form Ugyer, Q(z), it has a finite number of dominating points,
which can be found by a sequential algorithm. But as explained in Section [3, this leads to a large number of
mixture components that degrades the IS efficiency.

Deep-Learning-Based IS (Lower Bound). We train a neural network classifier, say g, using all the Stage 1
samples {(X;,Y;)}, and obtain an approximate rare-event region S: = {z: §(x) > K}, where & is say 1/2. Then
we adjust £ minimally away from 1/2, say to &, so that 3: C J(Ty), i.e., s = min{x € R: 3: C J(T1)}. Then 3:
is an inner approximation for S, (see Figure C), where & = 0.83). Stage 1 in Algorithm [2| shows this procedure.
With this, we can run mixture IS to estimate P(X € 3:) in Stage 2.

Algorithm 2: Deep-PrAE to estimate ¢ = P(X € S,) (lower bound).

Input: Black-box evaluator I(- € S,), initial Stage 1 samples {(Xi, Yi)ti=1,...n,, Stage 2 sampling budget
ng, input distribution N (A, X).
Output: IS estimate f[i,.
1 Stage 1 (Set Learning):
2 Train classifier with positive decision region gs = {x: §(x) > r} using {(Xs, Vi) Yic1.....ny;
3 Replace k by & = min{x € R : 3,’: cJ(™)};
4 Stage 2 (Mixture IS based on Searched dominating points):
5 The same as Stage 2 of Algorithm

As we can see, compared with Algorithm [T, the only difference is how we adjust x in Stage 1. And similar to
Theorem |2, we also have that Algorithm [2| attains the lower-bound relaxed efficiency certificate:

Theorem 7 (Lower-bound relaxed efficiency certificate for deep-learning-based mixture IS). Suppose Sy is

orthogonally monotone, and 3: satisfies the same conditions for Sy in Theorem E Then Algorithm |2 attains the

lower-bound relaxed efficiency certificate by using a constant number of Stage 1 samples.

Finally, we investigate the conservativeness of this bound, which is measured by the false negative rate P(X ¢

—k oo . Ca N . 5
S, Y =1). Like in Sectlon% we use ERM to train g, i.e., § := argmin cg{Rn, (g9) := % Yot l(9(X,),Y5)}
where £ is a loss function and G is the considered hypothesis class. Let ¢g* be the true risk minimizer as described
in Section E For inner approximation, we let k* := maXzese g*(x) be the true threshold associated with ¢g* in

obtaining the largest inner rare-event set approximation. Then we have the following result analogous to Theorem
E ~

Theorem 8 (Lower-bound estimation conservativeness). Consider 32 obtained in Algom'thm where g is trained
from an ERM. Suppose the density q has bounded support K C [0, M]¢ and 0 < q < q(x) < ¢, for any = € K.
Also suppose there exists a function h such that for any g € G, g(x) < k implies £(g(x),1) > h(k) > 0. (e.g., if £
is the squared loss, then h(k) could be chosen as h(k) = (1 — k)?). Then, with probability at least 1 — 6,

R(g") + 2sup,eg [ Rn, (9) — R(g)|
h(k* + t(8,n1)VdLip(g*) + |6 — g%l )

Px g (X € 35 \ 87) <
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1
log(niq;)+dlog M+log % \ @
niqi :

Here, Lip(g*) is the Lipschitz parameter of g*, and t(d,n1) = 3 (

E Cross Entropy and Adaptive Multilevel Splitting

We provide some details on the cross-entropy method and adaptive multilevel splitting (or subset simulation),
and also discuss their challenges in black-box problems.

Cross Entropy. The cross-entropy (CE) method (De Boer et al., [2005; [Rubinstein and Kroese, 2013) uses
a sequential optimization approach to iteratively solve for the optimal parameter in a parametric class of IS
distributions. The objective in this optimization sequence is to minimize the Kullback—Leibler divergence between
the IS distribution and the zero-variance IS distribution (the latter is theoretically known to be the conditional
distribution given the occurrence of the rare event, but is unimplementable as it requires knowing the rare-event
probability itself). Specifically, assume we are interested in estimating P(g(X) > «) and a parametric class py is
considered. The cross-entropy method adaptively chooses 71 < 72 < ... < 7. At each intermediate level k, we
use the updated IS distribution py;, designed for simulating P(g(X) > %), as the sampling distribution to draw
samples of X that sets up an empirical optimization, from which the next 6}, is obtained.

While flexible and easy to use, the efficiency of CE depends crucially on the expressiveness of the parametric class
py and the parameter convergence induced by the empirical optimization sequence. There are good approaches to
determine the parametric classes (e.g., Botev et al.|2016), and also studies on the efficiency of IS distributions
parametrized by empirical optimization (Tuffin and Ridder, [2012). However, it is challenging to obtain an
efficiency certificate for CE that requires iterative empirical optimization in the common form depicted above.
Insufficiency on either the choice of the parametric class or the parameter convergence may lead to the undetectable
under-estimation issue (e.g., as in Theorem .

Adaptive Multilevel Splitting. Adaptive multilevel splitting (AMS) (or subset simulation) (Cérou and
Guyader}, [2007; |Au and Beck, 2001) decomposes the rare-event estimation problem into estimating a sequence of
conditional probabilities. We adaptively choose a threshold sequence v; < 72 < ... < yx = . Then P(g(x) > 7)
can be rewritten as P(g(x) > v) = P(g(x) > 1) ]_[,CK:2 P(g(x) > vklg(x) > vk—1). AMS then aims to estimate
P(g(z) > 1) and P(g(x) > yx|g(z) > vr—1) for each intermediate level k = 2, ..., K. In standard implementation,
these conditional probabilities are estimated using samples from p(g(z) > vx|g(x) > vx—1) through variants of
the Metropolis-Hasting (MH) algorithms.

Theoretical studies have shown some nice properties of AMS, including unbiasedness and asymptotic normality
(e.g., see [Cérou et al.|2019). However, the variance of the estimator depends on the mixing property of the
proposal distribution in the MH steps (Cérou and Guyader} |2016). Under ideal settings when direct sampling
from P(g(z) > vk|g(x) > yx—1) is possible, it is shown that AMS is “almost” asymptotically optimal (Guyader
et al.,[2011). However, to our best knowledge, there is yet any study on provable efficiency of rare-event estimators
with consideration of both AMS and MH sampling. In practice, to achieve a good performance, AMS requires a
proposal distribution in the MH algorithm that can efficiently generate samples with low correlations.

F Further Details for Numerical Experiments

This section provides more details on the two experimental examples in Section

F.1 2D Example

In the 2D example, the rarity parameter v governs the shape of the rare-event set S, = {z : g(z) > v}. We consider
a linear combination of sigmoid functions g(z) = [|01%(z—c1 —7)+0290(x —ca—7) +030(x —c3—7) + 04 (x—cs—7)||

where 0, ¢ are some constant vectors and ¢ (z) = %. A point z is a rare-event if g(x) > -, where we take

v = 1.8 in Section 4l We use p = N([5,5]7,0.25I52). Figure [5|shows the rare-event set and its approximations
for various 4’s. The Deep-PrAE boundaries seem tight in most cases, attributed to both the sufficiently trained
NN classifier and the bisection algorithm implemented for tuning & after the NN training.



Arief, Huang, Kumar, Bai, He, Ding, Lam, Zhao

Figure 5: The contour of p, rare-event set S., (reddish region), outer- and inner- approximation boundaries (black
lines) and Deep-PrAE UB and LB decision boundaries (white lines) for some + values in the 2D example.

F.2 Intelligent Driving Safety Testing Example

We provide more details about the self-driving example, which simulates the interaction of an autonomous
vehicle (AV) model that follows a human-driven lead vehicle (LV). The AV is controlled by the Intelligent
Driver Model (IDM), widely used for autonomy evaluation and microscopic transportation simulation, that
maintains a safety distance while ensuring smooth ride and maximum efficiency. The states of the AV are
St = [Zfollow Llead Vfollow » Vlead , Gfollows Glead )t Which are the position, velocity and acceleration of the AV and LV
respectively. The throttle input to the AV is defined as u; which has an affine relationship with the acceleration
of the vehicle. Similarly, the randomized throttle of the LV is represented by w;. With a car length of L, the
distance between the LV and AV at time ¢ is given by 7 = Zlead,t — Tfollow,t — L, which has to remain below the
crash threshold for safety.We describe the dynamics in more detail below. Figure [6] gives a pictorial overview of
the interaction.

Autonomous Vehicle (IDM) A w Lead Vehicle (Random Actions)
—————- t
Xiotiow, Viotiow, 2rollow Q Q (Xieaq, Viead, Bieach
— L )= (Xeag " Xo1on L) — U,

Figure 6: The states s; and input wu; of the self-driving safety-testing simulation. w; denotes the throttle input of
the AV from the IDM.
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Table 1: Parameters of the Intelligent Drivers Model (IDM)

Parameters Value
Safety distance, s 2 m
Speed of AV in free traffic, vy 30 m/s
Maximum acceleration of AV, a 2y m/s?
Comfortable deceleration of AV, b 1.67 m/s?
Maximum deceleration of AV, d 2y m/s?
Safe time headway, T 15s
Acceleration exponent parameter, § 4

Car length, L 4 m

LV actions. The LV action contains human-driving uncertainty in decision-making modeled as Gaussian
increments. For every At time-steps, a Gaussian random variable is generated with the mean centered at
the previous action u;—a;. We initialize ug = 10 (unitless) and At = 4 sec, which corresponds to zero initial
acceleration and an acceleration change in the LV once every 4 seconds.

Intelligent Driver Model (IDM) for AV. The IDM is governed by the following equations (the subscripts
“follow” and “lead” defined in Figure@is abbreviated to “f” and “I” for conciseness):

i,‘fZUf
i,'l =
6 * 2
Uy = max (a(l - <vf> - <s (vf’Avf)> ), d)
Vo Sf

Sf:ﬂfl*.’tffL
A’UfZ’Uf—Ul7

The parameters are presented in Table E, and v; o< u¢ and vy o< wy, . The randomness of LV actions u;’s
propagates into the system and affects all the simulation states s;. The IDM is governed by simple first-order
kinematic equations for the position and velocity of the vehicles. The acceleration of the AV is the decision
variable where it is defined by a sum of non-linear terms which dictate the “free-road” and “interaction” behaviors
of the AV and LV. The acceleration of the AV is constructed in such a way that certain terms of the equations
dominate when the LV is far away from the AV to influence its actions and other terms dominate when the LV is
in close proximity to the AV.

Rarity parameter v. Parameter ~ signifies the range invoked by the AV acceleration and deceleration pedals.
Increasing v implies that the AV can have sudden high deceleration and hence avoid crash scenarios better and
making crashes rarer. In contrast, decreasing v reduces the braking capability of the AV and more easily leads to
crashes. For instance, v = 1.0 corresponds to AV actions in the range [5, 15] or correspondingly afoliow,: € [—2, 2],
and v = 2.0 corresponds to aporow,: € [—4,4]. Figure |z shows the approximate rare-event set by randomly
sampling points and evaluating the inclusion in the set, for the two cases of v = 1.0 and v = 2.0. In particular,
we slice the 15-dimensional space onto pairs from five of the dimensions. In all plots, we see that the crash set
(red) are monotone, thus supporting the use of our Deep-PrAE framework. Although the crash set is not located
in the “upper-right corner”, we can implement Deep-PrAE framework for such problems by simple re-orientation.

Sample trajectories. Figure |8 shows two examples of sample trajectories, one successfully maintaining a safe
distance, and the other leading to a crash. In Figure e)—(h) where we show the crash case, the AV maintains a
safe distance behind the LV until the latter starts rapidly decelerating (Figure h)) Here the action corresponds
to the throttle input that has an affine relationship with the acceleration of the vehicle. The LV ultimately
decelerates at a rate that the AV cannot attain and its deceleration saturates after a point which leads to the
crash.
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10 155 10 155 10 155 10 10 15 10 155 10 155 10 155 10 15 5 10 15

us Us us Us Us us us us us Us
(a) Case vy =1.0 (b) Case v =2.0

Figure 7: Slice of pairs of the first 5 dimensions of LV action space. For any (u;,u;/) shown, wu;, j & {4,7'} is fixed
at a constant value. Blue dots = non-crash cases, red dots= crash cases.

F.3 Code

The code and environment settings for the experiments are available at https://github.com/safeai-lab/Deep-
PrAE/.

G  Proofs

G.1 Proofs for the Dominating Point Methodologies

Proof of Proposition[2. Since p is exponentially decaying in v while n is polynomially growing in +y, we know that
limy o0 np = 0. Since nji, takes values in {0,1,...,n}, we get that P(|f, — | > ep) = P(|nfin, —np| > enp) — 1
as y — o0. O

Proof of Theorem[4. Throughout this proof, we write f(v) ~ g(v) if f(v)/g(7) changes at most polynomially in
v. We know that

E[ZQ] _ ZE[I(X e S,JY)LQ(X)] < Ze—(aj_)\)Tzfl(aj—A)/aj ~ e_(a*_)\)Tzfl(a*_A).
J J

Denote Y = B(X —\) ~ N(0, BXB”) and s = B(a* — \). Define &€ = e min,.,r (psp7)-14=1 ||t/|oc. Then we also
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Figure 8: Autonomous Car Following Experiment Trajectories. Figures (a) -

without a crash occurring where the AV follows the LV successfully at a safe distance. Figures (e) -

(d) represent a simulation episode
(h) represents

a simulation episode where crash occurs at ¢t = 23 seconds due to the repeated deceleration of the LV.

know that

Note that it is easy to verify that s7(BXBT)~te; > 0. If s7(BEBT)~
1—

substitute

E[I(X € 8,)L(X)]

\Y

P(B(X — a*)

/y> ,(y—s)T(BEBT)-1(y—s)<e?

P(Y >s,(Y —

/y> (y=s)T(BEBT) =1 (y—s)<e?
(271,) d/Q‘BEBT| 1/2 —€ /2 —(a —A)T

>0, (X
s)T(BEBT)~

_ a*)Tzf
1(Y _

o—sT(BEBT) (y-s) 4

1(X_
s) <€)

a*) <€)

Ha"=N)/2

Y

(2m) 2| BR BT |71 2 (BEET) v/

d g
2(271,)701/2‘BZBT|71/26752/267(a*7>\)TE’1(a*f)\)/Q H/ efsT(BEBT)’leiuidui

:(27r)7d/2‘BZBT|71/267€2/2€7(a*7>\)7‘2

efsT(BEBT)’le-é

sT(BSBT) le,

in v, finally we get that

E[I(X € 8))L(X)] ~ e~ (@

1_ efsT(BEBT)

i€

a* )\/QH

T

and hence E[Z2]/E[Z]? is at most polynomially growing in .

Proof of Theorem[I. We know that E[Z]

=o(7) +

® (k7). Moreover,

E[Z%] =

7 (@(27) + B((k —

1)7))-

Ha*=X)/2

sT(BLBT)~ 1

le; = 0, then we naturally use & to

. Since we have assumed that the components of a* are at most polynomially growing

If0 < k < 1, then B[Z] = O (e*k272/2/y) and E[Z?] = O (672) asy — oo. If 1 < k < 3, then E[Z] =

o (6*72/2/7) and E[Z%] = O (6(1*(’“*1)2/2)72/7) as v — oo. In both cases, we get that E[Z%]/E[Z]? grows
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exponentially in . On the other hand, we know that

P ( > 5@(7))

- - (1 _
<P(3i:X; < —ky)+ P ( =N TIX > ) 2N ()
n =

%Zzi —®(v)

> 5@(7)) )

Clearly P(3i: X; < —ky) =1— (1 - ®((k+1)7))" =0 (n®((k + 1)7)), which is exponentially decreasing in v
as n is polynomial in . Moreover, by Chebyshev’s inequality,

‘

SE[I(Xi 2 )" PN] T a(2y) ( . )

1 _
ST I(X = ) P ()
n -

> 6@(v)>

ne2®2(y) ne2®2(y) ne?

Thus P(|jin, — ®(v)| > e®(v)) = O (7%). Moreover, we know that P(3i: Z; > 0) > 1—1/2" and if Z; > 0 for
some 7, then we have that

2
> 2 /”2 <nZ
(22 Zi/n)
O
G.2 Proofs for the Relaxed Efficiency Certificate
Proof of Proposition[I. We have
P(fiy, — p < —ep) < P(fin — I < —€ft)
since > p and 1 — e > 0. Note that the Markov inequality gives
o Var(Z
P(fin = < —ep) < %
nem
so that -
Var(Z;) RE - 1 ~ 1
> ——--=—5=0|log=) =0 |log—
> S = 5 =0 (62) =0 ()
achieves the relaxed efficiency certificate. O

Proof of Proposition[3. The proof follows from that of Proposition [1] with a conditioning on D,,,. We have
P(fin — p < —ep|Dy,) < P(ftn, — B(Dy,) < —€fi(Dn, )| Dn,)
since fi(Dy,,) > p almost surely and 1 — € > 0. Note that the Markov inequality gives

Var(Z;|Dy,)
n2€?fi(Dp, )?

Var(Z;|Dyn,) RE(Dp,) ~ 1 ~ 1
> = = = —
ng > 5Dy )2 52 O | log D) O ( log p

~ 1
n:nl—i—ngZO(log)
1

Pfin = (D) < —€0(Dn, )| Dn,) <

so that

almost surely. Thus,

achieves the relaxed efficiency certificate.
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Proof of Corollary[1. Follows directly from Proposition [3| since S, D S, implies fi(Dy,) > p almost surely. [

Proof of Theorem[2. We have assumed that gj satisfies the assumptions for S, in Theorem E Then following
the proof of Theorem [4] we obtain the efficiency certificate for the IS estimator in estimating its mean. Theorem
is then proved by directly applying Corollary O

G.3 Proofs for Conservativeness

Recall that Ty = {X’l :'Y; = 0} where the samples are generated as in Algorithm E By some combinitorial
argument, we can prove the following lemma which says that with high probability, each point in & that has
sufficient distance to its boundary could be covered by H(Tp).

Lemma 1. Suppose that the density q has bounded support K C [0, M]?, and for any x € K, suppose that
0<q <q(z) < qu. Define By :={x € S : v +t1lax1 € SS}. Then with probability at least 1 — &, we have that

1
Bt(é,nl) C H(Ty). Here t(6,n1) = 3 (log(qu)erlog M+log%) a

niq

Proof. The basic idea is to construct a finite number of regions, such that when there is at least one sample point
in each of these regions, we would have that B; C H(Tp). Then we could give a lower bound to the probability of
B, C H(Tp) in terms of the number of regions and the volume of each of these regions.

By dividing the first d — 1 coordinates into % equal parts, we partition the region [0, M ]d into rectangles, each
with side length §, except for the d—th dimension (the § here is not exactly the § in the statement of the lemma,
since we will do a change of variable in the last step). To be more precise, the rectangles are given by

d—1
Zj = (H[(ji - 1)573'15}) x [0, M].

i=1

Here j € J and J is defined by

== 0 damn) i = 1200

.

Denote by Jy the set which consists of j € J such that there exist a point in Bss whose first d — 1 coordinates are
710,720, -+, jq—10 respectively, i.e., Jy = {j € J: By ((H?;f{jﬂ}) X [O,MD #* (7)} . For all j € Jy, let p; be
the point such that

i) pj S Bg
ii) The first d — 1 coordinates of p; are j19, j29, - - - , ja—10 respectively
iii) p; has d—th coordinate larger than —0 + Sup,, satisfies i),i1) (d-th coordinate of p).

From the definition of Jy and the fact that Bs D Bas, p; is guaranteed to exist. We claim that Bas N Z; C R(p;),
where R(p;) is the rectangle that contains 0 and p; as two of its corners. Clearly, from the definition of Z;, for
any point x € Bas N Zj, its first d — 1 coordinates are smaller than jid, j26,- - - , ja—16 respectively. For the d—th
coordinate, suppose on the contrary that there exists x € Bys N Z; with d—th coordinate greater than the d—th
coordinate of p;. Since z € Z;, the first d — 1 coordinates of x are at least (j1 — 1)d, (ja — 1)d,- -+, (ja—1 — 1),
so we have that  + 01441 > p; + deq. Since x € Bas, we know that x 4+ 201441 € Sﬁ;. Hence by the previous
inequality and the orthogonal monotonicity of S,, p; + deq + 01ax1 € S5. By definition of Bs, this implies
pj + deq € Bs. This contradicts iii) in the definition of p;. By contradiction, we have shown that each point in
Bsys N Z; has d—th coordinate smaller than the d—th coordinate of p;. So the claim that Bas N Z; C R(p;) for
any j € Jy is proved.

Then we consider those j such that j € J —Jy. For any point « € Z;, the first d — 1 coordinates of  +014x1 are at
least j19, jod, - -+ , ja—10 respectively. Since j ¢ Jy, we have that x + d14x1 ¢ Bas. This implies « + 361441 ¢ S5,
or x ¢ Bss. So we have shown that for any j ¢ Jy, Bss N Z; = (). This implies Bs; has a partition given by
Bss = Ujeg (Bss N Z;) = Ujey, (Bss N Z;). Notice that Bss C Bags, from the result in the preceding paragraph,
we conclude that Bss C Ujec s, R(p;)-
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For each j € Jy and the constructed p;, consider the region
Gj={reS; r>p;}

Observe that, if there exists a sample point in Tj that lies in G;, then we have p; C H(Tp) which implies
R(p;) C H(Tp). Since p; € Bs and S, is orthogonally monotone, we have that G; contains the rectangle which
contains p; and p; + 61gx1 as two of its corners, so Vol(G;) > §¢. Hence the probability that R(p;) C H(Tp) has
a lower bound given by

P(R(p;) CH(Tp)) > P(TyN Gy #0) > 1— (1 —5%)" > 1— e mad”,

Notice that |Jo| < (%)d_l, by union bound we have that

d—1

Y
P(Ujes,R(pj) C H(Tp)) > 1 — SiTC 1ai0°
Since we have shown that Bss C Ujcz,R(p;), this implies
Md71 _ d
P(Bss C H(Ty)) 2 1 = —=e madt
1

Based on this inequality, it is not hard to check that for ¢(6,n1) = 3 (log(mql)til;g M'Hogg) d, we have that
P(Bt((s) C H(Tp)) > 1-6. O
Proof of Them;lenli [5. First, we show the inequality in the theorem, i.e., Px (X € H(Tp)\S,) <
Mg, (@) wq—1t(6,n1). It suffices to show that with probability at least 1 — §, Vol (H(Tp)°\S,) <

Nz d—1 Nz d—1
M1 (Td) wgq—1t(d,n1), or equivalently Vol(Ss\’H(TO)) < M1 (Td) wq—1t(d,n1). Since by lemma
E we have that Bys,,) C H(To) with probability at least 1 — ¢, it suffices to show that Vol(Ss\Bt((;,nl)) <

-1 (@)#1 wg—1t(d,n1). This latter inequality actually follows from the definition of By ,,) and some
geometric argument. Indeed, by definition of By(sy,), for each z € ,S'i;\Bt((;,nl)7 z belongs to the area which
is obtained by moving the boundary of S, in direction — lj/xal for a distance of t(8,n;)vd. So the volume of
S5\ Bi(5,n,) s bounded by

t(0, nl)\/g x Volg—1(projection of the boundary of Sy in direction 14x1)
<t(8,n1)Vd x Volg_1 (projection of [0, M]? in direction 14x1)

Here Vol;_; means computing volume in the d — 1 dimensional space. Notice that [0, M]¢ is contained in a ball

M+/d

5, we have that

with radius

d—1
d
Voly—1 (projection of [0, M}d in direction 1gx1) < M1 <\[> Wq—_1.

Combining the preceding two inequalities, we have proved the inequality in the theorem. Next we show the
d
2

equality in the theorem. Indeed, when d is large, we have asymptotic formula wy = \/% (22¢)2 (1+0(d™1)).
Plugging this into the RHS above, we will obtain the asymptotic bound as stated in the theorem. O

Proof of Theorem[3. By Markov inequality and the definition of h,g,’;‘, we know that

R(g
h(k)

~

—
—
(e

=

Pxeq (X €80, X €8) = Pxng(§(X) >/, X € 8) <
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We will compare the numerator and denominator of the RHS of with their counterparts for the true minimizer
g*. For the numerator, since § is the empirical risk minimizer, we have that

R(9) < Ry, (9) + sup |Ry, (99) — R(g9)| < Rn,(g™) + sup |Rn, (96) — R(gs)|
go€G g0 €G

< R(g") + 2 sup |Rn,(g90) — R(g0)| -
go€G

For the denominator, from the definition of é:ff, it is not hard to verify that, in Algorithm E, our choice of & is
given by & = min{g(x) : z € H(Tp)}. By lemmalll, we have that with probability at least 1 —0, By, C H(T0),
which implies that with probability at least 1 — 9,
& >min{g(z) : ¢ € Bis,,,)} = min{g"(z) : 2 € B,y } — 19 — 9"[|
> min{g*(x) : @ € 8y} — t(6,m)VdLip(g™) = (|1 — 9"
= K" —t(6,n1)VdLip(g™) — 1§ — 9" | -

Putting the preceding two inequalities into the Markov inequality , and notice that h is non decreasing by its
definition, the theorem is proved. O



