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APPENDIX

A Theoretical Analysis of Linear Models for Meta-Learning
This section provides more details to §4 in the main text.

A.1 Analytic Solution of 1D Linear Regression

We use
0o =0 —aVi () (27)

as a short-hand. The gradient of the MAML loss £LY*M" is given by

aEMAML aéT

5 = Er(I —aH(0)) = E- (I — aH(0))VL-(6a) (28)

a0 0—aVi,

We setup the problem as follows. Let the task parameter 6, ~ N(0,1) be a normal distributed scalar. Let the
covariate  ~ N(0,1) be a normal distributed scalar and the outcome be y ~ N(f,z,1). We investigate two
models for their meta-learning performance:

SHALLOW: ¢ =cx, DEEP: ¢ = abx (29)

Note that the “deep” model is overparameterized. For each task, we use the least-square loss

b = %Ep(w,wa)(y —cx)?, or b= %Ep(m,y\m(y — abx)? (30)
A.1.1 Shallow Model
For the shallow model, the gradient is
Vi = Ep(aylo.)(cx —y)r =c—0; (31)
Thus, the loss for the 7-th task is given by
l(c—aVl) = Epuylo.) (v — [(1 — a)c+ ab]z)? (32)
=[(1—a)c+ab,)* —2[(1 — a)c+ ab, )b, (33)

Simplifying and completing the square on the #2 term with constants, we arrive at
l(c—aVe) = (1 —a)*(c—0,)* + CONST (34)
Taking the expectation of the loss with respect to p(7), we have

EMAML

SHALLOW — 2(1 - a)202 + CONST (35>

A.1.2 Deep Model

The gradients of the linear regression loss w.r.t a,b are given by:

ol

——~ = ab® — b, 36
5 = ° (36)
o _ a’b — ab, (37)

=
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The post-adaptation parameters are obtained by taking one step of gradient descent with learning rate a:

a<a—ab(ab—196;) (38)
b+ b—aa(ab—0;) (39)

This gives us the expression for the MAML loss:

LM — SR E [y~ (a— ablab— 6,) - (b~ aa(ab— 6,))al” (40)
_ %Ey ly — f(a,b,0,)a]? (41)
_ % E[62 - 20, + f*(a,b,6,)] (42)
:%+%]Ef2(a,b,97)— %ITEOTf(a,b,GT) (43)

where f(a,b,0,) = (a — ablab—6,)) - (b — aalab—6,)).

We now take a closer look at the term [E f2:

(a,b,6,) = [ab — aa®(ab — 6,) — ab®(ab — 0,) + aab(ab — 6,)?]” (44)
— [ab — a(a® + b*)(ab — 6,) + a®(ab — 6,)] (45)
— [ab — a(a® + b?)ab + a®a®b? + (a(a® + b?) — 2a%a%b?)8, + aPabh?]” (46)
= [p1 + pabs + p362]” (47)
(48)
where we let:
p1 = ab — a(a® + b*)ab + a?a’b, p2 = a(a® +b?) — 2a2a?b?, p3 = oab (49)
We then obtain
E f*(a,b,0-) = pi + p3 + 3p3 + 2p1ps (50)
and where the last equality is obtained be remembering the expectation properties of 6, :
Ep(r) 93 =1 Ep(r) 93 =0, Ep(r) 9;1— =3. (51)
Furthermore, we obtain
EO;f(a,b,0:) = p2 (52)
This gives us a final expression for the MAML loss:
LYAME = ;(1 +pi +p3 + 3p3 + 2p1ps — 2p2). (53)

We use the Matlab Symbolic Toolbox to help us simplify the rest of the calculation. The code is given below

%% We use sa, sb, salpha as the "symbolic version" of a, b, and alpha
syms sa sb salpha

ppl = saxsbx(1— salphax(sa”2+sb”~2)+ salpha~2xsa~2xsb~2);
pp2 = salphax(sa”2+sb~2) — 2 xsalpha~2 xsa”~2xsb"~2;
pp3 = salpha~2xsax*sb;

L = ppl*ppl + pp2+pp2 + 3*xpp3*pp3 + 2*xppl*xpp3 —2 *pp2;
diffa = diff(L, sa);
diffb = diff(L, sb);

H — [diff(diffa, sa) diff(diffa, sb);diff(diffb, sa) diff(diffb, sb)];
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Stationary Points The gradients are complicated polynomials in a and b. Instead, we give the specific cases:
oLy

da

= 4aa(aa® — 1), OL prwr

a1 (54)
o b

b=0

We immediately can derive that there are at least 5 stationary points:

e (a=0,b=0), with Hessian

—4da 0
H= (55)
0 —4a
o (a= :I:ﬁ, 0), with Hessian ] ]
7 A (56)
[0 6a?)
e (a=0,b= iﬁ), with Hessian ] ]
6a® 0
H= (57)
0 S8a

B Supplementary Experiments

This section provides additional experimental evidence to complement the evidence presented in the main text.

B.1 Binary Logistic Regression

To resonate more with our experiments of using (multinominal) logistic regression models on Omniglot, CIFAR
and MNIST datasets, we also analyze binary logistic regression models on synthetic data.

Linear Classification MAML Linear Classification MAML

=
o

J
(==}

’

M AW WA PPN A Y —'-...-“

o) o)

© 0.8 © 0.8

3 =}

& &

c 0.6 - 06 1

Bl A/l 5 iebaivw i)

- -

3 3

_E 0.4 LogR _§- 0.4 LogR

< ==+ LogR+LinNet(2) < ==+ LogR+LinNet(2)

- -

08_ 0.2 LogR-+LinNet(3) Qg_ 0.2 LogR+LinNet(3)

= Upper Bound = Upper Bound
0.0 T T T 0.0 - T T T
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

Iterations x10* Iterations x10*

Figure B.1: Meta-learning of linear models on synthetic data. For linear separable data, MAML fails on logistic regression
but succeed on logistic regression augmented with 2 or 3 linear layers. (Left) Meta-train accuracies. (Right) Meta-test
accuracies.

B.1.1 MADML on Logistic Regression and Logistic Regression with Linear Layers

We randomly sample a set of 2-dimensional task parameters 6, € R? from a standard multivariate spherical
Gaussian and use each of them to define a linear decision boundary of a binary classification task. We sample
inputs from a 2-dimensional multivariate spherical Gaussian and the binary outputs for each task are sampled
from y ~ o(6Xx), where o() is the sigmoid function.

By construction, a logistic regression (LR) is sufficient to achieve very high accuracy on any task. But can MAML
learn a linear classifier from a randomly sampled subset of training tasks that is able to adapt quickly to the test



Sébastien M. R. Arnold, Shariq Igbal, Fei Sha

tasks? It is intuitive to see the minimizer for the MAML loss £M*M" is the origin due to the rotation invariances
of both the task parameters and the inputs. The origin thus provides the best initialization to adapt to new tasks
by not favoring any particular task.

Fig. Left) reports the 1-step post-adaptation accuracy on the test tasks for the meta-learned logistic regression
model. Equally surprising as the previous results, the model fails to perform better than chance. However, adding
linear layers “rescues” the meta-learning; LR with 2 or 3 linear layers attains nearly perfect classification on any
task.

B.2 Logistic Regression Failure Modes

As argued in §5.1, shallow logistic regression models fail to meta-learn on Omniglot and CIFAR-FS. Fig. [B:2]
displays this same failure mode on the mini-ImageNet dataset. To simplify computations, we downscaled the
original mini-ImageNet images (84x84 pixels, with RGB channels) to the same size as CIFAR-FS. (32x32 pixels,
with RGB channels)
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Figure B.2: Meta-training logistic regression models with MAML on Omniglot, CIFAR-FS, and mini-ImageNet led to
poor performances. Adding linear nets improves meta-learning significantly, without changing the model’s capacity.

B.3 Linear Layers Cannot Be Collapsed

Our previous results have shown that when MAML cannot meta-train well, adding multiple linear layers helps to
meta-learn, cf. Fig. [BI]and Fig. 1 of the main text.
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Figure B.3: Collapsing multiple linear layers into a single layer before adapting to new tasks (green curves) leads
to poor adaptation results.

But after meta-training, can we collapse those multiple linear layers into a single linear layer so as to reduce the
model size?
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Fig. shows that collapsing erases the model’s ability to adapt to new tasks. This suggests that the solutions
identified in models with additional linear layers need to stay in the overparameterized space to
be effective and they cannot be collapsed before adaptation.

B.4 Does SGD-induced implicit regularization for linear networks matter for meta-learning?

Implicit regularization refers to the bias towards solutions with different generalization abilities when stochastic
gradient descent (SGD) is used to optimize overparameterized models |Gidel et al.| (2019).

One might want to argue that implicit regularization explains why additional linear layers in our experiments
(Fig. 1 of the main text, Fig. [B.1)) help to meta-learn. This is an interesting hypothesis, though we do not think it
can fully explain what is observed.

First, as those experiments have shown, for models augmented with linear nets, there is very little difference
between training accuracies and meta-testing accuracies. Moreover, for models without linear nets, there is
very little difference between the two phases either. Thus, while SGD could lead to solutions with different
generalization abilities in regular supervised learning settings, our experiments do not show there is an overfitting
issue in the experiments here for meta-learning.

The difference between parsimonious and overparameterized models (with linear layers) could be due to the
difference in solutions. However, the solutions are in space of different dimensionality. Fig. shows that after
we collapse the overparameterize models such that the solutions are in the same space, the solutions from the
collapsing becomes as ineffective (in terms of leading to poor adaptation results) as the original models. This
suggests that SGD is not identifying a solution in the overparameterized space that could have been identified in
the original space. In other words, SGD is not biasing towards any solution in the overparameterized space that
could have made difference in the original space.

B.5 ANIL with Meta-Optimizers

In §5.3, we showed that MAML augmented with meta-optimizers was able to meta-learn in shallow non-linear
networks. Table shows similar results when using ANIL as the meta-learning algorithm. (Note: this table
omits T-Nets, as it is not compatible with ANIL.) We observe that ANIL always benefits from the combination
with a meta-optimizer, and specifically that it benefits most from KFO.

Table B.4: Meta-Optimizers Improve ANIL Meta-Learnability on CNN(2)

Dataset ANIL ANIL w/
MSGD MC KFO
Omniglot 91.00 92.47 92.67 94.40

CIFAR-FS 66.10 67.55 67.43 68.81
mini-ImageNet 56.42 57.45 59.07 62.65

B.6 Effect of Number of Layers

Figure complements the results in §5.3 when varying the number of layers in the convolutional network. (We
include again results on Omniglot and CIFAR-FS for convenience.) As we observed in the main text, shallower
models greatly benefit from the additional meta-optimization parameters which alleviates the burden of learning
how to adapt. But, this benefit dampens as we increase the number of convolutional layers — the gap between
META-KFO and MAML shrinks — since the additional upper layers implicitly transform the gradient of lower
layers, thus enabling successful meta-learning.

C Details on KFO

C.1 Other factorization schemes

A technical issue arises when expressing the meta-optimizer Ug as a neural network: the dimensionality of modern
(model) network architectures ranges in the tens of thousands, if not more. To address those computational
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Figure B.4: Complementing Fig. 4l we vary the number of convolutional layers in the model. As the model size increases
the performance of both methods improves, which can be attributed to the model’s increased capacity to learn the target
task. However, the net gain from META-KFO over MAML has diminishing returns as the number of layers increases since the
benefit of the external meta-optimizer reduces as the upper layers of the larger models have more capacity to meta-learn
to control their own bottom layers.

and memory issues, we learn one meta-optimizer network per matrix parameter in the model network and
express the weights of the optimizer neural network as a Kronecker factorization such that for each weight
W eR™": W =R" ® L, where R € R™*™ and L € R"*",

Many matrix factorization schemes could be used and would result in different modeling and computational
trade-offs. For example, using a low-rank Cholesky factorization A = LLT where L € R**" allows to interpolate
between computational complexity and decomposition rank by tuning the additional hyper-parameter r. The
Cholesky decomposition might be preferable to the Kronecker one in memory-constrained applications, since r
can be used to control the memory requirements of the meta-optimizer. Moreover, such a decomposition imposes
symmetry and positiveness on A, which might be desirable when approximating the Hessian or its inverse.

In this work, we preferred the Kronecker decomposition over alternatives for three reasons: (1) the computational
and memory cost of the Kronecker-product are acceptable, (2) R ® L is full-rank whenever L, R are full-rank,
and (3) the identity matrix lies in the span of Kronecker-factored matrices. In particular, this last motivation
allows meta-optimizers to recover the gradient descent update by letting R, L be the identity.

C.1.1 Schematics and Pseudo-code

Pseudo-code for meta-optimizers is provided in Algorithm [I} and a schematic of the model-optimizer loop in
Figure

Algorithm 1 Meta-Learning with Meta-Optimizers

Require: Fast learning rate «, Initial parameters #(") and (i) Optimizer Opt
1: while 9(nit) ¢(init) 1ot converged do
2 Sample task 7 ~ p(7)
3 61 = e(init)’ El — g(init)
4 for stept=1,...,T do
5: Compute loss £, (6;)
6 Compute gradients Vg, 0, (6;) and V¢, ¢-(6)
7 Update the meta-optimizer parameters {41 = & — aVe, 0-(6;)
8 Compute the model update U, (Vg,¢+(0;))
9 Update the model parameters 0,1 = 6; — Ue,,, (Vo 4+(6:))
10: Update model and meta-optimizer initializations
11: ginit) . g(init) _ Opt(VG(init)&- (QT))
12: ¢nit) o (i) — Opt (Vi 7 (07))
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Figure C.5: Schematic of model-optimizer loop

Table D.5: Adaptation learning rates for the linear model experiments in the main text and the Suppl.
Material

Dataset Model Meta learning rate Adaptation learning rate
Synthetic LR 0.01 0.900
Synthetic LR+LinNet(2) 0.1 0.900
Synthetic LR+LinNet(3) 0.1 0.900
Omniglot LR 0.0005 1.0

Omniglot LR-+LinNet 0.0005 0.08
CIFAR-FS LR 0.0005 0.01
CIFAR-FS LR-+LinNet 0.0001 0.02
mini-ImageNet LR 0.0005 0.01
mini-ImageNet LR+LinNet 0.0005 0.01

D Hyperparameters and details for reproducibility

We report the hyper-parameter values for the experiments of the main text. Each experimental setup is tuned
independently based on post-adaptation accuracies obtained on validation tasks.

All experiments are implemented on top of PyTorch [Paszke et al.| (2019)) and learn2learn |Arnold et al.| (2020)).
Moreover, our work relied on tools from the Python scientific ecosystem [Van Rossum and Drake| (1995)), including
numpy [Hunter| (2007)), matplotlib [Harris et al.| (2020]), and scipy |Virtanen et al. (2020). We provide example
implementations of Meta-KFO at: https://github.com/Sha-Lab/kfo

Linear Models On the 1D linear regression, both SHALLOW and DEEP models use a fast-adaptation learning
rate set to 0.1. Their parameters are optimized by SGD with a meta learning rate set to 0.01, and a momentum
term set to 0.9. On the vision datasets (Omniglot, CIFAR-FS, mini-ImageNet), the meta and adaptation learning
rates are given in Table [D.5] For those experiments, the added linear network consists of 256-128-64-64 hidden
units. To simplify computations on mini-ImageNet, we downsample images to 32x32 pixels.

Nonlinear Models All methods in Tables 1, 2, and 3 are tested on the standard 5-ways 5-shots setting. For
Omniglot and CIFAR-FS, the networks are the original CNN from |Finn et al| (2017) with 32 hidden units, while
for mini-ImageNet we used 64 hidden units. We use Adam to optimize the networks, with default values of
(0.9, 0.999) for 8 and 1le-8 for ¢, and process tasks by batches of 16. Meta and adaptation learning rates for all
methods are reported in Tables D7
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Table D.6: Adaptation learning rates for the two-layer CNN experiments in the main text and the Suppl.
Material

MAML w/ ANIL w/
Dataset (null) LinNet MSGD MC KFO (null) LinNet MSGD MC KFO
Omniglot 0.08  0.05 05 05 01 0.5 0.5 0.05 0.05 0.1
CIFAR-FS 0.07 0.01 0.7 07 01 0.5 0.5 01 01 01

mini-ImageNet 0.001 0.001 0.1  0.05 0.001 0.5 0.5 0.1 0.1 0.1

Table D.7: Meta learning rates for the two-layer CNN experiments in the main text and the Suppl. Material

MAML w/ ANIL w/
Dataset (null) LinNet MSGD MC KFO  (null) LinNet MSGD MC KFO
Omniglot 0.003 0.003 0.0005 0.0005 0.001 0.001 0.003 0.001 0.001 0.001
CIFAR-FS 0.003 0.003 0.001 0.003 0.003 0.002 0.001 0.001 0.001 0.001

mini-ImageNet 0.0005 0.0005 0.001 0.001 0.0001 0.001 0.001 0.001 0.001 0.001
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