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1 Basics of Riemannian geometry

Let us assume a d-dimensional smooth manifold M
embedded in an ambient space X = RP with d < D,
where it is defined a Riemannian metric My : X —
R25P. Therefore, the space X is a Riemannian man-
ifold, since X is a smooth manifold. This directly im-
plies that the simple Euclidean space is a Riemannian
manifold as well. Due to the embedding of M a Rie-
mannian metric is induced in the tangent space Tx M
by the restriction of the Riemannian ambient metric
Myx(+), even for the simple case My (x) = Ip. In or-
der to simplify the analysis, we further assume that a
global chart map ¢ : M — U C R? exists.

Generally, one of the main utilities of a Riemannian
manifold M C X is to enable us compute short-
est paths therein. Intuitively, the norm /{dx, dx)x
represents how the infinitesimal displacement vector
dx ~ x' — x on M is locally scaled. Thus, for a curve
~:[0,1] = M that connects two points x = v(0) and
y = (1), the length on M or equivalently in ¢(M)
using Eq. 2 is measured as

1
lengthl(t)] = / SO A Ot (1)

- / GO M) D) dt = lengthle(t)]

where ¥(t) = 0yy(t) € T, M is the velocity of the
curve and accordingly ¢(t) € Tey@(M). The length is
an invariant quantity under reparametrization i.e., for
any continuous monotonic function s : [a,b] — [0,1]
the curve (t') = ~v(s(t')), t' € [a,b] has the same
length. Instead, in order to find the shortest path we
minimize the corresponding energy functional, which
is a non-invariant quantity,

1
+(£)* = argmin = / GO A O md,  (12)
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and similarly the energy can be written for the c¢(t) €
»(M) in the intrinsic coordinates as Eq. 11. The mini-
mizers of this energy have constant speed [|¥(t)|,,)and
are known as geodesics.
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In theory, instead of solving the problem on M, we use
the intrinsic coordinates. Assuming a global chart ¢(-),
we search for a curve c(t) = ¢(y(t)) € (M) that min-
imizes the corresponding energy functional Elc(t)] =
L[ (e(t), M(e(t))é(t))dt. Here, we used the fact that
Y(t) = ¢~ (c(t) = 4(t) = Ty-1(c(t))é(t), since by the
definition of a smooth manifold ¢(-), ¢~1(-) exist and
are smooth maps. Now, we are able to find the mini-
mizers by directly applying the Euler-Lagrange equa-
tions to the energy FE[c(t)], which results to a system
of 274 order non-linear ordinary differential equations
(ODEs) written as in Arvanitidis et al. (2018)

1 dvec[M(c(t))] |

é(t) = —5 M (c(t) {2(é(f)T ol W
Ovec[M(c(t)]T,. .
e (¢(t) ® c(t))}, (13)

where vec|-] stacks the columns of a matrix into a vec-
tor and ® is the Kronecker product. This is solved as
a boundary value problem (BVP) with boundary con-
ditions ¢(0) = x and ¢(1) = y. Note that this ODEs
system is a standard result in differential geometry,
and intuitively, the resulting shortest paths tend to
avoid areas with high metric magnitude /|M(c(2))|.

We can do computations on M, or equivalently in
»(M), using two operations analogous to the “plus”
and “minus” of the Euclidean space. First, the expo-
nential map is an operator Exp, (vt) = v(¢) that takes
two inputs, a point x € M and a v € T, M, and gener-
ates a geodesic with (1) =y € M and initial velocity
4(0) = v. The inverse operator is called the logarith-
mic map Log, (y) = v that takes two inputs x,y € M
to return the tangent vector v € T, M. Note that these
two operators are dual in a small neighborhood around
x € M. Moreover, the logarithmic map provides co-
ordinates for the points in a neighborhood on M with
respect to the base point x, but only the distances
between the center x and the points are meaningful
and not the ones between the points. Also, by defi-
nition the (Log, (y), Mx(x)Log, (y)) = dist*(x,y) =
length®[y(t)], but we can rescale the logarithmic map
such that the dist?(x,y) = (Log,(y), Log,(y)). The
rescaled coordinates Log, (y) are known as normal co-
ordinates and are the ones that we use in practice.
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2 Theoretical analysis of the generator

In this section we analyze the properties that the pro-
posed generator g(-) should have. In particular, in or-
der to have a theoretically sound model the generator
has to be at least twice differentiable, and addition-
ally, an immersion. Also, we need a specific behavior
such that to properly capture the structure of the data
manifold in the latent space, both in the stochastic
and deterministic generator case. Of course, the ba-
sic assumption is that the data lie near an embedded
smooth manifold M in the ambient space X. Intu-
itively, an embedded d-dimensional manifold can be
considered as a surface that is everywhere homeomo-
erphich to a d-dimensional Euclidean space, which im-
plies that contractions and intersections are now al-
lowed. In contrast, an immersion is a relative simpler
condition, since intersections are allowed but again no
contractions. In theory, the generator has to be at
least an immersion such that to compute the pull-back
Riemannian metric of the manifold.

Stochastic generator. We consider as generator
the function g(z) = u(z) + diag(e) - o(z), where ¢ ~
N@O, Ip)and p : Z2 - XisaDNNand o : Z2 —
Ri‘g‘(){) is based on a positive RBF. Note that in prin-
ciple we model the precision 3(z) = (0%(z)) ! with the
positive RBF, so the o(z) = 5~ /?(z). From the theory
we know that ¢g(-) has to be smooth. At first, we can
achieve smoothness easily for p(-) and o(+). In partic-
ular, o(-) is smooth as a linear combination of smooth
functions. For the DNN pu(-) we can use smooth ac-
tivation functions as the tanh(-), softplus(-), etc.
But the stochasticity of ¢ makes ¢(-) non-smooth,
and hence, non differentiable with respect to z. In-
stead, if € is fixed V z € Z denoted as g.(-), then
this is a smooth nonlinear map, and consequently, dif-
ferentiable. A different perspective on the smooth-
ness of g(-) has been given by Eklund and Hauberg
(2019). There it is shown that g.(-) is actually the
random projection of the deterministic smooth non-
linear map z — [u(z), o(z)] under the random pro-
jection matrix P, = [Ip, diag(e)]. In both views,
fixing ¢ implies that the sampled M. = g.(Z) is
a smooth immersed manifold in X. Obviously, the
E.[Mc] =Ec[g:(2)] = Ec[g(Z2)] = u(Z), which shows
that the expected manifold, as well as the likelihood
of the individual points p(x|z) do not change.

The g.(-) is an immersion if J,_(z) = J,(z) + diag(e) -
J,(z) is full rank V z € Z. For p(-) (DNN) this can
be true within the support of p(z) where the activa-
tion functions typically do not reach their limit behav-
ior. For instance, with tanh(-) as activation, we expect
within the support of p(z) the hidden units output to
not be constant +1. In addition, we need each hidden

layer to have greater or equal number of units to the
previous layer while all the weight matrices to be full
rank. In this way, we avoid contractions of the im-
mersed space. While for o(-) (inverse positive RBF)
at least dim(Z) basis functions has to be active, which
holds in general since RBF has infinite support, and
the weight matrix has to be full rank. The conven-
tions above define an immersed manifold M, = ¢.(2)
in X. Of course, the two Jacobian matrices should
not cancel columns. Actually, the immersion is nec-
essary such that the (expected) Riemannian metric
M) =J,()TT (") +Io()TI () to be full rank.

Generator with linear extrapolation. We ana-
lyze the behavior of the proposed architecture g(z) =
f(z)+U-diag([v/A1, ...,V Ad])-z+b where f : Z — X
is a nonlinear map and Z = R% X = RP with D > d.
Note that for the stochastic generator case and for
fixed e the f.(z) = u(z) + diag(e) - o(z) is the addi-
tion of two nonlinear functions (see above). The lin-
ear map is constructed using the top d-eigenvectors
scaled by their eigenvalues, coming from the eigen-
decomposition of the data empirical covariance ma-
trix C = ﬁzfy:l(xn — b)(x, — b)T, where b =
LSV | x,,, which can be decomposed as C = VAVT.
We use for U the first d columns of V € RP*P and
the corresponding eigenvalues. We study if and when
g(-) satisfies the following properties:

Smoothness. We need the generator to be suffi-
ciently smooth, which means in our case at least twice
differentiable. This condition can be easily satisfied
by selecting the activation functions accordingly as
tanh(-), softplus(-), etc. In practice, this is neces-
sary since in the geodesic ODEs system we need to
compute the derivative of the metric tensor, which in
our case is implemented by first taking the derivative
of the Jacobian J,(-). Obviously, by including in g(-)
the linear map A = U - diag([v/A1, ...,V A4]) and b,
the smoothness property will not change.

Immersion. In theory a mapping g : R — RP
with D > d is an immersion if the corresponding
J,(z) € RP*4is everywhere injective or in other words
full rank. In our case, the Jacobian includes a neu-
ral network and for an example we consider the sim-
ple function f(z) = W - »(Wyz + bg) + by with
¥(-) the activation function, and thus, the Jacobian
is J5(z) = Wy - ¢/(Woz + by) © Wy. In order to be
this quantity an immersion, first we need each hidden
layer to have more or equal number of hidden units
from the previous layer and the weight matrices to
have full rank. Additionally, since the derivative of the
activation functions ’(-) appears, we need this to be
non-zero. Otherwise, this will directly affect the total
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rank of the Jacobian, because it will reduce the rank
of the corresponding weight matrix or simply make it
zero. We conjecture that for generative models which
are trained using a compact support prior p(z) like the
Gaussian, the trained model uses the activation func-
tions 9 (-) closer to the center of their domain, where
their corresponding derivative ¢’(z) is not zero, and
not towards the domain limits. This basically implies
that the corresponding hidden unit is active and is
used by the model. While if the weight matrices do
not have this specific “pyramidal” structure, then we
cannot guarantee a full rank Jacobian, since in gen-
eral holds that rank(XY) < min[rank(X), rank(Y)]
for any two matrices X, Y.

In our case, the Jacobian is J4(z) = J;(z) + A, which
means that in theory there are cases where the two
matrices could cancel some of their columns. This will
directly break the full rank condition, and thus, the
mapping at this point will not be an immersion. Prac-
tically, this means that the corresponding Riemannian
metric tensor in Z, computed as the J,(z)7J,(z), will
be degenerate since it will not have full rank. However,
even if in theory this is a case that could happen, in
practice, we conjecture that this is a relatively unreal-
istic scenario. Instead, if the J;(z) has low rank the
linear part A could even fix the problem, of course, if
any of the rest columns do not cancel each other.

In practice, the weights of g(-) are initialized randomly.
Empirically, we always observed that the generator is
an immersion. Also, we expect that it is unlikely the
rank of the weight matrices to reduce, since we do
not regularize them in this direction. In addition, the
linear map and the uncertainty term when present,
help the Riemannian metric to be full rank. However,
in the general setting, a collection of “training tricks”
are available to ensure full rank, such as using manifold
optimization to ensure that weight matrices lie on the
manifold of full rank matrices, regularization schemes
that penalize low-rank weight matrices and post-hoc
smoothing of the weight matrices.

Extrapolation. The proposed meaningful extrapo-
lation can be used for deterministic generator together
with an ambient metric in order to properly capture
in Z the structure or topology of the data manifold.
Especially, the behavior of the ambient metric is to be
small only near the given data, which pulls the short-
est paths towards the data manifold. Similarly, in
the stochastic generator case meaningful uncertainty
quantification is utilized in order to properly capture
in Z the structure of the data manifold or in some
sense its topology (Hauberg, 2018).

Thus, let us consider the deterministic generator case
where g(z) is simply a neural network f(z) and let us

pick a direction z so that we move on the line ¢z for
t € R. When the tanh(-) activation function is used,
as we move further from the support of the prior, the
units of the first hidden layer will tend to output al-
ways a constant value — +1 or — —1. This means
that the extrapolation will not be meaningful since
it is gonna be always a constant. Similarly, for the
softplus(-) as we move to the boundaries of the do-
main of ¢, the output of the activation will be either a
constant — 0 or a linear function. However, for each
output dimension f;(zt) if the ¢ = +oo corresponds to
a linear extrapolation the ¢ — —oo will extrapolate to
zero. Therefore, in the softplus(-) case, even if the
generator will potentially extrapolate meaningfully in
some parts, in general, the behavior is arbitrary and
hard to interpret V z € Z. We show the behavior on
a synthetic example in Fig. 11.

So the linear map A, b could potentially fix the extrap-
olation issue, since the map g¢(-) after some threshold
t becomes linear. However, as regards the immersion
condition, when t — fo0 if all the dimension f;(zt)
cancel out the corresponding rows of Azt + b, then
the g(tz) output will be a constant value. However,
we argue again that this is quite unrealistic to happen
on the same time for all the output D dimensions.

Above, we only describe the theoretical conditions and
the properties that a generator has to respect. Never-
theless, proper guarantees and analysis should be pro-
vided in the future.

Linear projection of the ambient space. Addi-
tionally, we discuss the case where we linearly project
the data manifold in X’ = R?, a lower dimensional
space D > d’ > d, and we learn the ambient met-
ric My/(-) therein. Intuitively, instead of finding the
shortest path ~(¢) on the M C X we find the path
on the projected manifold in X’ and we expect that
the actual structure of M is preserved. The reason of
this step is to remove the non very informative extra
dimensions from the data e.g. high frequency context,
which do not provide any significant information re-
garding the structure of that data manifold or simply
if they just correspond to noise. In other words, this
step helps us to reduce the dimensionality, such that
to construct the “ambient” metric using the projected
data. Of course, this is only acceptable if the linear
projection does not change the structure of the data
manifold, for instance by introducing self intersections
or contractions. Note that still the generator is trained
between the space Z and X, prior to the linear projec-
tion, so g(-) is still able to capture the high frequency
context of the given data.

The practical reason for this step is that for high di-
mensional data as images, we need to reduce the di-
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Figure 11: We trained an MLP with 2 hidden layers from g : R? — R3, with hidden layer sizes 2, 3. From left
to right: The extrapolation result with activation function softplus(:) and including the proposed linear map,
without the linear map, with activation function tanh(-) and including the proposed linear map, without the
linear map. We see that the linear map improves the extrapolation of g(-), and the change is faster along the

direction with the largest eigenvalue.

mension of X due the curse of dimensionality (Bishop,
2006). Especially, if the learned ambient metric is
based on pairwise Euclidean distances. Also, we know
that, even locally, Euclidean distance makes not too
much sense for images. Hence, the linear projection to
a lower dimensional space X’ helps us to ensure that
at least locally straight lines will be more meaningful.

Therefore, the linear projection of the data, helps us
to learn easier an “ambient” Riemannian metric that
provides information regarding the structure of the ac-
tual data manifold. However, we note again that it is
necessary this step to not change the structure of the
data manifold. Thus, the metric M x/(-) that is learned
from the projected data is defined in Rdl, and hence,
the pull-back in the latent space becomes

<V/, My (X/)V,> = (PVv,My/ (P(X —¢))PV)
= (v,J4(z)TPTMy/ (P(g(z) — ©))PJ,(2z)v), (14)

where v/, x’ € R? the point and the tangent vector in
X' Pe R%*D ig the projection matrix derived from
PCA with € € RP the center of the data, X, ¥ €
RP the point and the tangent vector in X and z,v €
R the latent space inputs with the Jacobian J,(z) €
RP*4. Note that we can directly use the same setting
when g(+) is a stochastic generator.

A simple constructive example is to consider the data
in Fig. 11, and expand the dimensions by concate-
nating 100 columns with noise sampled from e; ~
N(0,0.0012) as [x,e1,...,€100]. The generator is
trained as g : Z — X. Obviously, the structure of the
actual data manifold will not be different in X = R03,
and also, we can “project” it in &’ = R3 by excluding
the last 100 columns. Therefore, we can construct the
“ambient” metric Mx/(-) in X, where the structure
of the data manifold is preserved. Thus, a shortest
path in Z will move optimally on M C X, while re-
specting its geometry, and in such a way that after the
projection step, the resulting path will respect in X’
the geometry that is represented by the My (+).

As regards the real data, the extra dimensions might
not be noise, but high frequency context, which does
not affect the underlying structure of the manifold.
Hence, the shortest paths computed in X’ are able to
approximate closely the true paths on the actual data
manifold M C X, as long as the linear projection step
does not change the structure of M in X”.

3 Details for the construction of
ambient Riemannian metrics

In this section we provide the details for construct-
ing the metrics that have been used in the paper. As
we discussed above, the ambient metrics can be ei-
ther constructed in X or in lower dimensional space
X’ where we project linearly the given data manifold.

3.1 Local linear discriminant analysis based
Riemannian metric

To compute the ambient metric for a test point x €
X = RP using the local LDA we have first to learn
the base metrics for a set of points S = {x4}5_; fol-
lowing the approach of Hastie and Tibshirani (1994),
and then, compute the weighted average (see Sec 3.1,
Eq. 4). Based on a given labeled set D = {x,,yn}_,
the metric at each x, is defined as

M, =W, 'B.W,! +cW_ ! (15)

where € > 0 a small scalar to avoid degenerate met-
rics, the W, € RP*P is called the within covariance
matrix and B, € RP*P the in-between covariance ma-
trix. Let K be the number of the k-nearest neighbors
denoted with the set knn(x,) computed under the ini-

tial My = Ip and d, = HM;/Q(X—XS)

’ . We use a
2

weighting function ws(x) = [1 - (ds/as)?’} yd, <o}
where 05 = maxXycinn(x,) dk- Then, from the labeled
point set we consider only the ones that are within the
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knn(x;), so the within and in-between matrices are

ZCGC Zn:yn:c ws(xn)(xn - mC)<Xn - mC)T

W, = |
ZkK wg(xy)
(16)
1
mg = m n:ygzcws(xn)xm (17)
B :Zﬂc(mc—m)(mc—m)T7 (18)
ceC

25:1 ws(Xk)

Using the updated metrics My we iterate the proce-
dure i.e. finding the knn(xs), computing ds, etec, until
either a fixed point is found i.e., the M matrices do
not change, or if we exceed a pre-specified number of
iterations. Moreover, we use only the diagonal Wy
since in higher dimensions is easier to get degenerate
metrics when this matrix is full.

As we discussed in the main paper the construction
of the base metrics My, is problem dependent. Hence,
these can be constructed in any meaningful way, such
that to provide the essential high-level information or
domain knowledge for the problem we want to model.
For further examples, we could construct these metrics
based on ordinal information between points or even
triplet constraints. In general, this is a metric learn-
ing problem Sudrez et al. (2018) and we construct the
ambient metric depending on the problem of interest.

3.2 Density and data support based
Riemannian metric

In order to construct a probability density func-
tion based ambient metric, essentially, we want to
roughly estimate the density of the high dimensional
data. A relatively simple, easy and robust model to
learn such a density is the Gaussian Mixture Model
(GMM). So in practice, we want to learn a h(x) =
S TN (g, k), with STh |, = 1. However, we
have to pay attention to some details. First we want
to avoid centers p; with huge covariance 3 that are
placed outside of the data distribution. For that rea-
son we chose to use the same covariance matrix for all
the data X; = 3. Intuitively, we want this covariance
to be roughly a spherical one, in order to cover the
whole data manifold with balls or ellipsoids. So we
chose X = diag(0?,03,...,0%).

A second problem is that in high dimensions if o4 < 1,
then the |X| converges to zero, and consequently, the
normalization constant. For this reason we use the un-
normalized Gaussian mixture model and this is not
a problem, because all of the components share the

same covariance. Of course, we are still able to set the
parameters «,¢ such that to lower and upper bound
the metric. In some sense, these parameters define one
aspect of the manifold’s curvature, since they define
how big is the difference of the metric between the
points where h(x) — 0 and h(x) — 1.

One drawback of this method, is that the metric will
shrink the distances accordingly to the data density in
the ambient space i.e. as the density becomes higher
the distance shrinks. Obviously, in some cases this
might be a meaningful behavior. However, we might
want to simply move near the data and not neces-
sarily analogous to the corresponding density. So a
close related approach is to utilize a positive func-
tion h(x) = Y, wrdr(x), with wy, > 0 and ¢p(x) =
exp(—0.5- A ||x — ck||§), that is trained in such a way
that the output near the given data is h(x) — 1,
otherwise h(x) — 0. One way to train the param-
eters is to fix ¢, using k-means, setti2ng the band-
width Ay = 3 [H‘(}T‘ D oxee, X — ck||2} where k > 0
a scaling factor, Cy the points in the cluster of cg,
and the wyg can be found using a closed form solu-
tion or gradient descent under the mean squared error
L(w) = 25:1 I — h(xn)||§ Obviously, this is a rela-
tively simple model, however, it models very well the
desired behavior of the ambient metric.

3.3 Cost based Riemannian metric

The cost related ambient Riemannian metric essen-
tially pulls the shortest paths towards regions of the
ambient space X with low cost. In our experiments we
used a relatively simple and interpretable cost function
utilizing again the RBF network h(z) = >, yrdw(x)
with basis functions ¢ (x) = exp (—ﬁ x — ekl
and yx > 0 some given values. Apart from the simplic-
ity, this type of cost function has a very interpretable
behavior, since it defines regions in X where the cost
is high and the corresponding regions in Z will be
avoided by the shortest paths. Intuitively, these can
be neighborhoods of points in X that we want to avoid
as we move on the data manifold.

3.4 Can we construct the My(-) in Z?

A logical question is, why we do not construct the in-
formative metric directly in Z using the latent codes,
and simply, combine it linearly with the pull-back met-
ric that is induced by the generator? The answer is
quite straight forward though. The metric My(:) is
mainly based on Euclidean distances. Therefore, the
definition of this Riemannian metric in the latent space
Z is impossible, since using the Euclidean distance in
Z is fundamentally wrong and misleading.
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4 Expected Riemannian metric
approximation in latent space

Here we discuss the approximation to the true ex-
pected Riemannian metric, where we evaluate the am-
bient metric only on the expected generated Mz =
#(Z). In particular, the true stochastic Riemannian
metric in the latent space is written as

M. (z) = [J.(z) + diag(e) - Jo(2)]" (20)
My (u(z) + diag(e) - 0(z)) [Ju(2) + diag(e) - Jo(2)],

for which we can approximate the expectation in the
latent space as M(z) = E..,)[Mc(z)] with ¢ ~
N(0,Ip). Even if this is a doable computation, in
practice, we need to estimate this metric, as well as,
its derivative for all the computations on a Riemannian
manifold. This directly means that the computational
cost will be extremely high, and hence, prohibited. For
this reason we provide the following relaxation

M(z) = J,u(2) " Mx (1(2)) J,.(2)
+Jo(2)™Mx (1(2)) Io(2). (21)

Here we are based on the realistic assumption that
the generator’s uncertainty in the regions of the la-
tent space with representations of the training data to
be o(z) — 0. The reason is that p(z) is trained to
reconstruct sufficiently well the training data x, and
we are also based on the main assumption that the
training data lie near a manifold M C X. This es-
sentially implies that the corresponding deviation of x
from M will be negligible and our g(Z) = Mz = M.
Therefore, the Eq. 20 becomes first

M. (z) = [1,,(z) + diag(e) - Jo (2)]" (22)
Mo (u(2)) [3,(2) + ding(e) - o (2)]

and wel compute this expectation to get the M(z) =
E. [1\7IE(Z)] that is shown in Eq. 21. As regards the re-
gions far from the latent codes where o(z) > 0, the
J,(+) will be the dominant term, and hence, the contri-
bution of My (u(z)) or even My (u(z) + diag(e) - o(z))
will be negligible there anyways.

In order to demonstrate this behavior, we generate a
dataset near M as x = [x1,z2,sin(z1)] and we add
noise using N(0,0?) with two different o = 0.1,0.2.
For the ambient metric we use the cost based RBF
approach by selecting 3 points and their 10 nearest
neighbors in X’ with ¢, = 10. We train two VAEs and
we show in the latent space the resulting Riemannian
metric with and without the stochasticity of the gen-
erator for the evaluation of the ambient metric My (-).

From the results in Fig. 12 we observe that by consid-
ering the true expected Riemannian metric, the cap-
tured structure does not differ significantly from the

one we get using the proposed relaxation, especially,
near the latent codes. Therefore, by taking into ac-
count the trade off, we argue that it is sufficient to use
the expected generated manifold Mz = E.p()[M.]
such that to evaluate the ambient Riemannian metric
My (-) as it is shown in Eq. 21.

4.1 Overall approach and complexity

Our approach can be separated into two basic steps. In
the first step, an ambient metric My (-) should be de-
fined by the user, for example using one of the method-
ologies that we presented in this work. This allows to
encode high level domain knowledge about the prob-
lem of interest in a geometric form. In some sense, we
influence the shortest paths to “prefer” or to “avoid”
regions of the ambient space. In the second step, we
capture the geometry of the data manifold using the
generative model, and in particular, the Jacobian of
the generator ¢g(-). The Jacobian of g(-) together with
the ambient metric, induce a Riemannian metric in the
latent space. The corresponding shortest paths in Z
move optimally on the data manifold while respecting
the geometry of the ambient space due to the My (+).

In principle, g(-) should be a stochastic mapping and
we proposed a relaxation of the expected metric in the
latent space (see Eq. 22). Also, we proposed one way
that allows to properly capture the geometry in Z with
deterministic models. This is based on an ambient
metric that is small only near the given data, and the
proposed architecture for ¢g(-) that helps to extrapolate
meaningfully. The later means that the g(-) becomes
a linear map as we move further from the training
latent codes in Z. Of course, we can project the given
data to a lower dimensional space and construct the
ambient metric therein (see corresponding paragraph
in Appendix 2). As regards the shortest paths, we can
compute them solving the ODE system (Eq. 13) with
numerical approximate solvers.

Obviously, the computational bottleneck of our ap-
proach is the evaluation of the Riemannian metric, and
of course, the solution of the ODE system. For the
metric we need to evaluate the My (-) as well as the
Jacobian of g(-). The complexity of the ambient met-
ric is based on its actual definition. Note that we can
reduce the dimensionality of the ambient space metric
by exploiting the linear projection step. In addition,
we need to evaluate the g(-) such that to get the point
in X. Regarding, the Jacobian of g(-) this is a com-
putationally expensive computation, since it is based
on the architecture of u(-) which can be rather com-
plicated. We can compute it using finite differences,
automatic differentiation or code it analytically. Sim-
ilarly, we can compute the Jacobian of the RBF net-
work that is used for o(-). Nevertheless, for evaluating
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Figure 12: In the top row we added noise with ¢ = 0.1 and in the bottom row o = 0.2. In the two last columns
and per row, we see that the structure does not change significantly when we use the proposed relaxation.

the ODE system we additionally need the derivative
of the Riemannian metric. This means that we need
the derivative of the Jacobians, which increases more
the computational complexity.

Having the metric and its derivative allows to evalu-
ate the ODE system. Since analytic solution do not
exist, we can utilize approximate numerical solvers in
order to solve the system as a boundary value problem
(BVP) and find the shortest path. However, the anal-
ysis of the computational complexity is difficult due to
the iterative nature of the solvers.

As it is clear, our approach is computationally taxing
for two reasons. The first is the Riemannian metric
and its derivative. In this work we presented the direct
way of combining the ambient metric with the pull-
back. One way to reduce the complexity is to approxi-
mate the enriched Riemannian metric with a surrogate
metric that is computationally efficient. The second
reason is the solution of the ODE system. Of course,
improving the efficiency of the Riemannian metric di-
rectly improves the efficiency of the solvers. However,
specialized approximate numerical BVP solvers can be
developed such that to be faster and more robust (Ar-
vanitidis et al., 2019; Hennig and Hauberg, 2014). An-
other way for finding the shortest path is by minimiz-
ing directly the energy using numerical differentiation
and a parametric curve e.g. cubic-spline (Yang et al.,
2018). The problem here is that we still rely implicitly
on the Jacobian of g(-) that is commonly expensive,
and also, we cannot solve the ODE system as an IVP
to compute exponential maps. Regarding the heuristic
solutions using the graph, this indeed, always finds a
curve in the latent space. However, this curve in gen-
eral does not satisfy the ODE system, so we cannot
guarantee that this is the shortest path and also the
resulting logarithmic map is arbitrary.

5 Experiments

In this section we provide further details and discus-
sion regarding the conducted experiments.

5.1 Details for the Generative Adversarial
Network demonstrations

Synthetic data. The synthetic data are generated
as follows. First, we pick the centers of 6 Gaussian
distributions N (u,0.22 - Iy) uniformly on a circle with
radius 3 and one in the center. Then, we generate 300
points from each Gaussian that can be seen as the ac-
tual latent representations, and thus, we construct the
data x = [21, 22,0.3:(23+23)+¢], where e ~ N/(0,0.12).
We used a Wassestein GAN with latent space Z = R?
and ambient space X = R3 and functions in Table 1.

We trained the model using Adam (Kingma and Ba,
2015) optimizer for 1000 epochs with stepsize le~?2
and batch sizes of size 128, and also, we used /5 reg-
ularization for the weights with parameter 1le~®. The
discriminator is trained for 5 more steps within each
epoch and the weights are clamped into the interval
(—0.01,0.01) to satisfy the Lipschitz constraint of the
Wasserstein GAN. For the sampling of the latent codes
we experimented both with standard Markon Chain
Monte Carlo (MCMC), as well as rejection sampling
(Bishop, 2006). For the mixture of LAND we used
the default training procedure with 10 epochs and full
covariance matrices per component. In order to con-
struct the RBF ambient metric we used 20 compo-
nents and the scaling factor of the bandwidth was set
to k = 1 as discussed in Appendix 3.2.

MNIST data. We used the digits 0,1,2, we scaled
them in the interval [—1,1] and we added point-wise
noise € ~ N(0,0.02%), such that the data to not lie
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Function Layer 1 Layer 2 Output
f(z) tanh(2) tanh(3) linear(3)
d(x) LeakyReLU(3) + Dropout(0.3) LeakyReLU(3) + Dropout(0.3) linear(1)

Table 1: Functions for the GAN with synthetic data.

Function Layer 1 Layer 2 Output
f(z) tanh(128) tanh(256) linear(784)
d(x) tanh+LeakyReLU(128)+Drop(0.3) LeakyReLU(128)+Drop(0.3) linear(1)

Table 2: Functions for the GAN with MNIST data.

exactly on M. Thus, is easier to train the generator
without utilizing the bounded tanh(-) in the output
layer to clip the values. Otherwise, the meaningful ex-
trapolation is not anymore useful, since the linear part
will be also clipped. However, when pass the images
into the critic d(x) first we apply the tanh(-) function.
The latent space is Z = R® and X = R™* and the
functions are defined in Table 2.

The discriminator is trained for 5 more steps within
each epoch and the weights are clamped into the in-
terval (—0.01,0.01) to satisfy the Lipschitz constraint
of the Wasserstein GAN. The model is trained using
Adam optimizer for 10000 epochs and batch size 64
with stepsize le~* and ¢y regularization of the weights
with parameter le~7. For the sampling of the latent
codes we experimented both with standard Markon
Chain Monte Carlo, as well as rejection sampling. The
ambient Riemannian metric is constructed with the
RBF method discussed in Appendix 3.2 and we used
100 centers and x = 0.33 which decreases the band-
width of the RBF kernels. Moreover, we projected lin-
early the data to a lower dimensional space X’ = R0
using principal components analysis (PCA), where we
constructed the metric My/(-) (see Appendix 2). In
order to stabilize training and prevent mode collapse,
we included a VAE loss with regularization parame-
ter 1e~®, only when training the generator. Of course,
this heuristic has mild influence to the generator.

We see that using the ambient metric M y/(-) improves
the sampling, and some additional results are shown
in Fig. 14. The resulting samples due to the M- (+) lie
closer to the support of the given data manifold, and
also, we avoid samples in-between the disconnected
components in X'. Moreover, we show some additional
interpolations (see Fig. 15) where we again see that
using the ambient metric improves the interpolations.
In particular, the difference between our proposed ap-
proach and the standard shortest paths is that the
ambient Riemannian metric pulls the paths towards
the data manifold and avoids “shortcuts”. Intuitively,

shortcut means that the path moves optimally on the
generated Mz, but not necessarily always near the
given data manifold. Note that Mz is a continu-
ous smooth surface and some parts are not near the
given data points/manifold, but without considering
the M y/(-) it might be “cheap” to move there which
is a misleading behavior.

Pre-trained model. We used as generator a Pro-
gressive GAN (PGAN) (Karras et al., 2018) which uti-
lizes a latent space Z = R? with d = 512 and has ambi-
ent space X = RP with D = 256 x 256 x 3, while the
labeled training dataset is not directly provided. Note
that in this generator it is not included the linear map
to ensure meaningful extrapolation, and also, due to
ReLU(-) activation the M(-) is not sufficiently smooth.
However, we tested how the additional consideration of
an ambient metric can affect the shortest paths, and
additionally, we use a heuristic that we describe be-
low for computing approximate shortest paths where
a smooth metric M(+) is not necessary. Moreover, we
upscaled the standard CelebA labeled dataset of size
128 x 128 x 3 to D in order to be able to compute the
linear projection matrix P € R%*P from X to X’ with
d’ = 1000 and the linear mean ¢ € RP. See discussion
in Appendix 2 regarding this linear projection step.

Obviously, the computation of the Jacobian matrix for
this g(-) is prohibited due to the size of the latent space
and the complexity of the model, even with finite dif-
ferences. So we rely on the tricks explained below, in
order to be able to compute relatively efficient shortest
paths. First, we define a new latent space Z = R4 of
dimensionality d < d with d = 10 and we construct
an ortho-normal random projection matrix U € R?*4,
In such a way, we can compute shortest paths in Z
that correspond to shortest paths on a d-dimensional
sub-space in Z. Hence, in total we have

P (—c)
—

20,z » X', (23)

Clearly, this tactic constraints the shortest paths to lie
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on the linear subspace spanned by Uin Z , and hence,
they are not able to move freely in the whole Z. How-
ever, this approximation allows us to compute shortest
paths in reasonable time. Essentially, we induce the
pull-back Riemannian metric in a lower dimensional
latent space Z, while the U matrix does not introduce
further distortions as an orthonormal matrix.

The main reason for using the U is that when d is
relatively small, we are able to compute the Jacobian
matrix J s(z) € RP xd using finite differences. In par-
ticular, in the latent space d we approximate the j-th
column of the Jacobian from Z — X with finite dif-
ferences as

S g (@4 ey) — (U 2)
J5(2) = lim 3 , o (29)
where z € RY and e, = [0,...,1,...,0] a d-

dimensional vector of zeros with 1 at the j-th location.
Furthermore, we can exploit the forward pass to com-
pute simultaneously all the columns of the Jacobian,
by using a batch of inputs that we truncate using the
identity matrix Al;. In such a way, we can compute
the Jacobian at a point with only one forward pass
with batch size d+ 1. Nevertheless, even in an approx-
imate ODE solver this is still very computationally
expensive. So we implemented one heuristic to com-
pute the shortest path based on the idea of ISOMAP
(Tenenbaum et al., 2000).

We start by sampling 10000 points in d uniformly in-
side a hypersphere of radius 4 and using k-means we
find 100 prototypes. Thus, as we do not have access to
latent codes, we introduce some artificial codes in Z.
Then, using the prototypes we construct the K-nearest
neighbor graph with K = 7 by using the Euclidean dis-
tance to find the neighbors. But, for the weight of the
edges we use the straight line distance measured un-
der pull-back Riemannian metric that we can evaluate
using the finite differences based Jacobian as

/ \/ )s Mg (l
o 3 i) Mai(t)i(6) A

tn=1

(ta))I(ta))dt  (25)

lengthl(

where I(t) is the line between two latent points in Z.
For the metric Mgq() first we compute the Jacobian
of the total map P(g(U-1(t)) — ) with respect to I(t),
which can be achieved by using the finite differences for
the Jacobian computation of the map ¢g(U - I(t)), and

then, we use the My, (P(g(U-1(t))—c)). In particular

the metric is equal to

Mia(z) = ATM(P(g(U-2) —c))A  (26)
with A = 3g(gzz)] . (27)

Essentially, the straight line in Z measured under the
Riemannian metric informs us how far on the manifold
in X and under the metric My/(-) are the decoded
latent points that seem to be close in the d-dimensions.

For two test points in Z that we want to compute the
shortest path, first we find their closest K-neighbors
from the points on the graph using the Euclidean met-
ric, and then, we assign the corresponding edge weights
using the Riemannian distances. Finally, we chose two
auxiliary points, one per k-NN set with the smallest
Riemannian distance. Thus, we can find the discrete
shortest path using Dijkstra’s algorithm on the graph
using the auxiliary nodes as the boundary points. Note
that the path prefers edges with low weight i.e., the
edge corresponds to a curve on M with small length.
Ultimately, for the continuous path we use the cubic
spline interpolation through the points of the discrete
path on the graph replacing the two auxiliary points
with the test points. Obviously, this heuristic method
approximates the true shortest path, but the result
does not satisfy the ODE system. This approach is
inspired by ISOMAP and a very similar heuristic ap-
proach has been proposed in Chen et al. (2019).

The task that we want our ambient Riemannian met-
ric to model, is to avoid regions with blond people
when interpolating between two latent codes. As we
described above we linearly project in X’ the implic-
itly given data manifold M C X = RP, by using the
standard labeled CelebA dataset. In X', we construct
the M y/(-) which is based on a simple RBF cost based
metric (see Appendix 3.3) with y, = 1e° and o = 5.
Therefore, we have to define the centers ¢, € X'. In
order to do that, first we train on the labeled CelebA
dataset of size 128 x 128 x 3 a simple convolutional neu-
ral network classifier ¢(x) (see Table 3). Once the clas-
sifier is trained, we decode the nodes of the graph and
samples from the prior, which we classify after resiz-
ing from R256%256x3 o R128X128X3 \With these steps,
we are able to define the centers of the metric in X”,
by using the points that are classified as blond. Note
that this is a very simple to implement metric, but
rather informative, since the shortest path is penal-
ized heavily when moves close to the high cost regions
in X’. Essentially, the (discrete) shortest path avoids
the nodes which after decoding fall near the high cost
regions in A”. We show some further interpolation re-
sults in Fig. 16 using different projection matrices U,
which means that we explore different subspaces in Z,
and consequently, on M z.
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Function Layer 1,2,3

Output

c(x) 3 X [conv(16,5,1) + MaxPool(2) + ReLU]

Sigmoid(Linear (265, 1))

Table 3: The classifier that we used in the Progressive GAN experiment.

5.2 Detalils for the Variational Auto-Encoder
experiments

We used the MNIST digits 0,1,2,3 scaled in the in-
terval [—1,1] and then we added point-wise noise
e ~ N(0,0.022). As we explained before, we add
the noise such that the data to not lie exactly on M,
so that we can train the generator without utilizing
the bounded tanh(:) in the output layer to clip the
values. Note that in the stochastic generator case the
meaningful extrapolation is not necessary, even if we
use it in our experiments, since the uncertainty quan-
tification helps to properly capture the data manifold
structure. The ambient space is X = R™* and the la-
tent space Z = R®. We used the functions in Table 4,
where the (z) + ¢ = U%(z) with ¢ = 1e7% and B(z)
is an RBF with 100 centers and only positive weights.
We trained the model using Adam optimizer for 1000
epochs and batch size 64 with stepsize 1le~* and also ¢y
regularization of the weight with parameter A = le™°.

For the interpolation experiment, the LDA metric is
constructed by considering the digtis 0,1,3 in the same
class, while in the kernel density estimation experi-
ment every class is separated. We used 2000 ran-
domly chosen training points as the base points x,, the
¢ = le™3, the number of nearest neighbors is K = 50
and we used a fixed number of iterations 20. See Ap-
pendix 3.1 for details.

For the cost function based ambient metrics we use
the RBF cost discussed in Appendix 3.3. We start by
picking 3 latent codes in Z and we decode them. Then,
we find the closest 100 neighbors per decoded point in
X’ and we construct the metric with parameters y, =
100 and 0 = 0.2. Note that we find the neighbors using
the Euclidean distance. So in total we have 300 RBF
basis functions in X’. We used the same approach
both in the interpolations and the KDE experiment.

For the linear combination of the ambient metrics we
used the weights 1 for the LDA, 0.001 for the local di-
agonal inverse covariance and 0.1 for the cost metric.
We used the same coefficients both in the interpola-
tions and the KDE experiment. Also, the reason for
so different coefficients is the scaling of each individual
metric. Of course, choosing carefully the parameters of
each ambient metric could regularize the scaling differ-
ences. However, a principled method to estimate the
mixture coefficients is a future problem.

-10.0
-10.0 -7.5

Figure 13: Meaningful extrapolation. The distance
b — w(z)||, is computed in X and presented in Z,
where b is the center of the data.

As an additional experiment we examine if the pro-
posed meaningful extrapolation technique is actually
working. Therefore, using a set of points z; on a
uniform grid in the latent space, we generate the
points in X on the expected manifold Mz as x; =
1(zs) = f(zs)+U-diag([v/A1, v A2]) - zs +b. Here, the
f+Z — X is a DNN and the linear part is defined as
explained in the main paper. In Fig. 13 we show for
each z, the Euclidean distance measured in X between
the center of the training data and the corresponding
point x,. Indeed, we see that as we move further from
the prior p(z) support, the Euclidean distance between
the points on the generated surface and the center of
the data increases. However, we observe that the dis-
tance on the x1-axis increases faster than the xy-axis.
The reason is that the corresponding eigenvalue of the
linear map is higher, so the generated Mz extrapo-
lates linearly faster along this latent dimension. Note
that in this example we used the softplus(-) activa-
tion function, for which the extrapolation behavior is
more difficult to analyze than the tanh(-). Even so, we
get a meaningful extrapolation due to the linear part
of the function u(-).



Output
linear(784)
linear(784)
linears((5)

softplus(linear(5))

Layer 2
softplus(256)
softplus(128)
softplus(128)

Layer 1
softplus(128)
RBF (100)
softplus(256)
softplus(256)

)

)
(%)
(

encoder: o(x)

2
Table 4: The functions used in the VAE experiments.
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(b) From ¢(z) without Mx (-). (¢) From prior p(z).

(a) From q(z) with Mx(-).
that our proposed method does not generate a lot of ghostly samples, which fall on parts of the ambient space

Figure 14: Additional samples for the MNIST data, GAN experiment with 5-dimensional latent space. Note
with no given data nearby.



Supplementary material: Geometrically Enriched Latent Spaces

LLLITLTLILLILELAAAAAAAA

e b & S % % % 3 3 %

222222022-2222220000000000000000c02L8 L 1111/

2222222222222 22000000000000000LLL 00/ //

2222222222222 ddd L2777/ ///////77777

Figure 15: Additional interpolation results. From top to bottom: our interpolation, interpolation without using
the My (+), linear interpolation. Note that our interpolation (top rows) avoids the “shortcuts” of the simple
shortest path interpolant (middle rows), while the linear path is arbitrary.
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Figure 16: Additional interpolation results for the PGAN. From top to bottom: our interpolation, interpolation
without using the My (), linear interpolation. Note that our interpolation (top rows) provides a smooth
transition between the images, while it avoids the high cost regions (people with blond hair). The shortest
path without the ambient metric still provides smooth changes, however, it often crosses high cost regions. The
relatively smooth behavior of the straight line is due to the nature of the generator and not due to the actual
interpolant.
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(f) Combination of 17b, 17c, 17e.

\]

(g) LDA separate 0,1,2,3. (h) RBF cost (KDE experiment). (i) Combination of 17g, 17h.

Figure 17: The Riemannian measure for the VAE experiments and several ambient metrics My (-). In each
caption we mention briefly the form and the details of the ambient metric.
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