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Abstract

We study regret minimization in a stochas-
tic multi-armed bandit setting, and establish
a fundamental trade-off between the regret
suffered under an algorithm, and its statisti-
cal robustness. Considering broad classes of
underlying arms’ distributions, we show that
bandit learning algorithms with logarithmic
regret are always inconsistent and that con-
sistent learning algorithms always suffer a
super-logarithmic regret. This result high-
lights the inevitable statistical fragility of all
‘logarithmic regret’ bandit algorithms avail-
able in the literature – for instance, if a UCB
algorithm designed for σ-subGaussian distri-
butions is used in a subGaussian setting with
a mismatched variance parameter, the learn-
ing performance could be inconsistent. Next,
we show a positive result: statistically ro-
bust and consistent learning performance is
attainable if we allow the regret to be slightly
worse than logarithmic. Specifically, we pro-
pose three classes of distribution oblivious al-
gorithms that achieve an asymptotic regret
that is arbitrarily close to logarithmic.

1 Introduction

The stochastic multi-armed bandit (MAB) problem
seeks to select the best among an available basket
of options (a.k.a., arms), each characterized by an
unknown probability distribution. Classically, these
probability distributions represent rewards, and the
best arm is defined as the one associated with the
largest average reward. The learning algorithm, which
chooses (a.k.a., pulls) one arm per decision epoch,
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identifies the best arm via experimentation—each pull
of an arm yields one sample from the underlying re-
ward distribution. One classical performance metric
is regret, which evaluates an algorithm based on how
often it pulls sub-optimal arms.

The standard approach towards algorithm design for
regret minimization is as follows. First, it is assumed
that the arm reward distributions belong to a spe-
cific (semi-)parametric class—for example, the class
of bounded distributions with support contained in
[0, b], or the class of σ-subGaussians. Next, algorithms
are proposed for such specific parametric distribution
classes, often making explicit use of the parameters
(such as b or σ) corresponding to the parametric dis-
tribution class. Finally, logarithmic regret guarantees
are proved for such algorithms, by utilizing exponen-
tial concentration inequalities (such as Hoeffding’s in-
equality or subGaussian concentration) for that para-
metric distribution class.

For distribution classes such as σ-subGaussians, a log-
arithmic regret guarantee may not be so surprising,
because such distributions enjoy exponential concen-
tration bounds. On the other hand, when dealing
with heavy-tailed arms’ distributions, it is not clear
that a logarithmic regret is achievable. This is be-
cause heavy-tailed distributions (such as Pareto) are
characterized by a high degree of variability, and their
empirical mean estimators do not enjoy exponential
concentration in the sample size. Somewhat surpris-
ingly, a logarithmic regret guarantee was shown to be
attainable in Bubeck et al. (2013) using a truncated
mean estimator, for distributions satisfying a bounded
moment condition. While this approach Bubeck et al.
(2013) can handle heavy-tailed as well as light-tailed
distributions, the algorithm still needs to know the
moment bounds.

As such, a logarithmic regret guarantee has been
shown to hold in a broad range of stochastic bandit
settings. At this point, it is perhaps not an exaggera-
tion to suggest that a logarithmic regret is regarded
as a ‘default performance expectation’ from ‘good’
stochastic bandit learning algorithms. The present pa-
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per challenges this perceived sanctity of logarithmic re-
gret, in the context of low-regret learning of stochastic
MABs. We show that bandit algorithms that enjoy
a logarithmic regret guarantee cannot be statistically
robust.

Our contributions: We make two key contributions
in this paper.

First, we show that bandit algorithms that enjoy a
logarithmic regret guarantee are fundamentally fragile
from a statistical standpoint. Equivalently, we show
that statistically robust algorithms necessarily incur
super-logarithmic regret. Here, an algorithm is said
to be statistically robust if it exhibits consistency, i.e.,
the regret scales slower than any power-law, over a
suitably broad class of MAB instances.

For example, consider an algorithm with logarithmic
regret designed for σ-subGaussian arms. When this
algorithm is used in a ‘mismatched’ bandit instance,
say with σ′-subGaussian arms (σ′ > σ), the learning
performance can be inconsistent. That is, the regret
suffered by the algorithm in the mismatched instance
could have a power-law scaling in the time horizon.
This is of practical concern, since the parameters that
define the space of arms’ distributions (usually in the
form of support/moment bounds) are often themselves
estimated from limited data samples, and are therefore
prone to errors.

Our second contribution is a positive result: we show
that statistically robust learning is achievable if we are
willing to tolerate a ‘slightly-worse-than-logarithmic’
regret in the time horizon. Specifically, we propose
three classes of algorithms that (i) are distribution
oblivious (i.e., they require no prior information about
the arm distribution parameters), and (ii) incur a re-
gret that is slightly super-logarithmic. The first al-
gorithm class offers this guarantee over subexponen-
tial (a.k.a., light-tailed) instances. The latter two are
designed to work robustly for general distribution in-
stances (excepting some pathological ones).

In all three algorithms, the asymptotic regret guaran-
tee is controlled by a certain slow-growing scaling func-
tion that is used to define confidence bounds. A more
slow-growing scaling function makes the regret asymp-
totically closer to logarithmic, but at the expense of a
potential degradation in performance for shorter hori-
zons. Furthermore, the regret for shorter horizon-
lengths can be improved by incorporating (noisy) prior
information about the reward distributions into the
scaling function, without compromising on statistical
robustness.

Related literature: There is a vast literature on the
regret minimization for the stochastic MAB problem;

we refer the reader to the textbook treatments Bubeck
and Cesa-Bianchi (2012); Lattimore and Szepesvári
(2018). However, to the best of our knowledge, the
issue of statistical robustness and its connection to log-
arithmic regret has not been explored before.

We are aware of only two other works that address sta-
tistical robustness in the context of bandit algorithms,
both of which consider the fixed budget pure explo-
ration setting. For the best arm identification prob-
lem, statistically robust algorithms have been demon-
strated recently in Kagrecha et al. (2019). For thresh-
olding bandit problem, the algorithm proposed in Lo-
catelli et al. (2016) is distribution-free, i.e., the algo-
rithm does not require knowledge of the σ parameter
defining the space of σ-subGaussian rewards. Finally,
we note that Salomon et al. (2013) prove regret lower
bounds under a relaxation of the standard notion of
consistency.

The remainder of this paper is organized as follows.
We introduce some preliminaries and define the MAB
formulation in Section 2. The trade-off between statis-
tical robustness and logarithmic regret is established
in Section 3. Our statistically robust algorithms and
their performance guarantees are presented in Sec-
tion 4, and we report the results of some numerical
experiments in Section 5. An appendix, containing
proofs omitted due to space constraints, as well as
other details, are uploaded separately as the ‘supple-
mentary material’ document.

2 Model and Preliminaries

In this section, we introduce some preliminaries and
formally define the MAB formulation.

2.1 Preliminaries

We begin by introducing the classes of reward distri-
butions we will work with in this paper.

• B([a, b]) denotes the set of bounded distributions
with support contained in [a, b]. The set of all
bounded distributions is denoted by B.

• We use SG(σ), for σ > 0, to denote σ-subGaussian
distributions, and SG to denote all subGaussian
distributions.

• We denote SE(v, α), for v, α > 0, to denote the
following class of subexponential distributions:{

F :

∫
eλ(x−µ(F ))dF (x) ≤ e v

2λ2

2 ∀ |λ| < 1

α

}
where µ(F ) denotes the mean of F. The class of
all subexponential distributions is denoted by SE .
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Distributions in SE are also commonly referred
to as light-tailed, and those not in SE are called
heavy-tailed (see Foss et al. (2011)).

• For ε, B > 0, let G(ε, B) denote the set of distri-
butions whose (1+ ε)th absolute moment is upper
bounded by B, i.e.,

G(ε, B) =

{
F :

∫
|x|1+εdF (x) ≤ B

}
.

In the MAB literature, G(ε, B) is often used as the
class of reward distributions in order to allow for
heavy-tailed rewards (see, for example, Bubeck
et al. (2013); Yu et al. (2018)). Finally, the union
of the sets G(ε, B) over ε, B > 0 is denoted by G :

G =

{
F :

∫
|x|1+εdF (x) <∞ for some ε > 0

}
.

G is the most general space of reward distributions
one can work with in the context of the MAB
problem—it contains all light-tailed distributions
and most heavy-tailed distributions of interest.

Note that B ⊂ SG ⊂ SE ⊂ G. We also recall the
Kullback-Leibler divergence (or relative entropy) be-
tween distributions F and F ′:

D(F, F ′) =

∫
log

(
dF (x)

dF ′(x)

)
dF (x),

where F is absolutely continuous with respect to F ′.

Much of the vast literature on MAB problems assumes
that the reward distributions lie in specific paramet-
ric subsets of B, SG, SE , or G; for example B([0, 1]),
SG(1), G(1, B) etc. Further, the parameter(s) corre-
sponding to these subsets are ‘baked’ into the algo-
rithms. While this approach guarantees strong per-
formance over the parametric distribution subset un-
der consideration (logarithmic regret, in the classical
regret minimization framework), it is highly fragile to
uncertainty in these parameters. Indeed, as we demon-
strate in Section 3, any algorithm that enjoys loga-
rithmic regret for a parametric subset of a distribu-
tion class must be inconsistent over the entire distri-
bution class—specifically, when there is a parameter
mismatch, the regret suffered could have a power-law
scaling in the time horizon. In Section 4, we propose
bandit algorithms that are statistically robust but in-
cur (slightly) superlogarithmic regret.

2.2 Problem formulation

Consider a multi-armed bandit (MAB) problem with
k arms. Let M be a distribution class (such as B,SG
etc.) An instance ν = (νi, 1 ≤ i ≤ k) of the MAB

problem is defined as an element ofMk, where νi ∈M
is the distribution corresponding to arm i. Let µi de-
note the mean reward associated with arm i, i.e., µi
is the expected value of a random variable distributed
according to νi. An optimal arm is an arm that max-
imizes the mean reward, i.e., one whose mean reward
equals µ∗ = max1≤i≤k µi. The sub-optimality gap as-
sociated with arm i is defined as ∆i := µ∗ − µi.

In this paper, our goal is to minimize regret. Formally,
under the a policy (a.k.a., algorithm) π, let Ti(n) de-
note the number of times ith arm has been pulled after
n rounds. The regret Rn(π, ν) associated with the pol-
icy π after n rounds is defined as

Rn(π, ν) =

n∑
i=1

∆iE [Ti(n)] .

An algorithm is said to be consistent overMk if, for all
instances ν ∈Mk, the regret satisfiesRn(π, ν) = o(na)
for all a > 0 (see Lattimore and Szepesvári (2018)).
For example, an algorithm that guarantees polyloga-
rithmic regret over all instances in Mk is consistent
over Mk. On the other hand, if an algorithm suffers
O(na) regret for some a > 0 and some instance inMk,
then the algorithm is inconsistent over Mk.

3 Impossibility of logarithmic regret
for statistically robust algorithms

In this section, we shed light on a fundamental con-
flict between logarithmic regret and statistical robust-
ness. Recall that in classical MAB formulations, it
is assumed that arm reward distributions lie in, say
B([0, b]) or SG(σ). In such cases, algorithms that ex-
ploit this parametric information (i.e., the value of b
in the former case and the value of σ in the latter) are
known that achieve O(log(n)) regret, where n denotes
the horizon. The celebrated UCB family of algorithms
is a classic example Lattimore and Szepesvári (2018).
In this section, we ask the question: Are these algo-
rithms robust with respect to the parametric informa-
tion ‘baked’ into them? Our main result of this sec-
tion answers this question in the negative. Specifically,
we show that statistically robust algorithms (i.e., algo-
rithms that maintain consistency over an entire class of
distributions) necessarily incur super-logarithmic re-
gret. In other words, algorithms that enjoy a loga-
rithmic regret guarantee over a particular parametric
sub-class of reward distributions are not statistically
robust.

Theorem 1. Let M ∈ {B,SG,SE ,G}. For any al-
gorithm π that is consistent over Mk, and for any in-
stance ν ∈Mk with at least one sub-optimal arm (i.e.,
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∆i > 0 for some i),

lim
n→∞

Rn(π, ν)

log(n)
=∞.

The proof of Theorem 1 is provided in Appendix A.
The crux of the argument is as follows. Given an
MAB instance ν ∈ Mk, the expected number of pulls
E [Ti(n)] of any suboptimal arm i over a horizon of n
pulls, under any algorithm that is consistent overMk,
is lower bounded as

lim inf
n→∞

E [Ti(n)]

log(n)
≥ 1

di
,

where di = infν′i∈M{D(νi, ν
′
i) : µ(ν′i) > µ∗(ν)} (see

(Lattimore and Szepesvári, 2018, chap. 16)). Infor-
mally, di is the smallest perturbation of νi in relative
entropy sense that would make arm i optimal. The
proof of Theorem 1 follows by showing that when M
is B, SG, SE or G, we have di = 0 for all subopti-
mal arms of any instance. In other words, given any
distribution η ∈ M, there exists another distribution
η′ ∈M such that µ(η′) is arbitrarily large, even while
D(η, η′) is arbitrarily small.

Theorem 1 highlights that classical bandit algorithms
are not robust with respect to uncertainty in sup-
port/moment bounds. For example, consider any algo-
rithm π that guarantees logarithmic regret over SG(1)
(for example, the algorithms presented in Chapters 7–9
in Lattimore and Szepesvári (2018)). Theorem 1 im-
plies that all such algorithms are inconsistent over SG.
This reveals an inherent fragility of such algorithms—
while they might guarantee good performance over the
specific parametric sub-class of reward distributions
they are designed for, they are not robust to uncer-
tainty with respect to the parameters that specify the
distribution class.

Having shown that robust algorithms cannot achieve
logarithmic regret, in the following section, we present
statistically robust algorithms for SE , and G. (Of
course, an algorithm that is robust over SE is also
robust over B and SG). Specifically, these algorithms
attain a regret that is slightly super-logarithmic, while
remaining consistent over SE and G respectively.

4 Statistically robust algorithms

In this section, we demonstrate how statistical robust-
ness can be achieved by allowing for slightly superloga-
rithmic regret. In particular, we propose algorithms
that are distribution oblivious, i.e., they do not re-
quire any prior information about the arm distribu-
tions in the form of support/moment/tail bounds. By
suitably choosing a certain scaling function that pa-
rameterizes the algorithms, the associated regret can

be made arbitrarily close to logarithmic (in the time
horizon). However, this is not an entirely ‘free lunch’—
tuning the scaling function for stronger asymptotic re-
gret guarantees can affect the regret for a moderate
horizon values. Interestingly though, this trade-off be-
tween asymptotic and short-horizon performance can
be tempered by incorporating (noisy) prior informa-
tion about support/moment bounds on the arm distri-
butions into the scaling functions, while maintaining
statistical robustness.

We propose three distribution oblivious algorithms for
robust regret minimization in this section. The first,
which we call Robust Upper Confidence Bound algo-
rithm for Light-Tailed instances (R-UCB-LT) algo-
rithm is suitable for subexponential (light-tailed) in-
stances. (An instance is said to be light-tailed if all
arm distributions are light-tailed). It uses the empiri-
cal average as an estimator for the mean reward, and
uses a confidence bound that that is a suitably (and
robustly) scaled version of the typical non-oblivious
confidence bounds in UCB algorithms.

Next, to deal with the most general class G of reward
distributions, we propose two algorithms. The first is
called R-UCB-TEA, where the qualifier TEA stands
for the Truncated Empirical Average estimator used
by the algorithm. Empirical averages, which provide
good estimates of the mean for light-tailed arms, can
deviate significantly from the true mean for heavy-
tailed arms. To control the ‘high variability’ in the
sample values, a truncated mean estimator is typi-
cally used; see for example, Bubeck et al. (2013); Yu
et al. (2018). The truncation parameter in R-UCB-
TEA is scaled with time suitably to provide statisti-
cal robustness. The second algorithm, which we call
R-UCB-MoM, uses a Median of Means (MoM) esti-
mator for the mean of each arm. MoM estimators,
as the name suggests, partition the data into disjoint
bins, and compute the median of the (empirical av-
erage) estimators corresponding to the different bins.
This approach has been shown to provide favourable
concentration properties for highly variable data sam-
ples (Bubeck et al., 2013); R-UCB-MoM uses a num-
ber of bins that is scaled logarithmically with time, in
conjunction with a robustly scaled confidence interval.
Desirably, all our algorithms are any-time, and have
provable regret guarantees.

Before we describe the algorithms, we define the fol-
lowing class of functions which serve as scaling func-
tions for both algorithms.

Definition 1. A function f : N→ (0,∞) is said to be
slow-growing if f(t+ 1) ≥ f(t) ∀ t ∈ N,

lim
t→∞

f(t) =∞, and lim
t→∞

f(t)

ta
= 0 ∀ a > 0.
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Algorithm 1 R-UCB-LT

Input k arms, slow-growing scaling function f

for t = 1 to k do
Pull arm with index i = t and observe reward Rt
Update µ̂(i, ui)← Rt, ui ← 1

end for
for t = k + 1, k + 2, . . . do

Calculate the upper confidence bound as

U(i, ui, t) = µ̂(i, ui) +

√
f(t) log(t)

ui︸ ︷︷ ︸
W(ui,t)

Pull arm i maximizing U(i, ui, t) and observe re-
ward Rt

Update empirical average µ̂(i, ui) and ui ← ui+1
end for

4.1 Robust Upper Confidence Bound
algorithm for Light-Tailed instances

The R-UCB-LT algorithm is presented in Algorithm 1.
The only structural difference between R-UCB-LT and
the classical UCB algorithm is in the definition of the
upper confidence bound—under R-UCB-LT, the con-
fidence width W(ui, t) for arm i at time t, where ui
denotes the number of pulls of arm i prior to time t, is
scaled by a slow-growing function f. This simple scal-
ing provides statistical robustness over light-tailed in-
stances, as established in Theorem 2 below. We prove
the consistency of R-UCB-LT over all subexponential
instances, albeit with superlogarithmic regret. We also
provide stronger guarantees for subGaussian instances.

Theorem 2. Consider the algorithm R-UCB-LT with
a specified slow-growing scaling function f. For an in-
stance ν ∈ SE(v, α)k, there exists threshold tSEmin(v, α)
such that for t > tSEmin(v, α), the regret under R-UCB-
LT satisfies

Rt(ν) ≤
∑

i:∆i>0

(f(t) log(t) ĉ+ 4∆i) . (1)

where ĉ = max
{

4
∆i
,∆i

(
α
v2

)2}
, an instance-dependent

constant.

For an instance ν ∈ SG(σ)k, there exists a threshold
tSGmin(σ) such that for t > tSGmin(σ), the regret under
R-UCB-LT satisfies

Rt(ν) ≤
∑

i:∆i>0

(
4f(t) log(t)

∆i
+ 4∆i

)
. (2)

The key take-aways from Theorem 2 are as follows.

• R-UCB-LT is clearly consistent over SEk, but

the regret guarantee is super-logarithmic, as de-
manded by Theorem 1.

• R-UCB-LT is distribution oblivious in the sense
that it does not need the parameters v, α in
the implementation. However, the stated regret
guarantee holds for t greater than an instance-
dependent threshold tSEmin(v, α)—this is because
the confidence width needs to be large enough for
certain concentration properties to hold. Explicit
characterization of the threshold tSEmin(v, α), along
with (weaker) regret bounds for t less than this
threshold, are provided in Appendix B.

• Choosing f to be ‘slower’ growing leads to better
asymptotic regret guarantees, but also increases
the threshold tmin. This implies a trade-off be-
tween asymptotic and short-horizon performance
in a purely oblivious setting. However, (noisy)
prior information about the class of arm distribu-
tions can be incorporated into the choice of scaling
function f to dilute this trade-off. For example,
if it is believed that the arm distributions are σ-
subGaussian, then one may set f(t) = 8σ2 +h(t),
where h(·) is slow-growing; this choice of moti-
vated by the observation that for the well known
(non-robust) α-UCB algorithm Bubeck and Cesa-
Bianchi (2012), f would be replaced by 2ασ2,
α > 1 for σ-subGaussian arms. This choice would
make tSGmin small if the arms are σ′-subGaussian,
where σ′ ≈ σ, while still providing statistical ro-
bustness to the reliability of this prior informa-
tion; see proof below. We also illustrate this phe-
nomenon in our numerical experiments in Sec-
tion 5.

• Stronger performance guarantees are possible for
the subclass SGk. Indeed, given that SG(σ) ⊂
SE(σ, α) for all α > 0, the guarantee (2) is
stronger than (1) for ν ∈ SG(σ)k.

Proof of Theorem 2

The proof is structurally similar to the proof of the
UCB regret bound in Bubeck et al. (2013). We con-
sider the cases ν ∈ SGk and ν ∈ SEk separately.

Case 1 ν ∈ SEk

We define the following three events for any sub-
optimal arm i.

E1 : U(i∗, Ti∗(t− 1), t) ≤ µ∗

E2 : µ̂(i, Ti(t− 1)) > µi +W(Ti(t− 1), t)

E3 : ∆i < 2W(Ti(t− 1), t)
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where Ti(t) denotes the number of times ith arm is
pulled till time instant t. The three events can be in-
terpreted as follows. Event E1 occurs when the upper
confidence bound corresponding to the optimal arm is
less than its actual mean. Event E2 corresponds to the
case when the mean estimator of a sub-optimal arm is
much larger than its actual mean. Finally, the event
E3 corresponds to the case when the confidence win-
dow of arm i is large. We now prove that one of these
events must occur if sub-optimal arm i is chosen at
time instant t. Denote It as the arm chosen at time t.

Claim If It = i, then one of E1, E2 or E3 is true.

To justify this claim, we assume all the three events to
be false and then show a contradiction. We have,

U(i∗, Ti∗(t− 1), t) > µ∗

= µi + ∆i

≥ µi + 2W(Ti(t− 1), t)

≥ µ̂(i, Ti(t− 1)) +W(Ti(t− 1), t)

= U(i, Ti(t− 1), t)

which is a contradiction since It 6= i∗.

Next, we derive a concentration inequality correspond-
ing to the confidence bound used in R-UCB-LT. This
inequality will be used to upper bound the probability
of events E1 and E2. By our choice of algorithm

µ̂(i, u) =
1

u

u∑
j=1

Xj ; W(u, t) =

√
f(t) log(t)

u

We assume the underlying distribution to be ν ∈
SE(v, α). For any confidence width W, we have the
following concentration inequality (see Equation (2.18)
in Wainwright (2019)):

P

 1

u

u∑
j=1

Xj − µ ≥ W

 ≤ e−uW2 min{W
v2
, 1α}

We are interested only in small values of the confidence
window W, and hence the first term in the minimum
expression is of interest to us. For the first term to
be less than the second term, we have the inequal-

ity W ≤ v2

α . Putting the value of confidence window

W(u, t) in this inequality, we get, u ≥ f(t) log(t)
(
α
v2

)2
.

Denote the minimum u satisfying this inequality as u0.
Hence for all u > u0 we have,

P (µ̂(i∗, u) +W(u, t) > µ∗) ≤ exp

(
−f(t) log(t)

2v2

)
.

Since f(t) is a sub-linearly growing function, for all
time t > t0, we are guaranteed to have f(t) > 8v2,

where t0 = f−1(8v2). Substituting this inequality in
the above expression yields,

P (µ̂(i∗, u) +W(u, t) > µ∗) ≤ exp (−4 log(t)) = t−4

for all time instances t > t0 and u > u0. In ad-
dition, u0 is an increasing function with number of
rounds t. This inequality is useful in establishing an
upper bound on the probability of events E1 and E2.
Next we have, by union bound over u,

P(E1) ≤ P(∃u ∈ [t] : U(i∗, u, t) ≤ µ∗) ≤ t.t−4 = t−3.

Similarly, P(E2) ≤ t−3. Let u′i denote the maximum
value of Ti(t − 1) for which event E3 is true. Con-
sequently, for all t > u′i and u > u0, if It = i, then
at least one of the event E1, E2 is true. Finally, we
choose ui = max(u′i, u0, t0) since we wish to apply the
above concentration inequality for all time instances
t > ui. Now, for any sub-optimal arm i,

E[Ti(t)] = E

[
t∑

s=1

1{It = i}

]

≤ ui + E

[
t∑

s=ui+1

1{It = i}

]

= ui + E

[
t∑

s=ui+1

1{It = i, E1 true or E2 true}

]

≤ ui +

t∑
s=ui+1

P(E1 ∪ E2)

≤ ui +

t∑
s=ui+1

2

s3
≤ ui + 4.

Evaluating the value of ui, we get

ui = max

{
4f(t) log(t)

∆2
i

, f(t) log(t)
( α
v2

)2

, t0

}
However, we observe that t0 is a constant and thus
the first two terms (u′i, u0) will be more than t0 after
a time instance, say t1. Hence ∀t > tSEmin(ν),

E[Ti(t)] ≤ max

{
4f(t) log(t)

∆2
i

, f(t) log(t)
( α
v2

)2
}

+ 4

where the instance dependent tSEmin(ν) = max(t0, t1).

Thus, we get the regret upper bound as

Rt(ν) ≤
∑

i:∆i>0

(f(t) log(t) ĉ+ 4∆i)

∀t > tSEmin(ν), where ĉ = max
{

4
∆i
,∆i

(
α
v2

)2}
.

Case 2 ν ∈ SGk
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Algorithm 2 R-UCB-TEA

Input k arms, slow-growing scaling function f taking
values in (1,∞)

Initialize Ri = { }, ui = 0 for all arm i
for t = 1 to k do

pull arm with index i = t and observe reward r
Append r to Ri and update ui ← ui + 1

end for
for t = k + 1, k + 2, . . . do

Calculate the upper confidence bound as

U(i, ui, t) =
1

ui

∑
X∈Ri

X1{|X|≤f(t)}︸ ︷︷ ︸
µ̂(i,ui,t)

+
1

log(f(t))
+

16f(t) log(t)

ui︸ ︷︷ ︸
W(ui,t)

Pull arm i maximizing U(i, ui, t) and observe re-
ward Rt

Append Rt to Ri and update ui ← ui + 1
end for

We observe that, SG is a special case of SE with α→ 0.
And hence, the regret expression can be obtained as

Rt(ν) ≤
∑

i:∆i>0

(
4f(t) log(t)

∆i
+ 4∆i

)
∀t > tSGmin(ν)

where the instance dependent threshold tSGmin is
max(t0, t1); t0 and t1 same as the previous case.

4.2 Robust Upper Confidence Bound
algorithm for arbitrary instances using
Truncated Empirical Average estimators

The R-UCB-LT algorithm discussed above is robust
to parametric uncertainties, and guarantees ‘slightly-
worse-than-logarithmic’ regret for any light-tailed ban-
dit instance. However, one could argue that R-UCB-
LT is still not truly robust—after all, how can we
be certain in a practical scenario that there are no
heavy-tailed arms involved? From the viewpoint of
applications such as financial portfolios and insur-
ance, heavy-tailed distributions are ubiquitously used
in modelling. Therefore there is a compelling case
for handling heavy-tailed as well as light-tailed arms’
distributions within a common, statistically robust
framework.

In this section, we propose a truly robust algorithm
for the most general setting, i.e., for bandit instances
in Gk. We recall that the class G demands only the
boundedness of the (1 + ε)-moment for some ε > 0.

This is only mildly more demanding than the finiteness
of the mean,1 which is necessary for the MAB problem
to be well-posed.

Once the restriction to light-tailed reward distribu-
tions is removed, more sophisticated estimators than
empirical averages are required; this is because empiri-
cal averages are highly sensitive to (relatively frequent)
outliers in heavy-tailed data. One such approach is
to use truncation-based estimators (see, for example,
Bubeck et al. (2013)), which offer lower variability at
the expense of a (controllable) bias. The R-UCB-
TEA algorithm, stated formally as Algorithm 2, uses a
truncation-based estimator in conjunction with a ro-
bust scaling of the confidence bound. Note that the
same scaling function f is used for both truncation as
well for scaling the confidence bound.

R-UCB-TEA provides the following performance guar-
antee over instances in Gk. To the best of our knowl-
edge, this is the first time a single algorithm has been
shown to provide provable regret guarantees in such
generality.

Theorem 3. Consider the algorithm R-UCB-TEA
with a specified slow-growing scaling function f tak-
ing values in (1,∞). For an instance ν ∈ G(ε, B)k,
there exists a threshold tmin(ε, B) such that for t >
tmin(ε, B), the regret under R-UCB-TEA satisfies

Rt(ν) ≤
∑

i:∆i>0

(
32f(t) log(t)

1− 2
∆i log(f(t))

+ 4∆i

)
.

The performance guarantee of R-UCB-TEA is struc-
turally similar to that for R-UCB-LT: The algorithm
is consistent, with a super-logarithmic regret that is
dictated by the growth of the scaling function f. More-
over, while slowing the growth of f improves the
asymptotic regret guarantee, it causes tmin to increase,
potentially compromising the performance for shorter
horizons. As before, prior information on, say, mo-
ment bounds satisfied by the arm distributions can be
incorporated into the design of f. For example, if it is
believed that ν ∈ G(ε, B), a natural choice of f would
be f(t) = c + h(t), where h(·) is a slow-growing func-
tion, and c > 1 is the smallest constant satisfying:
log(x) ≤ xε/3B for all x ≥ c; this choice would make
tmin close to zero for instances in G(ε′, B′)k, for ε′ ≈ ε,
B′ ≈ B (see Appendix C). The proof of Theorem 3 is
similar to the proof of Theorem 2 and is provided in
Appendix C.

1Distributions with finite mean that do not belong to G
are quite pathological, and are of little practical interest.
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Algorithm 3 R-UCB-MoM

Input k arms, slow-growing scaling function f , slow-
decaying function g

Initialize Ri = { }, ui = 0 for all arm i
for t = 1 to k do

pull arm with index i = t and observe reward Rt
Append Rt to Ri and update ui ← ui + 1

end for
for t = k + 1, k + 2, . . . do

Calculate mean estimator µ̂(i, u, t) using algo-
rithm 4 with input Ri, ui and t

Calculate the upper confidence bound as

U(i, ui, t) = µ̂(i, u, t) + f(t)

(
32 log(t)

u

)g(t)
︸ ︷︷ ︸

W(ui,t)

Pull arm i maximizing U(i, ui, t) and observe re-
ward Rt

Append Rt to Ri and update ui ← ui + 1
end for

Algorithm 4 Function to Calculate Median of Means
(MoM)

Input R, u, t.

if u > 32 log(t) then:
Take q = d32 log(t)e and N = buq c
Compute µ̂l = 1

N

∑N
m=1R{(l−1)N+m} for l =

1, 2, . . . , q
return median(µ̂1, µ̂2, . . . , µ̂q)

else:
return median(R)

end if

4.3 Robust Upper Confidence Bound
algorithm for arbitrary instances using
Median of Means (MoM) estimator

Next, we present another statistically robust algorithm
over Gk. In place of the truncation-based estimator
used by R-UCB-TEA, this algorithm, called R-UCB-
MoM, uses a median of means (MoM) estimator (see
Bubeck et al. (2013)). The MoM estimator works as
follows. The samples (corresponding to each arm) are
first divided into q bins each having an equal number of
samples. The empirical mean is calculated for each of
the bins, and the MoM estimator is the median of the q
intra-bin estimates. Note that median computation
provides robustness to extreme values (outliers) that
are inherent in heavy-tailed data samples.

In addition to slow-growing scaling functions (see Def-
inition 1), R-UCB-MoM uses another class of scaling
functions, which is defined below.

Definition 2. A function g : N→ (0,∞) is said to be
slow-decaying if

g(t+ 1) ≤ g(t) ∀ t ∈ N,

lim
t→∞

g(t) = 0, lim
t→∞

g(t)

ta
= 0 ∀ a > 0.

R-UCB-MoM, stated formally as Algorithm 3, pro-
vides the following regret guarantee over instances
in Gk.

Theorem 4. Consider the algorithm R-UCB-MoM
with a specified slow-growing scaling function f and
slow-decaying scaling function g. For an instance
ν ∈ G(ε, B)k, there exists a threshold tmin(ε, B) such
that for t > tmin(ε, B), the regret under R-UCB-MoM
satisfies

Rt(ν) ≤
∑

i:∆i>0

(
∆i

(
2f(t)

∆i

) 1
g(t)

32 log(t) + 4∆i

)
.

The proof of Theorem 4 is given in Appendix D. It
may not be immediately apparent from the statement
of Theorem 4 how super-logarithmic the regret bound
is. As we show in the following corollary, the regret
bound can be made arbitrarily close to logarithmic by
suitably choosing the scaling functions f and g.

Corollary 1. For any slow-growing function Φ(t),
there exists a slow-growing function f(t), a slow-
decaying function g(t), and tmin such that for all i,(

2f(t)

∆i

) 1
g(t)

≤ Φ(t)

for t > tmin.

Basically, f and g can be defined in terms of the func-
tion Φ; the details can be found in Appendix D.1. As
with R-UCB-TEA, configuring the scaling functions
for a stronger asymptotic regret guarantee would in-
crease the value of tmin, potentially compromising per-
formance for shorter horizons. Also as before, (noisy)
prior information about the arm distributions can be
used to dilute this tradeoff; the details are omitted due
to space constraints.

5 Experimental Analysis

In this section, we present numerical results to illus-
trate the performance of the algorithms presented in
Section 4. Due to space constraints, we only consider
R-UCB-LT and R-UCB-TEA here.

In the first experiment, we compare the proposed al-
gorithms with standard algorithms which assume the
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(a) R-UCB-LT: Comparison with
standard algorithms

(b) R-UCB-TEA: Comparison with
standard algorithms

(c) Using prior information to im-
prove short-horizon regret

knowledge of distribution parameters. As per Theo-
rem 1, we established that a statistically robust al-
gorithm cannot have logarithmic regret. We demon-
strate that when there is a parameter misestimation,
the regret of the standard algorithms can be consid-
erable. Here, we compare R-UCB-LT with standard
α−UCB in Bubeck and Cesa-Bianchi (2012) and R-
UCB-TEA with heavy-tailed algorithm presented in
Bubeck et al. (2013). The chosen instance for the
first case is as follows: two arms both distributed as
Gaussian N (µ, σ) with parameters (1, 1) and (2, 3).
This choice of parameters is arbitrary and a similar
trend was observed in trials with other Gaussian in-
stances. For this light-tailed instance, we compare
the performance of R-UCB-LT with α-UCB, where
α is 1.1 and the algorithm misestimates the instance
as being 1-subGaussian. The plot of mean and stan-
dard deviation of regret, averaged over 200 instances,
is given in Figure 1a. Next, for the heavy-tail case
the chosen instance is as follows: two arms both dis-
tributed as Pareto Type I with (scale, shape) as (4,5)
and (5,5). The specialized algorithm in Bubeck et al.
(2013) assumes (incorrectly) that E[X5] < 50 (such
moment misestimations are very common with heavy-
tailed data). The obtained regret, averaged over 200
instances, is given in Figure 1b. Note that the choice
of f(t) = log2(t) is also arbitrary and an even lower
regret can be obtained using slower scaling functions,
for example, log(t) or log(log(t)).

In the second experiment, we demonstrate how choos-
ing f(t) based on (noisy) prior information can de-
crease regret over short horizons. The chosen instance
for this experiment is as follows: two arms both dis-
tributed as Gaussian N (µ, σ) with parameters (0, 1)
and (1, 10). Now, suppose we have the (noisy) prior
information that the arms are σ-subGaussian with
σ ≈ 8. As stated in Section 4, we incorporate this
prior information into the design of f(t) by choosing
f1(t) = 512 + log(t). We compare the cumulative re-

gret for this choice with that corresponding to a com-
pletely oblivious choice of f(t), i.e., f2(t) = log(t).
The experiment is repeated 200 times and obtained
mean and standard deviation of regret is shown in Fig-
ure 1c. We can see that f1(t), i.e., the scaling function
chosen based on the prior information, incurs lower
regret. This trend in cumulative regret can be rea-
soned as follows. The algorithm using scaling function
f2(t) uses smaller confidence widths, which results in
greater susceptibility to the noise in the arm rewards.
In conclusion, if noisy prior information about the pos-
sible arm distributions is available, this can be incorpo-
rated into the choice of the scaling function to improve
short-horizon performance, while retaining statistical
robustness.

6 Concluding remarks

In this paper, we demonstrated the fundamental trade-
off between logarithmic regret and statistical robust-
ness in stochastic MABs. We also proposed robust
algorithms that incur slightly super-logarithmic re-
gret. It would be interesting to explore similar trade-
offs between statistical robustness and performance in
other bandit settings, including thresholding bandits
Locatelli et al. (2016), linear bandits Rusmevichien-
tong and Tsitsiklis (2010) and combinatorial bandits
Chen et al. (2013).

More broadly, we hope that this paper spawns fur-
ther work on statistically robust online learning algo-
rithms. We have focussed on one of the simplest learn-
ing paradigms (regret minimization in MABs), where a
logarithmic regret emerged as a robustly unattainable
performance barrier. Other fundamental performance
barriers of statistically robust learning await discov-
ery, in more challenging settings such as Markovian
bandits and Markov Decision Processes.
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A Appendix for Section 3 - Impossibility of logarithmic regret for statistically
robust algorithms

This section is devoted to the proof of Theorem 1. The proof is based on the following characterization of
instance-dependent lower bounds from Lattimore and Szepesvári (2018) (see Theorem 16.2):

Theorem 5. For any algorithm π that is consistent over Mk, and instance ν ∈Mk,

lim inf
n→∞

Rn(π, ν)

log(n)
≥

∑
i:∆i>0

∆i

di(νi, µ∗,M)
,

where di(νi, µ
∗,M) := infν′i∈M{D(νi, ν

′
i) : µ(ν′i) > µ∗}.

The proof of Theorem 1 therefore follows from the following lemma, which shows that di(νi, µ
∗,M) = 0 for all

suboptimal arms of any instance ν when M is B, SG, SE , or G.
Lemma 1. Fix M∈ {B,SG,SE ,G}. For any distribution F ∈M, and for any a > 0 and b > µ(F ), there exists
distribution F ′ ∈M such that

D(F, F ′) ≤ a and µ(F ′) ≥ b.

Proof. We consider the following two cases.

Case 1: M∈ {SG,SE ,G}

If the distribution F is unbounded from above (i.e., F̄ (y) > 0 for all y ∈ R), then the claim follows from Lemma
1 in Agrawal et al. (2020). The idea there is to construct a new distribution F ′ such that for a chosen y, the
CDF on the left side is decreased by a factor of e−a with respect to F, and rest of the mass is pushed on the
right side of y. Crucially, under this perturbation, F ′ remains in M, since on both sides of y only a constant
is being multiplied, thus keeping the functional form of the distribution same. The KL-divergence D(F, F ′) is
always less than a independent of the choice of y. However, the mean of F ′ can be made arbitrary large by
choosing a suitably large value of y.

On the other hand, if F is bounded from above, then the argument below (for the caseM = B) can be applied to
construct F ′ that is also bounded from above, but satisfies the conditions required. (Specifically, the boundedness
of the lower end-point of the support is not required for this argument.)

Case 2: M = B

We construct a new bounded distribution F ′ such that the CDF of F ′ is e−a times the CDF of F over its support.
The rest of the probability mass is uniformly distributed starting from the right end-point of the support to an
arbitrary point v′.

Suppose that the support of F is contained within [u, v]. Define the CDF of distribution F ′ as follows, for
γ ∈ (0, 1) and v′ > v.

F ′(x) = (1− γ)F (x) ∀ x ≤ v

F ′(x) = 1 + γ
x− v′

v′ − v
∀ x ∈ (v, v′]

Now,

D(F, F ′) =

∫ v

u

log

(
dF (x)

dF ′(x)

)
dF (x) = − log(1− γ).

Choosing γ = 1− e−a yields D(F, F ′) = a. Turning now to the mean of F ′,

µ(F ′) =

∫ v′

u

xdF ′(x) = (1− γ)µ(F ) +

∫ v′

v

x
γ

v′ − v
dx

= (1− γ)µ(F ) +
γ

2
(v′ + v)

Clearly, µ(F ′) can be made arbitrarily large by choosing a suitably large v′.
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B Regret bounds when t < tmin

We discuss a weaker regret bound for time instances less than the threshold time tmin. In the proof of theorem
2, we use a slow-growing scaling function to make the inequality oblivious to its parameters. However, we are
also interested in obtaining a regret bound for t < tmin. We have,

P (µ̂(i∗, u) +W(u, t) > µ∗) ≤ exp (−ĉf(t) log(t))

where

ĉ =


2

(b−a)2 , if ν ∈ Bk
1

2σ2 , if ν ∈ SGk
1

2v2 , if ν ∈ SEk

Substituting this weaker concentration bound in the above proof of regret bound we get,

E[Ti(t)] ≤ ui +

t∑
s=ui+1

t1−ĉf(t) log(t)

as the expected number of times a sub-optimal arm is pulled. The above expression for E[Ti(t)] still yields a
sub-linear upper bound, though weaker than before.

C Proof of Theorem 3 - Regret Upper Bound for R-UCB-G

We prove Theorem 3 in this section. This proof is similar to proof of Theorem 2 given in Section 4.1.

Proof. We define the following three events for any sub-optimal arm i.

E1 : U(i∗, Ti∗(t− 1), t) ≤ µ∗

E2 : µ̂(i, Ti(t− 1), t) > µi +W(Ti(t− 1), t)

E3 : ∆i < 2W(Ti(t− 1), t)

where Ti(t) denotes the number of times ith arm is pulled till time instant t. The three events can be interpreted
as follows. Event E1 occurs when the upper confidence bound corresponding to the optimal arm is less than its
actual mean. Event E2 corresponds to the case when the mean estimator of a sub-optimal arm is much more
than its actual mean. As we shall see, both E1 and E2 are low-probability event and its probability can be upper
bounded. Finally, event E3 corresponds to the case when the confidence window of arm i is large. We now prove
that one of these event must be true when a sub-optimal arm is chosen at time instant t. Denote It as the arm
chosen at time t.

Claim If It = i, then one of E1, E2 or E3 is true.

To justify this claim, we assume all the three events to be false and then show a contradiction.

We have,

U(i∗, Ti∗(t− 1), t) > µ∗

= µi + ∆i

≥ µi + 2W(Ti(t− 1), t)

≥ µ̂(i, Ti(t− 1), t) +W(Ti(t− 1), t)

= U(i, Ti(t− 1), t)

which is a contradiction since It 6= i∗.

Now, by our choice of algorithm
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µ̂(i, u, t) =
1

u

u∑
j=1

Xj1{|Xj |≤f(t)}

We attempt to establish a distribution oblivious concentration inequality with mean estimator chosen as µ̂(i, u, t).
We draw inspiration from already established non-oblivious concentration inequality based on this mean estimator
(see Lemma 1 in Bubeck et al. (2013), Lemma 1 in Yu et al. (2018) which uses results from Seldin et al. (2012)).

We assume the underlying instance to be inG(ε, B)k. For a truncation parameter f(t), we have, with a probability
at least 1− t−4

µ− µ̂(i, u, t) ≤ B

f(t)ε
+

1

u

(
2f(t) log(2t4) + u

B

2f(t)ε

)
≤ 3B

2f(t)ε
+

16f(t) log(t)

u

The second term on the RHS comes from Equation (8) in Yu et al. (2018) and the first term is from Equation (7)
in the same paper. Now, the only non-obliviousness is due to the first term. We observe that, for all t > t0,
3B log(f(t)) < 2f(t)ε. There always exists t0 such that this is true, since, left hand side is a sub-linear term,
while right hand side is not.

For all t > t0, with a probability at least 1− t−4

µ− µ̂(i, u, t) ≤ 1

log(f(t))
+

16f(t) log(t)

u

⇒ P (µ− µ̂(i, u, t) ≥ W(u, t)) ≤ t−4

This expression establishes a distribution oblivious inequality for a general (even heavy-tailed) random variables.
This inequality is valid for all time instances t > t0, where t0 is a distribution dependent constant parameter.

This inequality is useful in establishing an upper bound on the probability of events E1 and E2, similar to case
1 in the proof given in Section 4.1. We have,

P(E1) ≤ P(∃u ∈ [t] : U(i∗, u, t) ≤ µ∗) ≤ t.t−4 = t−3 by union bound over u

Similarly, P(E2) < t−3.

Now, we proceed to obtain regret upper bound similar to case 1 in the proof given in Section 4.1. We define u′i
as the maximum value of Ti(t − 1) for which event E3 is true. Also, we wish to apply concentration bound for
all time instants t > ui. Consequently, we choose ui = max(u′i, t0).

Similar to the previous case, we get,

E[Ti(t)] ≤ ui + 4

The value of ui can be evaluated from the inequality given in event E3 and the choice of W(u, t). We get,

ui = max

{
32f(t) log(t)

∆i − 2
log(f(t))

, t0

}
.

However, the above calculated value of u′i is valid only when
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∆i −
2

log(f(t))
> 0

Let t1 denote the minimum value of t satisfying the equation above. Moreover, we observe that t0 is a constant
and thus the first term in the expression of ui will be more than t0 after a time instance, say t2. Hence,

E[Ti(t)] ≤
32f(t) log(t)

∆i − 2
log(f(t))

∀t > tmin(ν)

where the instance dependent threshold tmin = max(t0, t1, t2).

Thus, we get the regret upper bound as

Rt(ν) ≤
∑

i:∆i>0

(
32f(t) log(t)

1− 2
∆i log(f(t))

+ 4∆i

)
∀t > tmin(ν)

D Proof of Theorem 4 – Regret Upper Bound for R-UCB-MoM

The proof of Theorem 4 is similar to the proof of theorem 2 presented in Section 4.1.

Proof. We define the following three events for any sub-optimal arm i.

E1 : U(i∗, Ti∗(t− 1), t) ≤ µ∗

E2 : µ̂(i, Ti(t− 1), t) > µi +W(Ti(t− 1), t)

E3 : ∆i < 2W(Ti(t− 1), t)

where Ti(t) denotes the number of times ith arm is pulled till time instant t. The three events can be interpreted
as follows. Event E1 occurs when the upper confidence bound corresponding to the optimal arm is less than its
actual mean. Event E2 corresponds to the case when the mean estimator of a sub-optimal arm is much more
than its actual mean. As we shall see, both E1 and E2 are low-probability event and its probability can be upper
bounded. Finally, event E3 corresponds to the case when the confidence window of arm i is large. We now prove
that one of these event must be true when a sub-optimal arm is chosen at time instant t. Denote It as the arm
chosen at time t.

Claim If It = i, then one of E1, E2 or E3 is true.

To justify this claim, we assume all the three events to be false and then show a contradiction.

We have,

U(i∗, Ti∗(t− 1), t) > µ∗

= µi + ∆i

≥ µi + 2W(Ti(t− 1), t)

≥ µ̂(i, Ti(t− 1), t) +W(Ti(t− 1), t)

= U(i, Ti(t− 1), t)

which is a contradiction since It 6= i∗.

Now, by our choice of algorithm µ̂(i, u, t) is the median of means estimator. In this mean estimator, we first
divide the samples into q bins, and compute the average of all the bins. Each bin will have N = duq e samples.
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We return the median of these q bins as the mean estimator. We attempt to establish a distribution oblivious
concentration inequality for this mean estimator. Formally, this estimator is defined as

µ̂(i, u, t) = median(µ̂1, µ̂2, . . . , µ̂q) where q = d32 log(t)e and µ̂l =
1

N

N∑
m=1

X{(l−1)N+m}

The choice of q = d32 log(t)e is useful in establishing the required concentration inequality. This requirement
comes from the fact that we need at least N = 1 samples per bin. Further, we assume that for all arms,
u > 32 log(t). Hence, the inequality that we now propose is valid only for u > 32 log(t).

We define a bernoulli random variable Yl = 1{µ̂l > µ+W}. According to equation 12 in Bubeck et al. (2013),
Yl has the parameter

p ≤ 3B

N εW1+ε

Choosing W(u, t) = f(t)
(

1
N

)g(t)
, where f(t) is a slow-growing function, and g(t) is a slow-decaying function,

yields,

p ≤ 3B

N εf(t)1+ε
(

1
N

)g(t)(1+ε)

Since f(t) is slow-growing and g(t) is slow-decaying, we are guaranteed to have a t0 such that, for all t > t0, we
have g(t) < ε

1+ε and f(t)1+ε > 12B. For such t > t0, we get,

p ≤
(

1

4

)(
3B

12f(t)1+ε

)(
1

N ε−g(t)(1+ε)

)
≤ 1

4

Finally, using Hoeffding inequality for binomial random variable,

P (µ̂(i, u, t)− µ >W(u, t)) = P

 q∑
j=1

Xj

 ≤ exp

(
−2q(

1

2
− p)2

)

≤ exp

(
−q
8

)
= exp

(
−32 log(t)

8

)
= t−4

Note that this inequality is valid for all time instances t > t0 and u > u0 where t0 is a distribution dependent
constant parameter and u0 = d32 log(t)e, an increasing function.

This inequality is useful in establishing an upper bound on the probability of events E1 and E2, similar to case
1. We have,

P(E1) ≤ P(∃u ∈ [t] : U(i∗, u, t) ≤ µ∗) ≤ t.t−4 = t−3 by union bound over u

Similarly, P(E2) ≤ t−3.

We define u′i as done in the the proof of theorem 2. However, for the above distribution oblivious concentration
inequality to hold, we have an additional constraint of u > u0. Hence, in this case we choose ui = max(u′i, u0, t0).

Similar to the previous two cases, we get,

E[Ti(t)] ≤ ui + 4 but here ui = max

{(
2f(t)

∆i

) 1
g(t)

32 log(t), 32 log(t), t0

}



Bandit algorithms: Letting go of logarithmic regret for statistical robustness

However, we observe that t0 is a constant and thus the first two terms (u′i, u0) will be more than t0 after a time

instance, say t′1. Moreover, the first function is faster growing than the second function, since
(

2f(t)
∆i

) 1
g(t)

is

increasing with time instance t. Denote t′′1 as the threshold time. Define t1 = max(t′1.t
′′
1). Hence,

E[Ti(t)] ≤
(

2f(t)

∆i

) 1
g(t)

32 log(t) + 4 ∀t > tmin(ν)

where the instance dependent threshold tmin(ν) = max(t0, t1).

Thus, we get the regret upper bound as

Rt(ν) ≤
∑

i:∆i>0

(
∆i

(
2f(t)

∆i

) 1
g(t)

32 log(t) + 4∆i

)
∀t > tmin(ν)

It is left to show that the above regret bound is indeed consistent. We show that there exists appropriate choices
of f(t) and g(t) so that the overall regret expression can be made as close to logarithmic as we want.

D.1 Proof of corollary 1

Proof. We see that e0.5(log Φ(t))1−c is an increasing function for c ∈ (0, 1). Hence, we choose f(t) =

0.5e0.5(log Φ(t))1−c and g(t) = 1
logc(Φ(t)) . Also there exists t0 such that for all t > t0, 1

∆i
≤ e0.5(log Φ(t))1−c

since LHS is a constant while RHS is an increasing function of t. Thus, we have,

f(t)

∆i
≤ e(log Φ(t))1−c ∀t > t0

Again, there exists t1 such that LHS (and hence RHS) is greater than 1.

Finally for all t > tmin, where tmin = max(t0, t1), we have,(
f(t)

∆i

) 1
g(t)

≤
(
e(log Φ(t))1−c

)logc(Φ(t))

= Φ(t) ∀t > tmin
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