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1 Theory

1.1 Proof of Proposition 1

Proposition 1 (Balancing Property). Given the true propensity score e(x), the reweighted treatment and control
arms both equal the target distribution. In other words, g(x|T = 1) = g(x|T = 0) = g(x)

Proof.

g(x|T = 1) ,∝ w(x, 1)p(x|T = 1) =
f(x)

e(x)
p(x|T = 1) =

f(x)Pr(X = x|T = 1)

Pr(T = 1|X = x)
∝ f(x)p(x) ∝ g(x) (1)

Similarly, we can also show that g(x|T = 0) = g(x).

1.2 Proof of Proposition 2

Assumption 1. The odds ratio between the model propensity score and true propensity score is bounded, namely:

∃ Γ ≥ 1 s.t. ∀x ∈ X , 1

Γ
≤ e(x)(1− eη(x))

eη(x)(1− e(x))
≤ Γ (2)

This assumption is conceptually related to the Marginal Sensitivity Model of Kallus et al. (2019) in that it
measures the gap between two propensity functions – we use it here to quantify the gap between true and model
propensities rather than the degree of unobserved confounding.
Proposition 2 (Generalized Balancing). Under Assumption 1, and assuming that all tilting functions f satisfy
f(x) > 0 ∀x ∈ X , we have:

DKL(gη(x|T = 1)||gη(x|T = 0)) ≤ 2 · log Γ,

where DKL is the KL-divergence.

Proof. First, we write the reweighted treatment group distribution as follows:

gη(x|T = 1) ,∝ wη(x, 1)p(x|T = 1) =
fη(x)

eη(x)
p(x|T = 1), (3)

where we write fη since the tilting function is (in general) computed from the propensity score model. With f(x)
the “true” tilting function (i.e., the tilting function computed from the true propensity e(x)), we may write:

gη(x|T = 1) ∝ f(x)

e(x)
p(x|T = 1)

fη(x)

f(x)

e(x)

eη(x)
∝ g(x)

fη(x)

f(x)

e(x)

eη(x)
(4)

where the last equality holds from Proposition 1. Similarly, we can write the reweighted control group distribution
as

gη(x|T = 0) ∝ g(x)
fη(x)

f(x)

1− e(x)

1− eη(x)
.

Now, computing the KL-divergence between gη(x|T = 1) and gη(x|T = 0), we get:

DKL(gη(x|T = 1)||gη(x|T = 0)) =

∫
X
gη(x|T = 1) log

 1
Z1
g(x)

fη(x)
f(x)

e(x)
eη(x)

1
Z0
g(x)

fη(x)
f(x)

1−e(x)
1−eη(x)

 dx (5)

where Z1 ,
∫
X g(x)

fη(x)
f(x)

e(x)
eη(x)dx and Z0 ,

∫
X g(x)

fη(x)
f(x)

1−e(x)
1−eη(x)dx. Simplifying (5) further, we get:

DKL(gη(x|T = 1)||gη(x|T = 0)) =

∫
X
gη(x|T = 1)

[
log

Z0

Z1
+ log

e(x)(1− eη(x))

eη(x)(1− e(x))

]
dx (6)

(∗)
≤
∫
X
gη(x|T = 1)

[
log

Z0

Z1
+ log Γ

]
dx = log

Z0

Z1
+ log Γ (7)
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where (∗) holds from Assumption 1. Notice that we may relate Z1 and Z0 as follows:

Z0 ,
∫
X
g(x)

fη(x)

f(x)

1− e(x)

1− eη(x)
dx

(∗∗)
≤
∫
X
g(x)

fη(x)

f(x)
Γ
e(x)

eη(x)
dx = ΓZ1 (8)

where (∗∗) also holds from Assumption 1. Hence log Z0

Z1
≤ log Γ – plugging this into (7) yields:

DKL(gη(x|T = 1)||gη(x|T = 0)) ≤ log Γ + log Γ = 2 log Γ. (9)

Corollary 1. The bound presented in Proposition 2 also holds for the induced distributions gΦ,η(r|T =
1), gΦ,η(r|T = 0) from gη(x|T = 1), gη(x|T = 0) (respectively) via any invertible map Φ : X → R (with
inverse Ψ), namely:

DKL(gΦ,η(r|T = 1)||gΦ,η(r|T = 0)) ≤ 2 log Γ. (10)

Proof. To see this, we can write:

gΦ,η(r|T = 1)
(∗)
∝ gη(Ψ(r)|T = 1)|det(Ψ′)| ∝ f(Ψ(r))

e(Ψ(r))
p(Ψ(r)|T = 1)

fη(Ψ(r))

f(Ψ(r))

e(Ψ(r)

eη(Ψ(r))
|det(Ψ′)| (11)

∝ g(Ψ(r))
fη(Ψ(r))

f(Ψ(r))

e(Ψ(r))

eη(Ψ(r))
|det(Ψ′)| (12)

where det(Ψ′) is the determinant of the Jacobian of Ψ, and (∗) holds from the change-of-variables formula.
Similarly, we can write gΦ,η(r|T = 0) as:

gΦ,η(r|T = 0) ∝ g(Ψ(r))
fη(Ψ(r))

f(Ψ(r))

1− e(Ψ(r))

1− eη(Ψ(r))
|det(Ψ′)| (13)

Computing the KL divergence between (12) and (13) is then similar to the proof of Proposition 2, and the same
bound holds.

1.3 Proof of Proposition 3

Definition 1. The total variation distance (TVD) between distributions p and q on R is defined as

δ(p, q) ,
1

2
· sup
m:||m||∞≤1

{∫
R
m(r)(p(r)− q(r))dr

}
(14)

Lemma 1. Under Assumption 1, the total variation distance between the reweighted representation distribution
for the treatment and control groups is upper bounded as:

δ(gΦ,η(r|T = 1), gΦ,η(r|T = 0)) ≤
√

log Γ (15)

Proof.

δ(gΦ,η(r|T = 1), gΦ,η(r|T = 0))
(∗)
≤
√

1

2
DKL(gΦ,η(r|T = 1)||gΦ,η(r|T = 0))

(∗∗)
≤
√

log Γ (16)

where (∗) follows from Pinsker’s inequality, and (∗∗) follows from Corollary 1.

Proposition 3. Under Assumption 1, assuming the representation space R is bounded, and assuming the tilting
functions satisfy f(x) > 0 ∀x ∈ X , the following bounds hold:

W(gΦ,η(r|T = 1), gΦ,η(r|T = 0)) ≤ diam(R)
√

log Γ

MMDk(gΦ,η(r|T = 1), gΦ,η(r|T = 0)) ≤ 2
√
Ck log Γ, (17)

where W is the Wasserstein distance, diam(R) , supr,r′∈R||r − r′||2, MMDk is the MMD with kernel k, and
Ck , supr∈Rk(r, r).
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Proof.

W(gΦ,η(r|T = 1), gΦ,η(r|T = 0))
(∗)
≤ diam(R)δ(gΦ,η(r|T = 1), gΦ,η(r|T = 0))

(∗∗)
≤ diam(R)

√
log Γ (18)

where (∗) holds from Theorem 4 of Gibbs & Su (2002), and (∗∗) holds from Lemma 1.

MMDk(gΦ,η(r|T = 1), gΦ,η(r|T = 0))
(∗)
≤ 2

√
Ckδ(gΦ,η(r|T = 1), gΦ,η(r|T = 0))

(∗∗)
≤ 2

√
Ck log Γ (19)

where (∗) holds from Theorem 14-ii of Sriperumbudur et al. (2009), and (∗∗) holds from Lemma 1.

1.4 Relationship between εPEHE,p and εPEHE,g

In this section, we establish a relationship between εPEHE,p and εPEHE,g which explains why targeting the
population g(x) ,∝ f(x)p(x) for ITE prediction may also aid ITE prediction on the original covariate distribution
p(x). As a reminder, Table S1 and Figure S1 shows the different tilting functions of interest and their corresponding
weighting schemes. e(x) , Pr(T = 1|X = x) is the propensity score. The weight schemes we use here have been
carefully examined in classical causal inference literature (Crump et al., 2009; Li et al., 2018; Li & Greene, 2013).
Specifically, the Matching Weights (Li & Greene, 2013) were designed as a weighting analogue to matching, the
Truncated IPW weights (Crump et al., 2009) were used to estimate a low-variance average treatment effect for
a subpopulation, and the Overlap Weights (Li et al., 2018) were proven to minimize (out of all the possible
balancing weights) the asymptotic variance of the estimated weighted average treatment effect. Figure S1 shows
how TruncIPW, MW, and OW place a specific emphasis on regions of good overlap in covariate space.

Table S1: Choices of tilting function f(x) and associated weight schemes w(x, t) (see equation (6) in the main text).
Note 1(·) is the indicator function. We set ξ = 0.1 as in Crump et al. (2009).

Tilting function f(x) Associated weight scheme w(x, t)

1 Inverse Probability Weights (IPW)
1(ξ < e(x) < 1− ξ) Truncated IPW (TruncIPW)
min(e(x), 1− e(x)) Matching Weights (MW)
e(x)(1− e(x)) Overlap Weights (OW)

Figure S1: (Left) Tilting functions f(x) used. (Right) Illustrative treatment group densities p(x|T = t), and
reweighted densities g(x) ∝ f(x)p(x) for different f(x). TruncIPW, MW, and OW specifically emphasize regions
of good overlap between the treatment and control groups.

Definition 2 (δ-strict overlap). ∃δ ∈ (0, 0.5) : ∀x ∈ X δ < e(x) < 1− δ.
Definition 3 (εPEHE,g).

εPEHE,g(τ̂) ,
∫
X

(τ(x)− τ̂(x))2g(x)dx,
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where τ(x) , E[Y (1) − Y (0)|X = x] is the true individual treatment effect, and τ̂ is an estimate of τ(x). We
often omit τ̂ from εPEHE(τ̂) for brevity.
Proposition 4. Assuming δ-strict overlap, for all the tilting functions presented in Table S1 (for f(x) = 1(ξ <
e(x) < 1− ξ), the additional condition δ ≥ ξ is required), we have:

Af · εPEHE,g(τ̂) ≤ εPEHE,p(τ̂) ≤ Bf · εPEHE,g(τ̂),

where Af and Bf are constants depending on f , p(x) , Pr(Xi = x), and g(x) ,∝ f(x)p(x)

Proof. For all the tilting functions f(x) in Table 1, we have supxf(x) <∞. Assuming δ-strict overlap (and for
f(x) = 1(ξ < e(x) < 1 − ξ), assuming δ ≥ ξ) we also get (for all f(x) in Table S1) that infxf(x) > 0. Since
g(x) ,∝ f(x)p(x) by definition (with p(x) , Pr(X = x) the marginal covariate density), we may write:

εPEHE,g ,
∫
X

(τ(x)− τ̂(x))2g(x)dx (20)

=

∫
X

(τ(x)− τ̂(x))2 f(x)p(x)

Zf
dx (21)

where Zf ,
∫
X f(x)p(x)dx. We may bound this expression above and below via:

∫
X

(τ(x)− τ̂(x))2 infx[f(x)]p(x)

Zf
dx ≤ εPEHE,g ≤

∫
X

(τ(x)− τ̂(x))2 supx[f(x)]p(x)

Zf
dx (22)

⇒ infx[f(x)]

Zf

∫
X

(τ(x)− τ̂(x))2p(x)dx ≤ εPEHE,g ≤
supx[f(x)]

Zf

∫
X

(τ(x)− τ̂(x))2p(x)dx (23)

⇒ infx[f(x)]

Zf
· εPEHE,p ≤ εPEHE,g ≤

supx[f(x)]

Zf
· εPEHE,p (24)

Defining Bf , Zf
infx[f(x)] and Af , Zf

supx[f(x)] :

1

Bf
· εPEHE,p ≤ εPEHE,g ≤

1

Af
· εPEHE,p (25)

Which we may also write as:

Af · εPEHE,g ≤ εPEHE,p ≤ Bf · εPEHE,g (26)

Proposition 4 gives a “two birds, one stone” property, whereby εPEHE,p may also be minimized when εPEHE,g is
minimized. This is a possible justification for why targeting the population g(x) (via minimizing an upper bound
on εPEHE,g) may also benefit ITE estimation on the observed population p(x).

1.5 εPEHE,g bound

Here, we establish conditions for which the bound on εPEHE,g (equation (8) in the main text) holds.
Proposition 5. Assuming the encoder Φ is invertible, and assuming 1

α`h,Φ ∈ G for a function class G and a
constant α, we have:

εPEHE,g ≤ 2 · (εT=1
F,g + εT=0

F,g ) + α · IPMG(gΦ(r|T = 1), gΦ(r|T = 0)) + C , B, (27)

where C is a constant w.r.t. model parameters, and gΦ(r|T = t) is the distribution induced by the invertible map
Φ from the distribution g(x|T = t) (for t ∈ {0, 1}).

Proof. The proof follows straightforwardly by applying Theorem 1 from Shalit et al. (2017) on the target
population g(x).
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2 Finite-sample objective

From equation (8) in the main text, we know εPEHE,g ≤ B. From equation (9) in the main text, we have:

B ≈ 2 · (εT=1
F,gη + εT=0

F,gη ) + α · IPMG(gΦ,η(r|T = 1), gΦ,η(r|T = 0)) + C (28)

We would like to obtain a finite-sample estimate of B (shown in equation (11) in the main text).

2.1 Finite-sample factual error terms εT=1
F,gη

,εT=0
F,gη

We will start by estimating the first 2 terms in (28), choosing εT=1
F,gη

WLOG.

εT=1
F,gη ,

∫
X
`h,Φ(x, 1)gη(x|T = 1)dx =

∫
X
`h,Φ(x, 1)

wη(x, 1)p(x|T = 1)

Z1
dx (29)

where Z1 =
∫
X wη(x, 1)p(x|T = 1)dx, and `h,Φ(x, t) ,

∫
Y L(y, h(Φ(x), t))Pr(Y (t) = y|X = x)dy, with L(y, y′) =

(y − y′)2.

We may approximate εT=1
F,gη

as:

εT=1
F,gη ≈

1

Z1 · n1

∑
i∈B:Ti=1

wη(Xi, 1)(Yi − h(Φ(Xi), 1))2 (30)

where B is a sampled batch, and n1 ,
∑
i∈B Ti.

The target distribution g(x) is defined as g(x) , f(x)p(x)
Z where Z ,

∫
X f(x)p(x). We make the following

approximation for Z1:

Z1 ,
∫
X
wη(x, 1)p(x|T = 1) ≈

∫
X
w(x, 1)p(x|T = 1)dx =

∫
X

f(x)

e(x)
p(x|T = 1)dx (31)

=

∫
X

f(x)

Pr(T = 1)
p(x)dx =

Z

Pr(T = 1)

∫
X

f(x)p(x)

Z
dx =

Z

Pr(T = 1)

∫
X
g(x)dx (32)

=
Z

Pr(T = 1)
≈ Z ·N

N1
(33)

where N is the number of samples in the dataset, and N1 =
∑N
i=1 Ti is the number of treatment samples in the

dataset. We explicitly construct the batches B of size n such that n1/n = N1/N , so we get:

Z1 ≈
Z · n
n1

(34)

Finally, we plug in the above approximation of Z1 into (30) to get:

εT=1
F,gη ≈

1

Z · n
∑

i∈B:Ti=1

wη(Xi, 1)(Yi − h(Φ(Xi), 1))2 (35)

Similarly, we may approximate εT=0
F,gη

as:

εT=0
F,gη ≈

1

Z · n
∑

i∈B:Ti=0

wη(Xi, 0)(Yi − h(Φ(Xi), 0))2 (36)

We also tried the approximations Z1 ≈ 1
n1

∑
i∈B:Ti=1 wη(Xi, 1) and Z1 ≈ 1

N1

∑
i:Ti=1 wη(Xi, 1) (and similar

approximations for Z0), but they did not work well in practice.
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2.2 Finite-sample IPM term

Finally, we seek a Monte-Carlo approximation of the third term in (28). Recalling the definition of gη(x|T = 1),
we have:

gη(x|T = 1) ,
wη(x, 1)p(x|T = 1)

Z1
(37)

where Z1 ,
∫
X wη(x, 1)p(x|T = 1)dx.

We assume that Φ(·) : X → R is an invertible transformation (with inverse Ψ), so it induces distributions
gΦ,η(r|T = 1) and pΦ(r|T = 1) from gη(x|T = 1) and p(x|T = 1), respectively. From the change of variables
formula:

gΦ,η(r|T = 1) = gη(Ψ(r)|T = 1) · |det(Ψ′)| (38)

where Ψ′ is the Jacobian of Ψ, and det(·) is the determinant. From (37), we get:

gΦ,η(r|T = 1) =
wη(Ψ(r), 1)

Z1
· p(Ψ(r)|T = 1) · |det(Ψ′)| (39)

By the change of variables formula on the last 2 terms above, we get:

gΦ,η(r|T = 1) =
wη(Ψ(r), 1)

Z1
· pΦ(r|T = 1) (40)

We may approximate gΦ,η(r|T = 1) from samples in a batch B as:

gΦ,η(r|T = 1) ≈ 1∑
i∈B:Ti=1 wη(Xi, 1)/Z1

∑
i∈B:Ti=1

wη(Xi, 1)

Z1
δ(r − Φ(Xi)) (41)

=
1∑

i∈B:Ti=1 wη(Xi, 1)

∑
i∈B:Ti=1

wη(Xi, 1)δ(r − Φ(Xi)) , ĝΦ,η(r|T = 1) (42)

Where δ(r − z) is a point-mass centered at z. Similarly, we can approximate gΦ,η(r|T = 0) as:

gΦ,η(r|T = 0) ≈ ĝΦ,η(r|T = 0) ,
1∑

i∈B:Ti=0 wη(Xi, 0)

∑
i∈B:Ti=0

wη(Xi, 0)δ(r − Φ(Xi)) (43)

2.3 Putting it all together

Plugging (35), (36), (42), and (43) into (28), we may write an approximation of the bound B (from (28)) as:

2

Z · n
∑
i∈B

wη(Xi, Ti)(Yi − h(Φ(Xi), Ti))
2 + α · IPMG(ĝΦ,η(r|T = 1), ĝΦ,η(r|T = 0)) + C (44)

The above has the same argmin as:

L(h,Φ,B) =
1

n

∑
i∈B

wη(Xi, Ti)(Yi − h(Φ(Xi), Ti))
2 + α′ · IPMG(ĝΦ,η(r|T = 1), ĝΦ,η(r|T = 0)) (45)

for some constant α′ (which we leave as α in the main text to avoid introducing more notation).
This is the finite-sample objective presented in equation (11) of the main text – the version presented here is over
a mini-batch B, but we omitted this detail from the main text for simplicity.

2.4 Weighted Integral Probability Metric (IPM) computation

As a reminder, IPMs (Müller, 1997) are defined as follows:

IPMG(u, v) = sup
m∈G

∫
R
m(r)[u(r)− v(r)]dr (46)



Supplementary Material: Counterfactual Representation Learning with Balancing Weights

where G is a function class, and u and v are probability measures. In our implementation, similar to Shalit
et al. (2017), we use two kinds of IPMs: namely, the Wasserstein distance, by setting the function class
G = {m : ||m||L ≤ 1} to be the set of 1-Lipschitz functins, and the Maximum Mean Discrepancy (MMD; Gretton
et al., 2012), by setting G = {m : ||m||H = 1} to be the set of norm-1 functions in a reproducing kernel Hilbert
space H. In this section, we provide details for how to compute these IPMs between the reweighted distributions
gΦ,η(r|T = 1) and gΦ,η(r|T = 0), which is the last term in our objective in equation (11) of the main text.

Finite-sample weighted MMD First, suppose the class of functions G = {m : ||m||H = 1} is the set of
norm-1 functions in a reproducing kernel Hilbert space (RKHS) H with corresponding kernel k(·, ·). IPMG is
then equivalent to the Maximum-Mean Discrepancy (MMD). From Lemma 4 in Gretton et al. (2012), the squared
MMD is equal to:

MMD2(p, q) = ||µp − µq||2H (47)
= 〈µp, µp〉H + 〈µq, µq〉H − 2 · 〈µp, µq〉H (48)

where µp(·) , Ex∼p[k(·, x)] and µq is defined similarly.
We now wish to get a finite sample estimate of MMD2(gΦ,η(r|T = 1), gΦ,η(r|T = 0)). Assuming Φ is invertible
with inverse Ψ, from equation (40), we have:

gΦ,η(r|T = 1) =
wη(Ψ(r), 1)pΦ(r|T = 1)

Z1
(49)

gΦ,η(r|T = 0) =
wη(Ψ(r), 0)pΦ(r|T = 0)

Z0
(50)

Where Zt =
∫
R wη(Ψ(r), t)pΦ(r|T = t) for t ∈ {0, 1}.

WLOG, we now seek a finite-sample estimate of 〈µ1, µ1〉H, where µ1 , ER∼gΦ,η(r|T=1)[k(·, R)].

µ1(·) ≈
∑

i∈B:Ti=1

wη(Xi, 1)∑
i∈B:Ti=1 wη(Xi, 1)

k(·,Φ(Xi)) (51)

⇒ 〈µ1, µ1〉H ≈
∑
i∈B:Ti=1

∑
j∈B:Tj=1 wη(Xi, 1)wη(Xj , 1)k(Φ(Xi),Φ(Xj))

[
∑
i∈B:Ti=1 wη(Xi, 1)]2

(52)

Using the V-statistic version (Gretton et al., 2012) of the above, we get:

〈µ1, µ1〉H ≈
∑
i∈B:Ti=1

∑
j∈B:Tj=1,j 6=i wη(Xi, 1)wη(Xj , 1)k(Φ(Xi),Φ(Xj))∑

i∈B:Ti=1

∑
j∈B:Tj=1,j 6=i wη(Xi, 1)wη(Xj , 1)

(53)

Similarly, we can approximate 〈µ0, µ0〉H as:

〈µ0, µ0〉H ≈
∑
i∈B:Ti=0

∑
j∈B:Tj=0,j 6=i wη(Xi, 0)wη(Xj , 0)k(Φ(Xi),Φ(Xj))∑

i∈B:Ti=0

∑
j∈B:Tj=0,j 6=i wη(Xi, 0)wη(Xj , 0)]

(54)

Finally, we similarly approximate 〈µ1, µ0〉H as:

〈µ1, µ0〉H ≈
∑
i∈B:Ti=1

∑
j∈B:Tj=0 wη(Xi, 1)wη(Xj , 0)k(Φ(Xi),Φ(Xj))∑

i∈B:Ti=1

∑
j∈B:Tj=0 wη(Xi, 1)wη(Xj , 0)]

(55)

Finally, we get the finite-sample estimate of MMD2(gη(r|T = 1), gη(r|T = 0)) via:

MMD2(gη(r|T = 1), gη(r|T = 0)) ≈ (53) + (54)− 2 · (55) (56)

In practice we set k(·, ·) to either be a linear kernel, i.e. k(Ri, Rj) = RTi Rj , or a RBF kernel, i.e. k(Ri, Rj) =

exp(− ||Ri−Rj ||
2
2

σ2 ), where σ is set to 0.1.
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Finite-sample weighted Wasserstein distance For the finite sample approximation of the weighted Wasser-
stein distance, we use Algorithm 3 of Cuturi & Doucet (2013) (shown here in Algorithm 1 for convenience), with
the entropic regularization strength set to λ = 10, and vectors a ∈ Rn1 , b ∈ Rn0 and matrix M ∈ Rn1×n0 set to:

a(i) =
wη(Xi, 1)∑

k∈B:Tk=1 wη(Xk, 1)
; b(j) =

wη(Xj , 0)∑
k∈B:Tk=0 wη(Xk, 0)

; M (i,j) = ||Φ(Xi)− Φ(Xj)||2 (57)

We fix the number of Sinkhorn iterations to S = 10.

Algorithm 1: Sinkhorn-Knopp Algorithm for weighted Wasserstein distance approximation
Input batch B, entropic regularization parameter λ ∈ R, number of Sinkhorn iterations S, encoder Φ(·),
propensity score parameters η

n1 =
∑
i∈B Ti; n0 =

∑
i∈B(1− Ti);

Compute weight vectors a ∈ Rn1 , b ∈ Rn0 of empirical approximations ĝΦ,η(r|T = 1), ĝΦ,η(r|T = 0), as:
a(i) =

wη(Xi,1)∑
k∈B:Tk=1 wη(Xk,1) ∀i ∈ B : Ti = 1; b(j) =

wη(Xj ,0)∑
k∈B:Tk=0 wη(Xk,0) ∀j ∈ B : Tj = 0;

Compute pairwise distance matrix M ∈ Rn1×n0 between treatment & control representations, as:
M (i,j) = ||Φ(Xi)− Φ(Xj)||2 ∀i ∈ B : Ti = 1,∀j ∈ B : Tj = 0;

K = exp(−λM); % elementwise exponential
K̃ = diag(a−1)K;
Initialize u = a;
for s ∈ [0, ..., S − 1] do
u = 1./(K̃(b./(KTu))); % Sinkhorn iterations

end for
v = b./(KTu).
T ?λ = diag(u)Kdiag(v);

return Wass(ĝΦ,η(r|T = 1), ĝΦ,η(r|T = 0)) ≈
∑
i,j T

?(i,j)
λ M (i,j)

3 Experimental details

3.1 Toy experiment

Data-generating parameters We specify β0, βτ ,and γ ∈ Rp (from Section 4.1 in the main text) as follows:

β0 , β̃0 · 1B; βτ , β̃τ · 1B; γ , γ̃ · 1G (58)

where β̃0, β̃τ , γ̃ ∈ R, B , supp(β0) = supp(βτ ), and G , supp(γ).

Note that β̃0, β̃τ , γ̃ can be used to control the magnitudes of β0, βτ , γ respectively. Table S2 indicates the value of
every parameter used to generate the toy dataset described in the previous section. With the values in Table
S2, we get 33 datasets (each simulated 20 times), indexed by γ̃ (which controls the imbalance) and Ω , |B ∩ G|
(which controls the level of confounding).

Model hyperparameters For the purposes of the toy experiment, we fix a regression neural network archi-
tecture, as well as a propensity score network architecture. The only hyperparameter we vary is α, which is
the strength of the IPM regularization term. This was done for reasons of time efficiency, as well as to have
an “apples-to-apples” comparison between different weighting schemes used in the regression loss. The model
hyperparameter values used are shown in Table S3.
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Table S2: Data-generating parameters for Section 4.1 in the main text

Parameter Description Value/Range

N number of data points 525/225/250
(train/val/test)

p dimension of covariates 50
p∗ non-zero dimensions in β0, βτ , γ 20
σ2
X variance of covariates 0.05
σY variance of additive Gaussian noise in potential

outcomes Yi(0), Yi(1)
1.0

ρ correlation between covariates 0.3
β̃0 effective magnitude of β0 1.0
β̃τ effective magnitude of βτ 0.3
γ̃ imbalance parameter {0, 0.5, 1.00, ..., 5.00}
B support of β0, βτ
G support of γ
Ω confounding parameter: |B ∩ G| {0, 10, 20}
θ True ATE 3.0

Table S3: Model hyperparameter ranges for toy experiment (middle column) and “real” datasets (IHDP/ACIC,
right column). “Wass” is the Wasserstein distance, “MMD-linear” is the MMD with a linear kernel, “MMD-RBF”
is the MMD with an RBF kernel. eη(·) is the fully-connected neural network predicting the propensity score.
“ELU” is the exponential linear unit activation, “ReLU” is the rectified linear unit activation.

Hyperparameter Value/Range
Toy experiment IHDP & ACIC2016

α (strength of IPM term) {0, 0.01, 0.1, 1, 10, 100} {10k/2}6k=−10

IPM used Wass {Wass, MMD-linear, MMD-RBF}
Num. hidden layers in Φ(·) 1 {1,2,3}
Num. hidden layers in h(·, t) 1 {1,2,3}
Num. hidden layers in eη(·) 1 {1,2,3}
Φ(·) hidden layer dim. 100 {20,50,100,200}
h(·, t) hidden layer dim. 100 {20,50,100,200}
eη(·) hidden layer dim. 10 {10,20,30}
h(·, t),Φ hidden-layer activations ELU ELU
eη(·) hidden-layer activations ReLU ReLU
Batch size 200 200
Learning rate 0.001 0.001
Optimizer Adam Adam

3.2 Infant Health and Development Program (IHDP)

From the IHDP dataset (Hill, 2011), Shalit et al. (2017) made 2 datasets, named IHDP100 and IHDP10001. We
used the former (IHDP100) for parameter tuning/model selection, and the latter (IHDP1000) for evaluation. For
the IHDP dataset, we randomly sampled 100 hyperparameter configurations (the hyperparameter ranges are
shown in Table S3) – for each sampled configuration, we train 3 models ( with respective weight schemes MW,
OW, TruncIPW). We train on the IHDP100 dataset, perform early stopping based on the validation loss, and we

1both datasets were downloaded from https://www.fredjo.com/
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select 3 best models (one for each weighting scheme) according to εNN
PEHE,p on the validation set, where:

εNN
PEHE,p ,

1

N

N∑
i=1

[(1− 2 · Ti)(Yj(i) − Yi)− (h(Φ(Xi, 1)− h(Φ(Xi, 0)]2 (59)

j(i) , argmin
j:Tj=1−Ti

||Xi −Xj ||2 (60)

This is a proxy for εPEHE,p which does not make use of counterfactual information. After the model tuning stage
on IHDP100, we report 3 results (1 for each weight scheme) on the IHDP1000 dataset.

For the causal forest results in Section 4.3 of the main text, we obtained the representations and weights (obtained
from our 3 best models) for IHDP100, and used them as input to a causal forest (CF) algorithm. We then
compared the augmented CF models to a vanilla CF model on IHDP100. More details are provided in the section
below.

3.3 Causal Forests

IHDP100 weight ablation In addition to comparing the vanilla CF with the CF augmented with learned
weights representations, we add a comparison to the CF augmented with the representations only (i.e., without
weights). We find that the unweighted augmented CF (“CF+Φ” in Table S4) performs similarly to its weighted
counterparts for the IHDP100 dataset.

Table S4: Causal forest (CF) results for IHDP100. The top block is a vanilla CF model. The middle block is a
causal forest model using learned representations (denoted Φ) without weights (i.e., the equivalent of CFRNet).
The bottom block consists of causal forest models using the learned representations and weights. The bottom
block rows are the weights used in the training objective and as the per-sample weights to train the CF.

√
εPEHE,p εATE,p

CF 3.54 ± .58 .47 ± .06

CF + Φ 1.52 ± .35 .20± .04

CF + Φ + MW 1.51 ± .31 .20 ± .03
CF + Φ + OW 1.59 ± .31 .19 ± .03
CF + Φ + TruncIPW 1.55 ± .35 .22 ± .03

Atlantic Causal Inference Competition 2016 (ACIC2016) In Section 4.3 of the main text, we considered
the ACIC2016 dataset (Dorie et al., 2019), which comprises 77 datasets (we use 10 repetitions of each)2, each
with 4802 samples, and 58-dimensional covariates. ACIC2016 uses the same covariates for all the datasets, but
different data-generating mechanisms for potential outcomes and treatment across datasets. We removed the
categorical covariates (named x2, x21, x24 in the dataset), since our models are not equipped to handle categorical
data. We standardized the remaining 55 covariate dimensions (i.e., for each dimension we subtract the mean and
divide by the standard deviation). We used the first 4000 samples for training, and the remaining 802 for testing.
We used 30% of the training set for validation.

The tuning procedure is similar to the one described for IHDP. We use the first 10 (out of 77) datasets, with
1 repetition of each, as a tuning set. We pick 3 best models (one for each weighting scheme) according to the
average εNN

PEHE,p (across the 10 datasets) on the validation set. The hyperparameter ranges used for tuning are
shown in Table S3. Hence, after tuning, we have 3 “best” models (1 for each weighting scheme), which we apply
to the 77 datasets (with 10 repetitions).

We then use the obtained representations and weights as input to a causal forest (CF) model3, and we compare
the performance of the “vanilla” causal forest (i.e., CF using only the original covariates) with the performance of
the “augmented” CF models (i.e., which use the learned representations and weights as input). More specifically,

2generated using https://github.com/vdorie/aciccomp/tree/master/2016, and setting parameterNum between 1 and 77,
and simulationNum between 1 and 10.

3Implemented using the causal_forest function of the GRF package in R: https://CRAN.R-project.org/package=grf
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for the augmented models, we use the learned representations as the “covariates”, and we use the propensity-based
weights as the per-sample weights to train the CF.

4 Additional Results

4.1 Toy experiment

Performance on target populations g(x) In Section 4.1 of the main text, we measured the performance of
our models on the observed population p(x). Here, we extend this evaluation to the different target populations
g(x). We report performance using √εPEHE,g, computed via equation (5) from the main text. Figure S2 shows a
plot of εPEHE,g for all choices of g(x), for all toy datasets, and for all weight schemes used during training. From
Figure S2, we can see that each weighting scheme (row) tends to do well for the target population it was trained
for – i.e., within each row, the corresponding metric (color) is lowest (or close to the lowest). This provides some
evidence for the fact that the models perform well on the target population they were trained for.

Double-Robust ATE estimation We may easily enhance the ATE estimate in equation (3) of the main text
by accounting for model bias, using equation (6) from Mao et al. (2018). Specifically, we can define biases as:

b(t) =
1∑

i:Ti=t
wη(Xi, t)

∑
i:Ti=t

wη(Xi, t)[h(Φ(Xi), t)− Yi], for t ∈ {0, 1} (61)

which we may use to obtain a doubly-robust (Lunceford & Davidian, 2004) ATE estimate via:

τ̂DR
ATE,g = τ̂ATE,g − b(1) + b(0) (62)

Note that b(1), b(0) are calculated using the training set only. We compute the target population ATE error via:

εDR
ATE,g = |τATE,g − τ̂DR

ATE,g| (63)

Figure S3 shows percent improvement of the double-robust estimator, computed as

∆DR
g ,

εATE,g − εDR
ATE,g

εATE,g
(64)

on the (test) toy datasets. The double-robust ATE estimator (i.e. τ̂DR
ATE,g) enjoys some improvement in the ATE

estimation error in most cases, though this is not true across all the toy datasets.

4.2 IHDP100 additional comparisons

In Table 2 of the main text, some of the listed methods (namely, RCFR and CFR-ISW) actually reported their
results on IHDP100, whereas we reported performance of our methods on IHDP1000. For the sake of completeness,
we add the comparison between our methods, RCFR, and CFR-ISW on the IHDP100 dataset, reported in the
table below. These results are consistent with the results from Table 2 in the main text, namely that our proposed
methods perform on-par with state-of-the-art methods from recent work.

Table S5: Results on IHDP100 test set. The top block consists of baselines from recent work. The bottom block
is our proposed methods. Lower is better.

Model √
εPEHE,p εATE,p

CFR-ISW (Hassanpour & Greiner, 2019) .70± .1 .19± .03
RCFR (Johansson et al., 2018) .67± .05 -

BWCFR-MW (Ours) .66 ± .06 .18 ± .02
BWCFR-OW (Ours) .66 ± .06 .16 ± .02
BWCFR-TruncIPW (Ours) .65 ± .05 .16 ± .02
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Figure S2: εPEHE,g vs. γ̃. The colors are the different choices of g(x) (to calculate √εPEHE,g from equation (5) in
the main text), and the rows are the weight schemes used during training (i.e., in equation (11) of the main text).
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Figure S3: Improvement in ATE estimation (on the toy datasets) using the double-robust τ̂DR
ATE,g from (62). The

x-axis is the imbalance parameter γ̃, the y-axis is the percent improvement defined in (64). The colors are different
choices of g (used for (i) the weight schemes during training, and (ii) to compute the target population metric
εATE,g. Positive values means the double-robust estimator τ̂DR

ATE,g improves upon the vanilla estimator τ̂ATE,g.

4.3 Atlantic Causal Inference Competition 2016 (ACIC2016)

In this section, we carefully examine the results of Section 4.3 from the main text. Specifically, Figure S4 shows
the performance of the proposed methods on each of the 77 datasets in ACIC2016, rather than an aggregate as
shown in Table 3 of the main text. Figure S4 compares the performance of 3 types of models:

• A vanilla causal forest algorithm

• Our proposed deep methods

• A hybrid model consisting of a causal forest augmented with our learned representations and weights (obtained
from Φ(x) and wη(x, t), respectively).

From Figure S4, we can see that the augmented causal forest consistently outperforms the vanilla causal forests
for almost all of the 77 datasets, both in terms of √εPEHE,p and εATE,p. The neural network models perform (on
average) better than the vanilla CF in terms of √εPEHE,p, but worse than the augmented CF. In terms of εATE,p,
the neural network models perform worse. A possible explanation for the poor performance of the neural network
is that our tuning procedure was conducted only on the first 10 datasets (with 1 repetition each), whereas the
ACIC2016 set comprises 77 datasets with 10 repetitions each. This suggests that we may stand to benefit from
using hybrid approaches for ITE estimation, since the hybrid approach outperforms the 2 individual components
it is comprised of, even though the deep models were not extensively tuned. Further, the hybrid models trained
with Overlap Weights performed the best.

5 Computing infrastructure and details

All computation was done using Python and R. All neural network models were created and trained using
Tensorflow 1.13.1 (Abadi et al., 2016). Computations were done on an NVIDIA Geforce GTX 1080 Ti. The
reported results on IHDP1000, ACIC2016, and the toy dataset each took approximately 20 hours to run.
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Figure S4: Per-dataset results on ACIC2016. The first row shows √εPEHE,p, and the second row shows εATE,p.
“CF” is the vanilla causal forest, “Augmented CF” is the CF trained using the learned representations and weights,
and “Neural Network” are our proposed methods. The columns are the weight schemes used to (i) obtain the
representations and weights for the augmented CF, and (ii) used to train the neural network models. The datasets
were sorted in descending order according to the performance of the causal forest.
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