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Abstract

A key to causal inference with observational
data is achieving balance in predictive fea-
tures associated with each treatment type.
Recent literature has explored representation
learning to achieve this goal. In this work, we
discuss the pitfalls of these strategies — such
as a steep trade-off between achieving balance
and predictive power — and present a rem-
edy via the integration of balancing weights
in causal learning. Specifically, we theoret-
ically link balance to the quality of propen-
sity estimation, emphasize the importance of
identifying a proper target population, and
elaborate on the complementary roles of fea-
ture balancing and weight adjustments. Using
these concepts, we then develop an algorithm
for flexible, scalable and accurate estimation
of causal effects. Finally, we show how the
learned weighted representations may serve
to facilitate alternative causal learning proce-
dures with appealing statistical features. We
conduct an extensive set of experiments on
both synthetic examples and standard bench-
marks, and report encouraging results relative
to state-of-the-art baselines.

1 INTRODUCTION

Solving many scientific, engineering, and socioeconomic
problems — e.g., personalized healthcare (Glass et al.l
2013; [Johnson et al., 2018), computational advertis-
ing (Chan et al., [2010), complex systems (Chen et al.|
2020)), and policymaking (Athey, |2015) — requires an
understanding of cause and effect beyond observed
associations. Consequently, the study of causal infer-
ence (Pearll [2009; [Rubin), 2005) is central to various
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disciplines and has received growing attention in the
machine learning community. To exploit the new op-
portunities and cope with the challenges brought by
modern datasets, various new causal inference methods
have been proposed (Shalit et al., 2017} |Yoon et al.
2018, [Louizos et al.,[2017; [Hassanpour & Greiner] 2019}
Johansson et al., 2018, [2020; |[Li & Ful, [2017; [Alaa &
van der Schaar} 2018, [2017)).

This paper focuses on predicting conditional average
treatment effects (CATE) from observational data, de-
fined as the difference between an individual’s expected
potential outcomes for different treatment conditions.
This problem differs fundamentally from standard su-
pervised learning (Pearl, |2009; Rubin) 2005), because
for each unit only the potential outcome corresponding
to the assigned treatment is observed and the other po-
tential outcome is missing. The absence of the “counter-
factual” outcome prohibits the direct learning and vali-
dation of causal effects. Further, observational studies
are subject to selection bias due to confounders (Heck;
man, 1979) — variables that affect both the treatment
assignment and the outcomes. Within the associated
data this is typically manifested as covariate imbal-
ance (Shalit et al., [2017)), i.e., treatment-dependent
distributions of covariates. Without careful adjust-
ment, this leads to a biased estimate of the causal
effect (Zubizarretal [2015)).

Mitigation of covariate imbalance in high-dimensional
spaces has motivated representation learning schemes
for causal inference that seek balance in the learned
feature space (Shalit et all 2017; |Johansson et al.l
2016)). Despite the empirical success of such methods,
it has been recognized that over-enforcing balance can
be harmful, as it may inadvertently remove information
that is predictive of outcomes (Alaa & van der Schaar
2018). To see this, one may consider an example where
a moderately predictive feature might get erased in
the learned representation for being highly imbalanced.
As such, representation learning-based schemes are
sensitive to the hyperparameter that tunes the desired
level of imbalance mitigation.

More classical causal inference approaches seek to



Counterfactual Representation Learning with Balancing Weights

match the statistics of the covariates associated with
both treatment types (Pearl, [2009; |Lunceford & Da~
vidian, [2004; Rubin| [2005; [Holland}, [1986). Matching
methods create a balanced sample by searching for
“similar” units from the opposite treatment group (Stu-
art, [2010). Matching unfortunately does not scale well
to higher dimensions (Abadie & Imbens| |2006), and
will often improve balance for some covariates at the
expense of balance for others. Weighting methods as-
sign to each unit a different importance weight so as
to match the covariate distributions in different treat-
ment arms after reweighting (Li et al., 2018 [Lunceford
& Davidian, 2004)). In much of the causal inference
literature, weighting is employed for average treatment
effect (ATE) estimation over a population.

In this paper, we employ weighting for conditional aver-
age treatment effect (CATE) estimation. In this context
we demonstrate the advantages of learning from regions
of good overlap, achieved by employing weighting prior
to representation learning. We investigate the coupling
of weighting methods (Li et al. [2018; [Zubizarretal,
2015; [Hassanpour & Greiner}, [2019} |[Johansson et al.|
2018) with representation-based causal inference, and
demonstrate how the use of properly designed weights
alleviates the aforementioned difficulties of represen-
tation learning applied to causal inference. We show
how targeting an alternative population for empirical
loss minimization (Li et al., [2018)) benefits CATE esti-
mation. As discussed below, if appropriately designed
weights are learned perfectly, then balance is achieved
for any features constituted from the covariates (since
balance is achieved in the covariates themselves). How-
ever, most weighting methods are computed from the
propensity score (D’Agostinol [1998]), which must be ap-
prozimated numerically. Because in practice the weights
are always imperfect, exact balance is rarely achieved
based on weighting alone, motivating our augmentation
of weighting with representation learning.

This paper makes the following contributions: (%)
demonstration that the integration of balancing weights
alleviates the trade-off between feature balance and pre-
dictive power for representation learning; (i) derivation
of theoretical results bounding the degree of imbalance
as a function of the quality of the propensity model;
(#i1) exploration of the benefits of the learned weights
and representations as inputs to other learning pro-
cedures such as causal forests. We demonstrate that
our method, Balancing Weights Counterfactual Regres-
sion (BWCFR), mitigates the weaknesses of propensity-
weighting and representation learning. In this approach,
we do not impose that the features themselves be bal-
anced, as this would likely result in loss of information.
Instead, we promote balance for reweighted feature
distributions, with weights targeting regions for which

there is already good overlap.

2 RELATED WORK

Representation learning has been used to achieve
balance between treatment group distributions, seeking
representations that are both predictive of potential out-
comes, and balanced across treatment groups (Kallus|
2018; [Shalit et al., 2017). [Zhang et al. (2020)) argue
that there is often a tradeoff between these objectives,
and that over-enforcing balance leads to representa-
tions that are less useful for outcome prediction — our
proposal mitigates this tradeoff by enforcing balance
between weighted feature distributions. Our theory on
the discrepancy between the treatment arm distribu-
tions (Propositions [2]and [3)) is also conceptually related
to sensitivity modeling in causal analysis (Kallus et al.|
2019).

Weighting-based methods typically construct
weights as a function of the propensity score to balance
covariates (Rosenbaum & Rubin, {1983} |Lunceford &
Davidian) 2004), such as inverse probability weighting
(IPW). The performance of these methods critically
depends on the quality of the propensity score model
and is highly sensitive to the extreme weights (Hain-
mueller| 2012)). To overcome these limitations, alterna-
tive weighting schemes such as Matching Weights (Li
& Greene, 2013)), Truncated IPW (Crump et all 2009)
or Overlap Weights (Li et al. |2018) seek to change the
target population, thereby eliminating extreme weights.
Another popular line of solutions directly incorporates
covariate balance in constructing the weights (Graham
et all [2012; Diamond & Sekhon| 2013)), and usually
calculate weights via an optimization program with
moment matching conditions as the hard (Li & Fu,
2017; Hainmueller, [2012; Imai & Ratkovic, |2014)) or
soft constraints (Zubizarreta, |2015). While these by-
pass propensity score modeling and hence are no longer
afflicted by extreme weights, they struggle to scale in
high-dimensional settings.

Combining weighting with representation learn-
ing is appealing, as it avoids over-enforcing covariate
balance at the expense of predictive power. [Hassan-
pour & Greiner| (2019) reweight regression terms with
inverse probability weights (IPW) estimated from the
representations. Our solution differs in a few ways:
First, we do not recommend the use of IPW weights
since they often take on extreme values, especially in
high dimensions (Li & Ful |2017). Second, [Hassanpour
& Greiner| (2019)) do not state the theoretical benefits
of using weights in the first place — that is, that weights
including (but not limited to) the IPW achieve balance
between treatment group distributions, given the true
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propensity. Finally, Hassanpour & Greiner| (2019) learn
the propensity score from the learned representations
— this leads to an optimization procedure where one
is required to alternate between learning weights and
learning regressors. In contrast, we propose to train a
propensity score estimator in the design stage (before
any representation learning), then use it to train the
regressors to estimate causal effects.

Also related to our setup is the work of [Johansson et al.
(2018), which tackles the slightly different problem
of model generalization under design shift, for which
they alternately optimize a weighting function and
outcome models for prediction. Importantly, our work
differs from that of |Johansson et al.| (2018)) in that we
learn a propensity score model, and use it to compute
the weights, inspired by |Crump et al.| (2008]); [Li et al.
(2018)) — we argue that this constitutes a more principled
approach to learning weights, since we benefit from the
so-called balancing property, that is: given the true
propensity, the reweighted treatment and control arms
are guaranteed to be balanced, a desirable property for
the estimation of causal effects. The work of [Johansson
et al| (2018)) does not provide a similar guarantee about
the weights allowing achievement of balance, and their
learned weights are harder to interpret.

Empowering other causal estimators with the
learned balanced representations is an appeal-
ing proposal, motivated by several considerations: (7)
empirical evidence suggests that there is no “silver
bullet” causal estimator given the diversity of causal
mechanisms investigators might encounter (Alaa & Van
Der Schaarl, [2019); (i¢) many classical solutions (e.g.,
BART [Chipman et al.| [2010], causal forests [Wager &
Athey, [2018]) that do not have the luxury of automated
representation engineering may possess appealing statis-
tical properties (e.g., built-in CATE uncertainty quan-
tification). Repurposing the learned balanced represen-
tations and associated weights can help to free other
causal inference procedures from the struggle of resolv-
ing the complexity of high-dimensional inputs, thereby
boosting both performance and scalability.

3 METHODOLOGY

3.1 Basic setup

Assumptions, Identifiability of CATE Suppose
we have N = Ny + Ny units, with Ny and Ny units in
the control and treatment group, respectively. For each
unit ¢, we have a binary treatment indicator T; (T; = 1
for treated and T; = 0 for control), covariates X; € X C
RP, and two potential outcomes {Y;(0),Y;(1)} € Y C R
corresponding to the control and treatment conditions,
respectively. We refer to Y; = Y;(T;) as the factual

outcome, and Y,¢F = Y;(1 — T;) as the counterfac-
tual /unobserved outcome. The observed dataset is
denoted Dp = {X;,T},Y;} Y. The propensity score is
e(x) = Pr(T; = 1|1X; = z), and in practice it is esti-
mated from {X;,7;}~ , (Rosenbaum & Rubin, [1983).

We are interested in predicting the conditional aver-
age treatment effect (CATE) for a given unit with
covariates z: 7(x) = E[Y;(1) — Y;(0)|X; = z]. As is
typical in causal inference, we make the strong ig-
norability assumptions: (¢) ignorabililty, which states
{V;(1),Y;(0)} L T; | X;; and (ii) positivity, repre-
sented as 0 < e(x) < 1, Vz € X. Under these assump-
tions, we can show that 7(x) is identifiable from ob-
served data (Imbens & Wooldridge, 2009; [Pearl, |2009)),
and 7(z) = E[Y;|X; =2, T, = 1] -E[Y;| X; = z,T; = 0].

Target populations Often causal comparisons are
not for a single unit but rather on a target distribution

of the covariates. Denote p(z) £ Pr(X; = x) as the den-
sity of the covariates, and the densities in the treated

and control arms as p(z|T = 1) £ Pr(X; = z|T; = 1)
and p(z|T = 0) = Pr(X; = z|T; = 0), respectively. We
are interested in performing inference w.r.t. some target
population density g(x) & f(z)p(z), where f(x)is a
pre-specified tilting function (Li et all |2018). Different
choices of target densities g(x) give rise to a class of
average causal estimands

TATE,g = Eg(a) [7(2)] = L 7(z)g(z)dx, (1)

which includes popular estimands such as the aver-
age treatment effect (ATE) (with g(z) = p(z)) and
the average treatment effect on the treated (ATT) (with
g(z) = p(z|T = 1)). Table[]details popular target pop-
ulations defined by their tilting functions. Intuitively,
the tilting functions in Table [1] (with the exception of
IPW) place an emphasis on regions of covariate space
that are balanced in both treatments, i.e. regions of
overlap, where e(z) ~ 0.5 — this is shown in Figure

Metrics for effect estimation Suppose we have
a model h(z,t) for the expected outcome E[Y;|X; =
x,T; = t] with covariates z under treatment ¢t. We can
estimate 7(x) and TaTg,q with

#(x) & h(z,1) — h(z,0), (2)

g £ O [ D7 (X
Tate,g = By [7(2)] Y 1(X) ;f(Xz) (X3)- (3)

To evaluate the quality of estimation of the treat-
ment effect on average, we use a metric €ATE,g £
|TATE,q — TATE,¢|. To quantify the prediction accuracy

of a CATE model 7, we use the Precision in Estima-
tion of Heterogeneous Effects (PEHE) (Hill, 2011)) with
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Table 1: Choices of tilting function f(x) and associated
weight schemes w(z, t) in (6). Note 1(-) is the indicator
function. We set £ = 0.1 as in [Crump et al.| (2009).

Tilting function f(x) Weight scheme w(z,t)

1 Inverse Prob. Weights (IPW)
1(¢<e(z)<1—¢) Truncated IPW (TruncIPW)
min(e(z),1 —e(xz))  Matching Weights (MW)

e(z)(1 — e(z)) Overlap Weights (OW)

Treated
Control

=08
c
S 06 TrunclPW
2 MW
2 04
> ow
c
=02

0.0

0.0 02 04 06 08 10 -4 -2 0 2 4
Propensity e(x) X

Figure 1: (Left) Tilting functions f(x) used.

(Right) Tllustrative treatment group densities p(z|T =
t), and reweighted densities g(z) o f(x)p(x) for dif-
ferent f(x), which emphasize regions of good overlap
between the treatment and control groups.

target density g(z):
#(2)}”] (4)
Zz 1 f 2:: (X)) = 7(X)} . (5)

Equation is a generalization of the PEHE used in
previous work (Shalit et al., 2017} [Yoon et al., |2018}
Louizos et al.l |2017) to target populations g(z). In the
next section, we propose different weighting schemes
and discuss how to reweight the units in the treated and
control group to match the same target distribution

g().

€PEHE,g = Eg(z)[{T( ) —

3.2 Balancing weights

Balancing with true propensity For observa-
tional studies, typically p(z|T = 1) # p(z|T = 0)
due to selection bias resulting from confounding. To
achieve balance in the statistics of covariates between
the two treatment types, we would like to weight each
unit in respective treatment arms towards a common
target density ¢g(z). In this study we are particularly
interested in a family of target distributions defined by
the balancing weights (Li et al., 2018]),

w(a,t) = f(x)/[t-e(x) + (L —1)- (1 —e(x))]. (6)

Table [1] details popular choices of balancing weights
and their corresponding tilting functions. For example,
when f(z) = 1, the weights are the inverse probability
weights (IPW) w(x,1) = 1/e(x),w(z,0) = 1/(1—e(x)).

Using balancing weights, we define the reweighted con-
ditional distributions as g(z|T = 1) & w(z, 1)p(z|T =
1) and g(z|T = 0) & w(z,0)p(x|T = 0). Due to space
limitations, all proofs are relegated to the Supplemen-
tary Material (SM).

Proposition 1 (Balancing Property; Li et al., 2018).
Given the true propensity e(x), the reweighted treatment
and control arms both equal the target distribution. In
other words, g(x|T = 1) = g(z|T = 0) = g(x).

Per Proposition [T, we can balance the treatment and
control distributions for estimation of treatment ef-
fects prior to any representation learning: the use of
balancing weights thus complements the use of repre-
sentation learning (addressed in Section in seeking
balance between treatment group distributions — Figure
shows the emphasis that balancing weights place on
regions with good overlap between treated and control
distributions.

Balancing with model propensity In practice, we
do not have access to the true propensity e(x), and
we need to estimate it using a model e,(x) with pa-
rameters 1 (Robins et al, [1994). We plug in the es-
timated propensity score e,(x) in (€) to obtain the
approximated balancing weights w;,(z,t). With the
estimated propensity score, Proposition [I] no longer
holds in general, unless e,(x) = e(z). Given this, we
may define the approximate reweighted conditional
distributions g, (z|T = 1) & wy(z, 1)p(z|T = 1) and
gy(x|T = 0) & w,(z,0)p(z|T = 0). Though they are
not equal in general, we can intuit that, the better the
propensity score model, the closer we are to achieving
balance between the reweighted treatment arms — this
intuition is supported by Proposition [2| below.

Assumption 1. The odds ratio between the model
propensity and true propensity is bounded, namely:

1 _e(@)(1 —ey(x))

Ir>1 st.VoeX T = o @—e@)

<T

Proposition 2 (Generalized Balancing). Under As-
sumption[d, and further assuming that all tilting func-
tions f satisfy f(x) >0 Vo € X, we have:

Drr(gy(z|T =1)||gy(z[T = 0)) <2-logT,
where D, is the KL-divergence.

Proposition [2 links the (im)balance between reweighted
treatment groups to the quality of estimation of the
propensity score, quantified by I': the closer I' is to
1, the better the propensity score model. It can be
shown immediately that this bound is tight whenI' = 1 -
indeed, perfect estimation of the propensity score yields
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balance between reweighted treatment and control arms
(Proposition , so the KL-divergence vanishes.

To estimate treatment effects, we learn a model h(z,t).
Such a model is less needed in regions of covariate space
that are highly imbalanced (i.e., where e(x) is close to
0 or 1), as for such covariates domain experts generally
have a good sense of the appropriate treatment to as-
sign. The MW, OW and TruncIPW weights emphasize
regions of covariate space where e(z)(1 — e(z)) is not
close to zero, and it is this region for which causal
predictions are often of most practical utility (the char-
acteristics of e(z) here imply that practitioners are less
clear on what the best treatment is). Further, MW,
OW and TruncIPW weightings have the advantage of
de-emphasizing extreme propensity scores, concentrat-
ing on where e, (x) is expected to be most accurate.

MW are a weighting analogue to pair matching (Li &
Greene, [2013), and OW (Li et al.| 2018) target the units
who are at equipoise (i.e., who are likely to appear in
either treatment group). In general, we recommend
using OW since there is no cutoff hyperparameter (as in
TruncIPW). Further, [Li et al.| (2018) showed that OW
is the minimal asymptotic variance balancing weight
for the weighted ATE (though we have yet to show an
analogous result for CATE estimation). For a more
exhaustive treatment of the different weighting schemes
and their interpretation, we refer the readers to|Li et al.
(2018) and [Li & Greene, (2013).

Figure a) illustrates the effect of the Overlap Weights
in covariate space — namely, the emphasis on balanced
regions of covariate space.

3.3 Representation learning with weighting

Representation learning makes use of an encoder @ :
X — R C R to transform the original covariates
to a representation space for CATE prediction using
the outcome model h(-,-) : R x {0,1} — Y, where
h(®(x),t) is the predicted mean potential outcome
given covariates x under treatment ¢. The overall model
consists of the parameters for ®(z) (typically a deep
neural network) and the parameters associated with
h(-,t), with the latter consisting of two fully-connected
neural networks, one for ¢ = 1 and the other for ¢t = 0.

Our development is motivated by a generalization
bound modified from |Shalit et al.| (2017), which states
that under mild technical assumptions the counter-
factual prediction error, and consequently, the causal
effect prediction error can be upper bounded by a sum
of the factual prediction error and a representation
discrepancy (i.e., quantified imbalance) between the

treatment groups. More formally, let
thalwt) 2 [ Ly h(@(@).0)PH(Y (1) = y|X = o),
y

be the unit loss, where L(y,y’) : ¥ x Y — R™T is a loss
function (e.g., squared loss (y — ¢)?). We can further
define the expected factual loss w.r.t. the target density
under treatment ¢ € {0,1}:

Fg = / o (2, t)g(x|T = t)da. (7)
X

Remark: This differs from the original setup in [Shalit
et al.| (2017) in that our expectation is taken w.r.t.
the target densities g(x|T = t) rather than the ob-
servational densities p(z|T = t). Under the technical
conditions listed in the SM, the following generalization
bound holds:

€PEHE,g <2 - (€}Tv,§1 + szr,:gO) +C (8)

+a - TPM¢(gs(r|T = 1), ga(r|T = 0)) £ B,

where C' is a constant w.r.t. model parameters,
r = ®(x) is the representation for a unit with co-
variates z, and go(r|T = 1),g9e(r|T = 0) are the
distributions induced by the map ® (which is invert-
ible by assumption) from g(z|T = 1), g(z|T = 0), re-
spectively. The integral probability metric is defined
as IPMg(u,v) £ sup [ m(r)[u(r) — v(r)]dr (Miiller,
meG

1997)), and measures the discrepancy between two dis-
tributions v and v by identifying the maximal expected
contrast w.r.t. function class G. Prominent examples
of IPMs include the Wasserstein distance (Villani, 2008)
and the Maximum Mean Discrepancy (MMD; |Gretton
et al., 2012)). With stronger technical assumptions
(such as G being the space of all Lipschitz-1 functions,
being dense in L?, or derived from a characteristic ker-
nel), the IPM becomes a formal distance metric for
distributions.

Standard decomposition of generalization error typi-
cally consists of two parts: the training error and model
complexity, where the latter is often formally charac-
terized by measures like Rademacher complexity or VC
dimension (Shalev-Shwartz & Ben-David} [2014). The
latter term usually encourages models from a simpler
hypothesis space, to avoid overfitting. Compared with
the bound in |Shalit et al.| (2017)), we can reduce the
bound in through proper weighting in the design
stage without restricting the representations themselves
to be exactly balanced across treatment groups, but
rather enforcing that the reweighted representations
are balanced. Equivalently, with the proper weighting,
we can improve the overall generalization bound by
reducing the factual training error without sacrificing
the counterfactual generalization. This reconciles the
conflict that the IPM and prediction error are at odds.
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No weights Overlap Weights

(a) 2D treatment (red) & control (blue) covariate samples, with
distributions g, (z|T = 1) (red) and g, (z|T = 0) (blue), shown
as kernel density estimates (contour plots — left: unweighted,
right: overlap-weighted).

25

215 2

2 2

810 K] 10
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0 0
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r r

(b) Learned representation distributions gs,(r|T = 1) (red)
and go,n(r|T = 0) (blue).

Figure 2: Illustrative example with highly imbalanced
treatment arms. The columns are the weight schemes
used for training the outcome models and weighting
the representations. (a) shows that the overlap weights
(OW) focus the learning on regions of overlap in covari-
ate space. (b) illustrates that the weighting schemes
can help achieve balance in representation space under
severe selection bias.

If the weights wy,(x,t) are computed perfectly (i.e., if
the propensity-score model satisfies e, (z) = e(z),Vz €
X), the IPM term in vanishes — a direct consequence
of Proposition [I] However, as we do not know the true
propensity in practice, we approximate the bound as

B ~2- (ng +Ean)+C (9)

Fa - IPMe (g (r|T = 1), 92,9 (r|T = 0)),

where go ,(r|T = 1), 9s,,(r|T = 0) are the distribu-
tions induced by the map ® from the reweighted dis-
tributions ¢, (z|T = 1) and g, (z|T" = 0). In practice,
we use the Wasserstein distance and the MMD as the
IPM in equation @D

Proposition 3. Under Assumption [l assuming the
representation space R is bounded, and assuming the
tilting functions satisfy f(x) > 0 Va € X, the following
bounds hold:
W(gen(r|T = 1), gon(r|T = 0)) < diam(R)\/logI';
MMDy (go,n(r|T = 1), ga,,(r|T = 0)) < 24/CjlogT

where W is the Wasserstein distance, diam(R) =
sup, ver||r — 7'[|l2, MMDy, is the MMD with kernel k,
and Cy & sup,cpk(r, 7).

Proposition [3] bounds the IPM by the factor I' which
quantifies the quality of the propensity score model as

in Assumption [I] — it is again easy to show that the
bounds are tight when I' = 1. This result is intuitive,
and shows that, the better the propensity model, the
more balanced the reweighted feature distributions.
Here the IPM term may be seen as a correction to
the weights, addressing errors manifested by imper-
fections in the estimated propensity score. However,
since much of the balance is achieved by the weights, it
is less likely that the weighted IPM term will remove
predictive features. Figure (b) illustrates how weight-
ing can achieve balance in representation space. The
weighted density plots show that the learned weighted
representations become more balanced compared with
the unweighted one. Weighting achieves a similar effect
as the IPM term in balancing the representations, but
it does not enforce that the (unweighted) empirical
distributions of the representations need to be matched
across treatments.

3.4 Implementation

We train a propensity score model e, () by minimizing
Lprop(n) w.r.t. n, where:

N

Loprop(n) = —

(s0(X2))] (10)

Ny

=1

1-T;
LA og[

o (s(Xi))]}-
o(z) £ 1/[1 +exp(—2)], and s,(z) is a fully-connected
neural network with e, (z) £ o(s,(z)). Once e, () is
trained, we learn the parameters of the encoder ®(x)
and the outcome models h(®(z),1) and h(®(x),0). We
can show that the approximation in @ leads to the
following finite-sample objective, which we minimize
w.r.t. h, ®:

2Lp(h, ®) (11)
“+o - IPMG (g@,n(HT = 1)7 g@,n(r‘T = 0))

L(h, D)

where ﬁp(h ®) is a Monte Carlo approximation of
€rgr +€hge and go,,(r|T = t) is the empirical approx-
imation of g<pm( r|T =1t) (¢t € {0,1}), defined as:

Lr(h ) 2 5 un(X0T) (i = h(@(X).T))

RS

Ty =t

wy (X5, t)

T—t
i wn(55.1)

go.n(r o(r — (X))

3:Tj=t

o0(r — z) is a point mass centered at z and
®(-), h(-,1), h(-,0) are fully-connected neural networks.
More details on how to obtain the finite-sample approx-
imation in and how to compute the weighted IPM
term in practice are provided in the SM.
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Figure 3: Higher 4 leads to larger imbalance between
treatment groups.

4 EXPERIMENTS

4.1 Synthetic data

Data generating process We wish to understand
the effect of distribution imbalance (the extent to which
the treatment and control distributions differ) on the
performance of our methods for CATE estimation.
Specifically, we construct datasets for which we vary the
distribution imbalance and the amount of confounding.
Consider the following data-generating mechanism:

e Fix ox,0v,p,0 € R. Set By, Br,v € RP to be p*-
sparse vectors (i.e., ||Bollo = ||B-1lo = ||7]lo = p*),
and further set supp(By) = supp(B,;) = B, G =
supp(7y), and the confounding parameter Q = |BNG].

e For simplicity, set v =4 1g, where 1g € {0,1}? is a
binary vector with ones at elements of G, and ¥ > 0
is the imbalance parameter. Note ||v|l2 = 7 - p*.

e Draw X;,T;,Y;(1),Y;(0) as follows:

Xi ~ MYN(0,0%[(1 = p)I, + p1p15]),  (
T;|X; ~ Bernoulli(o (X)), (
ei ~N(0,0%), Yi(0) = X[ 6o + i, (14
Yi(1) = X[ 8o+ X[ B- + 0 + . (

This data-generating process satisfies the assumptions
of ignorability and overlap. We construct multiple such
datasets by varying the distribution imbalance and
amount of confounding, as follows:

Distribution imbalance: We increase the distribution
imbalance by increasing 4 in the range [0,5]. Figure
shows a t-SNE plot of the 50-dimensional covariates,
for different values of 7.

Level of confounding: We increase the level of con-
founding by increasing §2, i.e., the extent to which
the same covariates are predictive of treatment and
potential outcomes. We vary 2 to be equal to p* (“high
confounding”), % (“moderate confounding”), and 0
(“low confounding”). In the “low confounding” setting,
(Q = 0), there is still some confounding by way of the
correlation p between the covariates.

In total we generate 33 datasets (3 values of X
11 values of ||y]|2). For more details on the data-
generating process, see the SM.

Results We compare the weighted-model perfor-
mance across the 33 datasets generated as discussed
above, and we compare against using no weights. For
a fair comparison, we fix all hyperparameters with the
exception of the IPM regularization strength « (for de-
tails on hyperparameters, see the SM). Figure [4| shows
the performance of each method for all datasets. For a
given dataset and weight scheme, we select the o that
minimizes epgug,,. We picked the o minimizing the
true epgug,p (which includes knowledge of counterfac-
tual outcomes) to avoid introducing any noise in the
comparisons via a proxy such as a l-nearest-neighbor
imputation (1NNI) of missing potential outcomes. For
the remaining experiments on real data (Sections
and , we use 1NNI, which makes no use of coun-
terfactual outcomes, for model selection in order to
compare with existing work.

From Figure [, one can immediately see the benefit
of using a weighted objective (weighted regression -+
weighted IPM) over its unweighted counterpart. More
specifically, the MW, OW, and TruncIPW weights do
well in comparison with the other weight schemes, espe-
cially in settings of high imbalance (i.e., high values of
7). On the other hand, IPW is numerically unstable (Li
& Ful 2017) and yields only marginally better results
than its unweighted counterpart, so we do not recom-
mend its use as a weighting scheme. This provides
empirical evidence for the fact that weighted CATE
models, though trained to perform well on a target pop-
ulation g(z) (namely, for the non-IPW weights, regions
of good overlap), vastly improve CATE estimation on
the observed population p(x). We also compared the
performance of our models on the target populations
(i.e., as measured by ,/épgHE ), and found that the
weight schemes perform well on the respective popula-
tions they target. For details about the performance
on target populations, see the SM.

Benefit of weighted IPM regularization We
seek to understand the benefit of the weighted IPM
term in our objective formulation. We make this
comparison by taking the difference between the best
\/€PEHE p aCross all values of « (i.e., the plots shown in
Figure, and the | /epgnE,, for a = 0 (i.e., without the
IPM term). The benefit of using the weighted IPM term
vs. an unweighted IPM term is immediately visible
from Figure [5] especially in cases of moderate to high
imbalance. A likely explanation for this is that the IPM
term is attempting to match the weighted distributions
in representation space rather than the unweighted
ones, which means it is less prone to “erasing” informa-
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High Confounding  Mod. Confounding Low Confounding

+— CFRNet
—— IPW
—— OW
—— MW
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Y

Figure 4: | /éppnE,, vs. dataset imbalance parameter
4 for different confounding settings (high, moderate,
low). The colored bands are standard errors over 20
realizations. TruncIPW was omitted to avoid clutter,
because it was similar to OW and MW. CFRNet is from
[Shalit et al.| (2017), which uses propensity-independent
weights (1 — T;)/No + T;/N1. Lower is better.
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Figure 5: Improvement in ,/epgnE,, between the model

h(®(z),1), h(®(x),0). In the next section, we explore
what happens when we leverage the learned features
and weights to benefit classical methods with appealing
statistical features (e.g., CATE uncertainty estimates).

Table 2: Results on IHDP1000 test set. The top block
consists of baselines from recent work. The bottom
block consists of our proposed methods. Lower is bet-
ter.

Model v/ €EPEHE,p €EATE,p

5.8+.3 .94+ .06

25+.1 .314.02

58+.3 .93+.05

4.1+.2 .79+ .05

23+.1 .34+ .02

6.6+.3 .96+ .06

3 8+ .2 .40+ .03

21+.1 .42+.03

LI) 88+ .02 .26+ .01

ass 2 76 +£.02 .27 + .01

CFR- ISWFI (IHassanpour & Grelnerl, 2019) .70+.1 .19+ .03
RCF]ﬂJohansson et al.| 2018) .67 £+ .05 -
CMGP (ATaa & van der Schaar) 744 11 -
DKLIT 1, W; .65 + .03 -

BWCFR-MW (Ours .66 &+ .02 .18 + .01

BWCFR-OW (Ours) 65 + .02 .18 + .01

BWCFR-TruncIPW (Ours) .63 £ .01 .19 + .01

with and without the IPM term, denoted A\/GPEHEJ,,
vs. imbalance parameter 4. The colored bands are
standard errors over 20 realizations. Higher is better.

tion from confounders. Finally, the IPM term when
4=0 should theoretically be 0, since the treatment and
control covariate distributions are the same. However,
there still may be imbalance between the drawn sam-
ples, but the Wasserstein distance would vanish with
increasing sample size (Sriperumbudur et al., 2009).

4.2 Infant Health and Development Program

The Infant Health and Development Program (IHDP)
dataset is semi-simulated (real covariates
with simulated outcomes) measuring the effect of home
visits from a trained provider on children’s cognitive
test scores. This dataset has a more realistic covari-
ate distribution than the above synthetic data, but
we cannot control the degree of imbalance. We re-
port out-of-sample results on the ITHDP1000 dataset
from [Shalit et al] (2017) in Table [2] showing compet-
itive performance both in terms of CATE prediction
(/€PEHE,p) and ATE prediction (earg,p). For details
on model selection and training, see the SM. For re-
sults with an IPW-based solution, we point the readers.
We note from Table |2 that our method (BWCFR)
outperforms many classical causal inference methods,
such as the causal forest. This is in part because our
method benefits from automated representation learn-
ing (via the map ®(x)) upstream of the outcome models

4.3 Improving causal forest with the
balanced representations learned

We further examine the extent to which the learned
balanced representations of our proposal can facili-
tate other causal learning algorithms. In particular,
we quantitatively assess the potential gains for causal
forests (CF; [Wager & Atheyl, [2018), and report our
findings in Table [3} In the first experiment we evalu-
ate the performance difference with and without the
learned balanced representation and weights on the
IHDP100 dataset [2011; Shalit et al., 2017) w.r.t.
both the individual and population level metrics (i.e.,
/€PEHE p» €ATE,p)- Also, we examine the proportion of
datasets (out of 77) in the ACIC2016 benchmark
let al] [2019; [Alaa & Van Der Schaar} [2019)) for which
the learned representations and weights improve (i.e.,
% | /epEnEp and % | €aTE p, respectively), compared
to a “vanilla” CF model. For both datasets we observe
substantial gains in both CATE and ATE estimation
(relative to the vanilla CF trained on the original co-
variates), which demonstrates the effectiveness of using
pre-balanced representations and weights, in this case
learned by our model, to augment other causal models.

To note, our methods on THDP (bottom-right of Table
still outperform that of the causal forest (in terms of

'These methods reported their results on the IHDP100
dataset (equivalent to IHDP1000, but with 100 repetitions
instead of 1000). For a comparison on IHDP100, see SM.



Assaad, Zeng, Tao, Datta, Mehta, Henao, Li, Carin

\/m), even when the causal forest has access to
the same balanced representations and weights learned
(bottom-left of Table . One potential explanation
is that tree-based learner lacks the sophistication to
decode the rich representation encoded by a more flex-
ible neural net. It would be interesting to explore an
end-to-end optimization strategy that combines our
proposed representation engineering and the causal for-
est model; we leave this for future work. For details
about hyperparameter tuning and additional analyses,
see the SM.

Table 3: Causal forest (CF) results. The top block is a
vanilla CF model. The bottom block consists of causal
forest models using the learned representations and
weights. The bottom block rows are the weights used
in the objective and as the per-sample weights to
train the CF. The left block shows | /épEnE p and eaTE p
results on the IHDP dataset (lower is better), and the
right block shows % | V/€PEHE,p and % | earr,p results
on the ACIC2016 dataset (higher is better).

THDP100 ACIC2016
VE€PEHE,p €ATE,p + \/€PEHE,p + €ATE,p
CF 3.54 £+ .58 .47 £ .06 - -
CF + MW 1.51 £+ .31 .20 &+ .03 92.2% 89.6%
CF + OW 1.59 £+ .31 .19 &+ .03 93.5% 85.7%
CF + TruncIPW 1.55 + .35 .22 + .03 87.0% 71.4%

5 CONCLUSIONS

We show that the use of balancing weights complements
representation learning in mitigating covariate imbal-
ance. Our claims are supported with theoretical results
and evaluations on synthetic datasets and realistic test
benchmarks, reporting better or competitive perfor-
mance throughout. Further, we demonstrated how our
learned balanced features can augment other causal
inference procedures, towards the goal of building more
reliable and accurate hybrid solutions. Directions for fu-
ture work include learning the tilting function f rather
than selecting it in order to determine an “optimal”
target population, as well as exploring more advanced
weighting approaches (Hainmueller| |2012; |Zubizarreta,
2015; |Ozery-Flato et al., [2018)). Additionally, the cur-
rent form of Assumption 1| is somewhat restrictive (it
posits the existence of I" such that odds ratio is bounded
for all x). Softening it (e.g., by bounding the odds
ratio, integrated over the population of interest) would
provide a more realistic form of Assumption [I] which
would make Proposition [2] more useful. Finally, an
end-to-end approach to training the propensity and
regression models (as in [Hassanpour & Greiner} 2020))
seems like a promising alternative to our current two-
step training procedure.
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