SUPPLEMENTARY MATERIAL - TECHNICAL PROOFS

Auxiliary Results

As a first go, we recall or prove various auxiliary results that are involved in the proof of Theorem 1, and in that of Theorem 2 as well.

The following inequality follows from the well-known Chernoff bound, see e.g. (Boucheron et al., 2013).
Lemma 3 Let $\left(Z_{i}\right)_{i \geq 1}$ be a sequence of i.i.d. random variables valued in $\{0,1\}$. Set $\mu=n \mathbb{E}\left[Z_{1}\right]$ and $S=\sum_{i=1}^{n} Z_{i}$. For any $\delta \in(0,1)$ and all $n \geq 1$, we have with probability $1-\delta$:

$$
S \geq\left(1-\sqrt{\frac{2 \log (1 / \delta)}{\mu}}\right) \mu
$$

In addition, for any $\delta \in(0,1)$ and $n \geq 1$, we have with probability $1-\delta$:

$$
S \leq\left(1+\sqrt{\frac{3 \log (1 / \delta)}{\mu}}\right) \mu
$$

Proof Using the Chernoff lower tail (Boucheron et al., 2013), for any $t>0$ and $n \geq 1$, it holds that

$$
\mathbb{P}(S<(1-t) \mu) \leq\left(\frac{\exp (-t)}{(1-t)^{1-t}}\right)^{\mu}
$$

Because for any $t \in(0,1), \exp (-t) /(1-t)^{1-t} \leq \exp \left(-t^{2} / 2\right)$, we obtain that for any $t>0$ and $n \geq 1$,

$$
\mathbb{P}(S<(1-t) \mu) \leq \exp \left(-\frac{t^{2} \mu}{2}\right)
$$

the bound being obvious when $t \geq 1$. In the previous bound ,choose $t=\sqrt{2 \log (1 / \delta) / \mu}$ to get the stated inequality. The second inequality is obtained by inverting the Chernoff upper tail:

$$
\mathbb{P}(S>(1+t) \mu) \leq\left(\frac{\exp (t)}{(1+t)^{1+t}}\right)^{\mu}
$$

The following inequality is a well-known concentration inequality for sub-Gaussian random variables, see e.g. (Boucheron et al., 2013).

Lemma 4 Suppose that Z is sub-Gaussian with parameter $s^{2}>0$, i.e. Z is real-valued, centred and for all $\lambda>0$, $\mathbb{E}[\exp (\lambda Z)] \leq \mathbb{E}\left[\exp \left(\lambda^{2} s^{2} / 2\right)\right]$, then with probability $1-\delta$,

$$
|Z| \leq \sqrt{2 s^{2} \log (2 / \delta)}
$$

We shall also need a concentration inequality tailored to Vapnik-Chervonenkis (VC) classes of functions. The result stated in Lemma 5 below is mainly a consequence of the work in Giné and Guillou, 2001. Our formulation is slightly different, the role played by the VC constants (v and A below) being clearly quantified.

Let \mathcal{F} be a bounded class of measurable functions defined on \mathcal{X}. Let U be a uniform bound for the class \mathcal{F}, i.e. $|f(x)| \leq U$ for all $f \in \mathcal{F}$ and $x \in \mathcal{X}$. The class \mathcal{F} is called VC with parameters (v, A) and uniform bound U if

$$
\sup _{Q} \mathcal{N}\left(\epsilon U, \mathcal{F}, L_{2}(Q)\right) \leq\left(\frac{A}{\epsilon}\right)^{v}
$$

where $\mathcal{N}\left(., \mathcal{F}, L_{2}(Q)\right)$ denotes the covering numbers of the class \mathcal{F} relative to $L_{2}(Q)$, see e.g. (van der Vaart and Wellner, 1996). For notational simplicity and with no loss of generality, we require in the definition of a VC class that $A \geq 3 \sqrt{e}$ and $v \geq 1$. Define $\sigma^{2} \geq \sup _{f \in \mathcal{F}} \operatorname{Var}\left(f\left(X_{1}\right)\right)$. We shall work with the condition

$$
\begin{equation*}
\sqrt{n} \sigma \geq c_{1} \sqrt{U^{2} v \log (A U /(\sigma \delta))} \tag{12}
\end{equation*}
$$

where the constant c_{1} and c_{2} are specified in the following statement.

Lemma 5 Let \mathcal{F} be a VC class of functions with parameters (v, A) and uniform bound $U>0$ such that $\sigma \leq U$. Let $n \geq 1$ and $\delta \in(0,1)$. There are two positive universal constants c_{1} and c_{2} such that, under condition (12), we have with probability $1-\delta$,

$$
\sup _{f \in \mathcal{F}}\left|\sum_{i=1}^{n}\left\{f\left(X_{i}\right)-\mathbb{E} f\left(X_{1}\right)\right\}\right| \leq c_{2} \sqrt{n \sigma^{2} v \log (A U /(\sigma \delta))}
$$

Proof Set $\Lambda=v \log (A U / \sigma)$. Using Giné and Guillou, 2001, equation (2.5) and (2.6), we get

$$
\begin{aligned}
& \mathbb{E}\left[\sup _{f \in \mathcal{F}}\left|\sum_{i=1}^{n}\left\{f\left(X_{i}\right)-\mathbb{E} f\left(X_{1}\right)\right\}\right|\right] \leq C \sqrt{\Lambda}(\sqrt{n} \sigma+U \sqrt{\Lambda}) \leq 2 C \sqrt{n \sigma^{2} \Lambda}, \\
& \mathbb{E}\left[\sup _{f \in \mathcal{F}}\left|\sum_{i=1}^{n}\left\{f\left(X_{i}\right)-\mathbb{E} f\left(X_{1}\right)\right\}^{2}\right|\right] \leq(\sqrt{n} \sigma+K U \sqrt{\Lambda})^{2} \leq 4 n \sigma^{2}:=V,
\end{aligned}
$$

where $C>0$ and $K>0$ are two universal constants. Both previous inequalities are obtained by taking c_{1} large enough. Let

$$
Z=\sup _{f \in \mathcal{F}}\left|\sum_{i=1}^{n}\left\{f\left(X_{i}\right)-\mathbb{E} f\left(X_{1}\right)\right\}\right|
$$

We recall Talagrand's inequality (Talagrand, 1996, Theorem 1.4) (or Giné and Guillou, 2001, equation (2.7)), for all $t>0$,

$$
\mathbb{P}(|Z-\mathbb{E} Z|>t) \leq K^{\prime} \exp \left(-\frac{t}{2 K^{\prime} U} \log (1+2 t U / V)\right)
$$

where $K^{\prime}>1$ is a universal constant. Using the fact that for all $t \geq 0, t /(2+2 t / 3) \leq \log (1+t)$, we get

$$
\mathbb{P}(|Z-\mathbb{E} Z|>t) \leq K^{\prime} \exp \left(-\frac{t^{2}}{2 K^{\prime}(V+2 t U / 3)}\right)
$$

Inverting the bound, we find that for any $\delta \in(0,1)$, with probability $1-\delta$,

$$
\begin{aligned}
|Z-\mathbb{E} Z| & \leq \sqrt{2 K^{\prime} V \log \left(K^{\prime} / \delta\right)}+\left(4 K^{\prime} U / 3\right) \log \left(K^{\prime} / \delta\right) \\
& \leq \sqrt{2 K^{\prime} V K^{\prime \prime} \log (2 / \delta)}+\left(4 K^{\prime} U / 3\right) K^{\prime \prime} \log (2 / \delta)
\end{aligned}
$$

for some $K^{\prime \prime}>0$. Taking c_{1} large enough and using that $A U / \sigma>2$, we ensure that $2 V=8 n \sigma^{2} \geq$ $(4 U / 3)^{2} K^{\prime} K^{\prime \prime} \log (2 / \delta)$. Then using the previous bound on the expectation, it follows that with probability $1-\delta$,

$$
\begin{aligned}
|Z| & \leq 2 C \sqrt{n \sigma^{2} \Lambda}+2 \sqrt{8 n \sigma^{2} K^{\prime} K^{\prime \prime} \log (2 / \delta)} \\
& =2 C \sqrt{n \sigma^{2}}\left(\sqrt{\Lambda}+\sqrt{\left.8 K^{\prime} K^{\prime \prime} \log (2 / \delta)\right)}\right)
\end{aligned}
$$

We then conclude by using the bound $\sqrt{a}+\sqrt{b} \leq \sqrt{2} \sqrt{a+b}$.

Intermediary Results

We now prove some intermediary results used in the core of the proof of the main results.
Define

$$
\bar{\tau}_{k}=\left(\frac{2 k}{n b_{f} V_{D}}\right)^{1 / D}
$$

Proposition 6 Suppose that Assumption 1 is fulfilled and that $\bar{\tau}_{k} \leq \tau_{0}$. Then for any $\delta \in(0,1)$ such that $k \geq 4 \log (n / \delta)$, we have with probability $1-\delta$:

$$
\hat{\tau}_{k}(x) \leq \bar{\tau}_{k}
$$

Proof Using Assumption 1 yields

$$
\mathbb{P}\left(X \in \mathcal{B}\left(x, \bar{\tau}_{k}\right)\right)=\int_{\mathcal{B}\left(x, \bar{\tau}_{k}\right)} f_{X} \geq b_{f} \int_{\mathcal{B}\left(x, \bar{\tau}_{k}\right)} d \lambda=b_{f} V_{D} \bar{\tau}_{k}^{D}=2 k / n .
$$

Consider the set formed by the n balls $\mathcal{B}\left(x, \bar{\tau}_{k}\right), 1 \leq k \leq n$. From Lemma 3 with $Z_{i}=\mathbb{1}_{\mathcal{B}\left(x, \bar{\tau}_{k}\right)}\left(X_{i}\right), \mu \geq 2 k$, and the union bound, we obtain that for all $\delta \in(0,1)$ and any $k=1, \ldots, n$:

$$
\sum_{i=1}^{n} \mathbb{1}_{\mathcal{B}\left(x, \bar{\tau}_{k}\right)}\left(X_{i}\right) \geq\left(1-\sqrt{\frac{2 \log (n / \delta)}{2 k}}\right) 2 k
$$

As $k \geq 4 \log (n / \delta)$, it follows that

$$
\sum_{i=1}^{n} \mathbb{1}_{\mathcal{B}\left(x, \bar{\tau}_{k}\right)}\left(X_{i}\right) \geq k-(\sqrt{4 k \log (n / \delta)}-k) \geq k
$$

Hence $\mathbb{P}_{n}\left(\mathcal{B}\left(x, \bar{\tau}_{k}\right)\right) \geq k / n$, denoting by \mathbb{P}_{n} the empirical distribution of the X_{i} 's. By definition of $\hat{\tau}_{k}(x)$ it holds that $\hat{\tau}_{k}(x) \leq \bar{\tau}_{k}(x)$.
Define

$$
\underline{\tau}_{k}=\left(\frac{k}{2 n U_{f} V_{D}}\right)^{1 / D}
$$

Proposition 7 Suppose that Assumption 1 is fulfilled and that $\underline{\tau}_{k} \leq \tau_{0}$. Then for any $\delta \in(0,1)$ such that $k \geq 4 \log (n / \delta)$, we have with probability $1-\delta$:

$$
\hat{\tau}_{k} \geq \underline{\tau}_{k}
$$

Proof Using Assumption 1 yields

$$
\mathbb{P}\left(X \in \mathcal{B}\left(x, \underline{\tau}_{k}\right)\right)=\int_{\mathcal{B}\left(x, \underline{\tau}_{k}\right)} f_{X} \leq U_{f} \int_{\mathcal{B}\left(x, \tau_{k}\right)} d \lambda=U_{f} V_{D} \underline{\tau}_{k}^{D}=k /(2 n)
$$

Consider the set formed by the n balls $\mathcal{B}\left(x, \underline{\tau}_{k}\right), 1 \leq k \leq n$. From Lemma 3 with $Z_{i}=\mathbb{1}_{\mathcal{B}\left(x, \underline{\tau}_{k}\right)}\left(X_{i}\right), \mu \leq k / 2$, and the union bound, we obtain that for all $\delta \in(0,1)$ and $k=1, \ldots, n$

$$
\sum_{i=1}^{n} \mathbb{1}_{\mathcal{B}\left(x, \tau_{k}\right)}\left(X_{i}\right) \leq\left(1+\sqrt{\frac{6 \log (n / \delta)}{k}}\right) k / 2
$$

Using that $k \geq 6 \log (n / \delta)$, it follows that

$$
\sum_{i=1}^{n} \mathbb{1}_{\mathcal{B}\left(x, \underline{\tau}_{k}\right)}\left(X_{i}\right) \leq k+(\sqrt{(6 / 4) k \log (n / \delta)}-k / 2) \leq k
$$

Hence $\mathbb{P}_{n}\left(\mathcal{B}\left(x, \underline{\tau}_{k}\right)\right) \leq k / n$. By definition of $\hat{\tau}_{n}(k)(x)$ it holds that $\underline{\tau}_{k} \leq \hat{\tau}_{k}(x)$.
Proposition 8 Suppose that Assumption 2 is fulfilled. Then for any $\delta \in(0,1)$, we have with probability $1-\delta$:

$$
\left|\sum_{i=1}^{n} \xi_{i} \mathbb{1}_{\mathcal{B}\left(x, \hat{\tau}_{k}(x)\right)}\left(X_{i}\right)\right| \leq \sqrt{2 k \sigma^{2} \log (2 / \delta)}
$$

Proof Set $w_{i}=\mathbb{1}_{\mathcal{B}\left(x, \hat{\tau}_{k}(x)\right)}\left(X_{i}\right)$. Note that $\sum_{i=1}^{n} w_{i}^{2}=k$ almost surely. The result follows from the application of Lemma 4 to the random variable $\sum_{i=1}^{n} \xi_{i} w_{i}$, which is sub-Gaussian with parameter $k \sigma^{2}$. To check this, it is
enough to write

$$
\begin{aligned}
\mathbb{E}\left[\exp \left(\lambda \sum_{i=1}^{n} \xi_{i} w_{i}\right)\right] & =\mathbb{E}\left[\mathbb{E}\left[\exp \left(\lambda \sum_{i=1}^{n} \xi_{i} w_{i}\right) \mid X_{1}, \ldots X_{n}\right]\right] \\
& =\mathbb{E}\left[\prod_{i=1}^{n} \mathbb{E}\left[\exp \left(\lambda \xi_{i} w_{i}\right) \mid X_{1}, \ldots X_{n}\right]\right] \\
& \leq \mathbb{E}\left[\prod_{i=1}^{n} \mathbb{E}\left[\exp \left(\lambda^{2} \sigma^{2} w_{i}^{2} / 2\right) \mid X_{1}, \ldots X_{n}\right]\right] \\
& =\mathbb{E}\left[\exp \left(\lambda^{2} \sigma^{2} \sum_{i=1}^{n} w_{i}^{2} / 2\right)\right]=\exp \left(\lambda^{2} \sigma^{2} k / 2\right) .
\end{aligned}
$$

Proposition 9 Suppose that Assumption 1 and 2 are fulfilled and that $\bar{\tau}_{k} \leq \tau_{0}$. Let $\hat{h}_{i}:=h_{i}\left(X_{1}, \ldots, X_{n}\right)$ such that $a_{k}=\sup _{i: X_{i} \in \mathcal{B}\left(x, \bar{\tau}_{k}\right)}\left|\hat{h}_{i}\right|$. Then for any $\delta \in(0,1)$ such that $k \geq 4 \log (2 n / \delta)$, we have with probability $1-\delta$:

$$
\left|\sum_{i=1}^{n} \xi_{i} \hat{h}_{i} \mathbb{1}_{\mathcal{B}\left(x, \hat{\tau}_{k}(x)\right)}\left(X_{i}\right)\right| \leq \sqrt{2 k \sigma^{2} a_{k}^{2} \log (4 / \delta)} .
$$

Proof Set $w_{i}=\mathbb{1}_{\mathcal{B}\left(x, \hat{\tau}_{k}(x)\right)}\left(X_{i}\right)$. Note that $\sum_{i=1}^{n} w_{i}^{2}=k$ almost surely. The result follows from the fact that conditioned upon X_{1}, \ldots, X_{n}, the random variable $\sum_{i=1}^{n} \xi_{i} h_{i} w_{i}$ is sub-Gaussian with parameter $\sigma^{2} k \hat{a}_{k}^{2}$ with $\hat{a}_{k}=\sup _{i: X_{i} \in \mathcal{B}\left(x, \bar{\tau}_{k}\right)}\left|\hat{h}_{i}\right|$. To check this, it suffices to write

$$
\begin{aligned}
\mathbb{E}\left[\exp \left(\lambda \sum_{i=1}^{n} \xi_{i} \hat{h}_{i} w_{i}\right) \mid X_{1}, \ldots X_{n}\right] & =\prod_{i=1}^{n} \mathbb{E}\left[\exp \left(\lambda \xi_{i} \hat{h}_{i} w_{i}\right) \mid X_{1}, \ldots X_{n}\right] \\
& \leq \prod_{i=1}^{n} \exp \left(\lambda^{2} \sigma^{2} \hat{h}_{i}^{2} w_{i}^{2} / 2\right) \\
& =\exp \left(\lambda^{2} \sigma^{2} \sum_{i=1}^{n} \hat{h}_{i}^{2} w_{i} / 2\right) \leq \exp \left(\lambda^{2} \sigma^{2} k \hat{a}_{k}^{2} / 2\right) .
\end{aligned}
$$

Then, for any $t>0$,

$$
\begin{aligned}
\mathbb{P}\left(\left|\sum_{i=1}^{n} \xi_{i} h_{i} w_{i}\right|>t\right) & \leq \mathbb{P}\left(\left|\sum_{i=1}^{n} \xi_{i} h_{i} w_{i}\right|>t, \hat{\tau}_{k}(x) \leq \tau_{k}(x)\right)+\mathbb{P}\left(\hat{\tau}_{k}(x) \leq \tau_{k}(x)\right) \\
& \leq \mathbb{E}\left[\mathbb{P}\left(\left|\sum_{i=1}^{n} \xi_{i} h_{i} w_{i}\right|>t \mid X_{1}, \ldots, X_{n}\right) \mathbb{1}_{\left\{\hat{\tau}_{k}(x) \leq \tau_{k}(x)\right\}}\right]+\mathbb{P}\left(\hat{\tau}_{k}(x) \leq \tau_{k}(x)\right) \\
& \leq \mathbb{E}\left[2 \exp \left(-t^{2} /\left(2 k \sigma^{2} \hat{a}_{k}^{2}\right)\right) \mathbb{1}_{\left\{\hat{\tau}_{k}(x) \leq \tau_{k}(x)\right\}}\right]+\mathbb{P}\left(\hat{\tau}_{k}(x) \leq \tau_{k}(x)\right) \\
& \leq 2 \exp \left(-t^{2} /\left(2 k \sigma^{2} a_{k}^{2}\right)\right)+\mathbb{P}\left(\hat{\tau}_{k}(x) \leq \tau_{k}(x)\right)
\end{aligned}
$$

We obtain the result by choosing $t=\sqrt{2 k \sigma^{2} a_{k}^{2} \log (4 / \delta)}$ and applying Proposition 6 (to obtain that $\mathbb{P}\left(\hat{\tau}_{k}(x) \leq\right.$ $\left.\left.\tau_{k}(x)\right) \leq \delta / 2\right)$.

Proposition 10 Suppose that Assumption 1 and 4 is fulfilled. Let $\tau>0, n \geq 1$, and $\delta \in(0,1)$ such that $\tau \leq \tau_{0}$ and $24 n U_{f}(2 \tau)^{D} \geq \log \left(2 D^{2} / \delta\right)$, then with probability $1-\delta$,

$$
\begin{array}{r}
\max _{1 \leq j, j^{\prime} \leq D}\left|\sum_{i=1}^{n}\left\{\left(X_{i, j}-x\right)\left(X_{i, j^{\prime}}-x\right)^{T} \mathbb{1}_{\mathcal{B}(x, \tau)}\left(X_{i}\right)-\mathbb{E}\left[\left(X_{1, j}-x\right)\left(X_{1, j^{\prime}}-x\right)^{T} \mathbb{1}_{\mathcal{B}(x, \tau)}\left(X_{1}\right)\right]\right\}\right| \\
\leq(2 \tau)^{2} \sqrt{\frac{2 U_{f} n(2 \tau)^{D}}{3}} \log \left(2 D^{2} / \delta\right) .
\end{array}
$$

Proof We use Bernstein's inequality: for any collection $\left(Z_{1}, \ldots, Z_{n}\right)$ of independent zero-mean random variables such that for all $i=1, \ldots, n,\left|Z_{i}\right| \leq m$ and $\mathbb{E} Z_{i}^{2} \leq v$, it holds that with probability $1-\delta$,

$$
\left|\sum_{i=1}^{n} Z_{i}\right| \leq \sqrt{2 n v \log (2 / \delta)}+(m / 3) \log (2 / \delta)
$$

Applying this with

$$
\begin{aligned}
& W_{i}=\frac{\left(X_{i, j}-x\right)}{2 \tau} \frac{\left(X_{i, j^{\prime}}-x\right)}{2 \tau} \mathbb{1}_{\mathcal{B}(0, \tau)}\left(X_{i}\right) \\
& Z_{i}=W_{i}-\mathbb{E}\left[W_{i}\right]
\end{aligned}
$$

we can use

$$
\left|Z_{i}\right| \leq 2\left|W_{i}\right| \leq 1 / 4=m
$$

and

$$
\begin{aligned}
\mathbb{E}\left[\left(W_{i}-\mathbb{E} W_{i}\right)^{2}\right] & \leq \mathbb{E}\left[W_{i}^{2}\right]=\mathbb{E}\left[\left|\frac{\left(X_{i, j}-x\right)}{2 \tau} \frac{\left(X_{i, j^{\prime}}-x\right)}{2 \tau}\right|^{2} \mathbb{1}_{\mathcal{B}(0, \tau)}\left(X_{i}\right)\right] \\
& =\int\left|\frac{\left(y_{j}-x\right)}{2 \tau} \frac{\left(y_{j^{\prime}}-x\right)}{2 \tau}\right|^{2} \mathbb{1}_{\mathcal{B}(0, \tau)}(y) f(y) d y \\
& \leq U_{f} \int\left|\frac{\left(y_{j}-x\right)}{2 \tau} \frac{\left(y_{j^{\prime}}-x\right)}{2 \tau}\right|^{2} \mathbb{1}_{\mathcal{B}(0, \tau)}(y) d y \\
& =U_{f}(2 \tau)^{D} \int\left|u_{j} u_{j^{\prime}}\right|^{2} \mathbb{1}_{\mathcal{B}(0,1 / 2)}(u) d u \\
& \leq U_{f}(2 \tau)^{D} \int\left(u_{j}^{2}+u_{j^{\prime}}^{2}\right) / 2 \mathbb{1}_{\mathcal{B}(0,1 / 2)}(u) d u \\
& =U_{f}(2 \tau)^{D} \int u_{1}^{2} \mathbb{1}_{\mathcal{B}(0,1 / 2)}(u) d u \\
& =U_{f}(2 \tau)^{D} \int[-1 / 2,1 / 2]
\end{aligned} u_{1}^{2} d u_{1}=\frac{U_{f}(2 \tau)^{D}}{12}=v .
$$

We have shown that, with probability $1-\delta$,

$$
\left|\sum_{i=1}^{n} Z_{i}\right| \leq \sqrt{\frac{n U_{f}(2 \tau)^{D}}{6} \log (2 / \delta)}+(1 / 12) \log (2 / \delta)
$$

Because $24 n U_{f}(2 \tau)^{D} \geq \log (2 / \delta)$, we obtain that

$$
\left|\sum_{i=1}^{n} Z_{i}\right| \leq 2 \sqrt{\frac{n U_{f}(2 \tau)^{D}}{6} \log (2 / \delta)}
$$

Replacing δ by δ / D^{2} and using the union bound, we get the desired result.
An important quantity in the framework we develop is

$$
\sum_{i: X_{i} \in \mathcal{B}\left(x, \hat{\tau}_{k}(x)\right)}\left(X_{i, j}-x_{j}\right)
$$

for which we provide an upper bound in the following theorem. Note that we improve upon the straightforward bound of $k \hat{\tau}_{k}(x)$ which is unfortunately not enough for the analysis carried out here. We shall work with the following assumption

$$
\begin{equation*}
C_{1} \log (D n / \delta) \leq k \leq C_{2} n \tag{13}
\end{equation*}
$$

where the two constants $C_{1}>0$ and $C_{2}>0$ are given in the following proposition.

Proposition 11 Suppose that Assumption 1 and 4 are fulfilled. Let $n \geq 1, k \geq 1$ and $\delta \in(0,1)$. There exist universal positive constants C_{1}, C_{2}, and C_{3} such that, under (13), we have with probability $1-\delta$,

$$
\max _{j=1, \ldots, D}\left|\sum_{i: X_{i} \in \mathcal{B}\left(x, \hat{\tau}_{k}(x)\right)}\left(X_{i, j}-x_{j}\right)\right| \leq C_{3}\left(\bar{\tau}_{k} \sqrt{k \log (n D / \delta)}+\frac{L k \bar{\tau}_{k}^{2}}{b_{f}}\right) .
$$

Proof Taking C_{1} greater than 4 , we ensure that $k \geq 4 \log (2 n / \delta)$. Taking C_{2} small enough, we guarantee that $\bar{\tau}_{k} \leq \tau_{0}$. From Proposition 6, we have that $\hat{\tau}_{k}(x) \leq \bar{\tau}_{k}$ is valid with probability $1-\delta / 2$.
Let $\mu(\tau)=\mathbb{E}\left[\left(X_{1}-x\right) \mathbb{1}_{\mathcal{B}(x, \tau)}\left(X_{1}\right)\right]$. Consider the following decomposition

$$
\begin{aligned}
\left|\sum_{i: X_{i} \in \mathcal{B}\left(x, \hat{\tau}_{k}(x)\right)}\left(X_{i, j}-x_{j}\right)\right| & \leq\left|\sum_{i=1}^{n}\left\{\left(X_{i, j}-x_{j}\right) \mathbb{1}_{\mathcal{B}\left(x, \hat{\tau}_{k}(x)\right)}\left(X_{i, j}\right)-\mu_{j}\left(\hat{\tau}_{k}(x)\right)\right\}\right|+n \mu_{j}\left(\hat{\tau}_{k}(x)\right) \\
& \leq \sup _{0<\tau \leq \bar{\tau}_{k}}\left|\sum_{i=1}^{n}\left\{\left(X_{i, j}-x_{j}\right) \mathbb{1}_{\mathcal{B}(x, \tau)}\left(X_{i, j}\right)-\mu_{j}(\tau)\right\}\right|+n \mu_{j}\left(\hat{\tau}_{k}(x)\right) .
\end{aligned}
$$

Notice that

$$
\begin{aligned}
\mu(\tau) & =\int(y-x) \mathbb{1}_{\mathcal{B}(x, \tau)}(y) f(y) d y=(2 \tau)^{1+D} \int_{\mathcal{B}(0,1 / 2)} v f(x+\tau v) d v \\
& =(2 \tau)^{1+D} \int_{\mathcal{B}(0,1 / 2)} v(f(x+\tau v)-f(x)) d v
\end{aligned}
$$

Hence

$$
\left|\mu_{j}(\tau)\right| \leq \frac{L}{2}(2 \tau)^{2+D} \int_{\mathcal{B}(0,1 / 2)} v_{j}|v|_{\infty} d v \leq \frac{L}{8}(2 \tau)^{2+D}=\frac{L}{8}(2 \tau)^{2+D}
$$

And we find

$$
\sup _{j=1, \ldots, D}\left|\mu_{j}\left(\hat{\tau}_{k}\right)\right| \leq \frac{L}{8}\left(2 \bar{\tau}_{k}\right)^{2+D}=\frac{L k}{b_{f} n} \bar{\tau}_{k}^{2} .
$$

The class of rectangles $\mathcal{R}=\left\{y \mapsto \mathbb{1}_{\mathcal{B}(x, \tau)}(y): \tau>0\right\}$ cannot shatter 2 points x_{1} and x_{2}. Considering the case $\left\|x_{1}-x\right\|_{\infty}<\left\|x_{2}-x\right\| \infty$, it fails to pick out x_{2}. Hence its VC index is $v=2$. From Theorem 2.6.4 in van der Vaart and Wellner, 1996, we have

$$
\mathcal{N}\left(\epsilon, \mathcal{R}, L_{2}(Q)\right) \leq K v(4 e)^{v}\left(\frac{1}{\epsilon}\right)^{2(v-1)}
$$

for any probability measure Q. This implies that $\mathcal{N}\left(\epsilon, \mathcal{R}, L_{2}(Q)\right) \leq(A / \epsilon)^{2}$, where A is a universal constant. As a result, the class

$$
\mathcal{F}_{j}=\left\{y \mapsto \frac{\left(y-x_{j}\right)}{\bar{\tau}_{k}} \mathbb{1}_{\mathcal{B}(x, \tau)}(y): \tau \in\left(0, \bar{\tau}_{k}\right]\right\}
$$

which is uniformly bounded by 1 , satisfies the exact same bound for its covering number, that is

$$
\mathcal{N}\left(\epsilon, \mathcal{F}_{j}, L_{2}(Q)\right) \leq\left(\frac{A}{\epsilon}\right)^{2}
$$

We can therefore apply Lemma 5 with $v=2$, A a universal constant, $U=1$ and σ^{2} defined as

$$
\operatorname{Var}\left(\frac{\left(X_{1}-x\right)_{j}}{\bar{\tau}_{k}} \mathbb{1}_{\mathcal{B}(x, \tau)}\left(X_{1}\right)\right) \leq \mathbb{E}\left[\mathbb{1}_{\mathcal{B}(x, \tau)}\left(X_{1}\right)\right] \leq \mathbb{E}\left[\mathbb{1}_{\mathcal{B}\left(x, \bar{\tau}_{k}\right)}\left(X_{1}\right)\right] \leq \frac{2 U_{f}}{b_{f}} \frac{k}{n} \leq \frac{4 k}{n}:=\sigma^{2}
$$

Condition 12 is valid under (13) when C_{1} (resp. C_{2}) is a large (resp. small) enough constant. The fact that $\sigma^{2} \leq 1$ is provided by (13) as well. We obtain that

$$
\sup _{0<\tau \leq \bar{\tau}_{k}}\left|\sum_{i=1}^{n}\left\{\left(X_{i, j}-x_{j}\right) \mathbb{1}_{\mathcal{B}(x, \tau)}\left(X_{i, j}\right)-\mu_{j}(\tau)\right\}\right| \leq \bar{\tau}_{k} C \sqrt{k D \log (n / \delta)},
$$

where C is a universal constant (C should be large enough to absorb the other constants involved until now). Using the union bound, this bound is extended to a uniform bound over $j \in\{1, \ldots, D\}$. We then obtain the statement of the proposition.

Proof of Theorem 2

We rely on the bias-variance decomposition expressed in (7). On the first hand, we have

$$
\begin{aligned}
\left|m_{k}(x)-m(x)\right| & =\left|\frac{\sum_{i=1}^{n}\left(m\left(X_{i}\right)-m(x)\right) \mathbb{1}_{\left\{\mathcal{B}\left(x, \hat{\tau}_{k}(x)\right)\right\}}\left(X_{i}\right)}{\sum_{i=1}^{n} \mathbb{1}_{\left\{\mathcal{B}\left(x, \hat{\tau}_{k}(x)\right)\right\}}\left(X_{i}\right)}\right| \\
& \leq \sup _{y \in \mathcal{B}\left(x, \hat{\tau}_{k}(x)\right)}|m(y)-m(x)| \\
& \leq L_{1} \hat{\tau}_{k}(x)
\end{aligned}
$$

Applying Lemma 6 we obtain that, with probability $1-\delta / 2$,

$$
\left|m_{k}(x)-m(x)\right| \leq L_{1} \bar{\tau}_{k}
$$

On the other hand, we apply Proposition 8 to get that, with probability $1-\delta / 2$,

$$
\left|\hat{m}_{k}(x)-m_{k}(x)\right| \leq \sqrt{\frac{2 \sigma^{2} \log (4 / \delta)}{k}}
$$

Proof of Theorem 1

Denote by \mathbb{X} the design matrix of the (local) regression problem

$$
\begin{aligned}
\mathbb{X} & =\left(X_{i_{1}}^{c}, \ldots, X_{i_{k}}^{c}\right)^{T} \\
\mathbb{Y} & =\left(y_{i_{1}}^{c}, \ldots, y_{i_{k}}^{c}\right)^{T}
\end{aligned}
$$

where for any $j=1, \ldots, k, i_{j}$ is such that $X_{i_{j}} \in \mathcal{B}\left(x ; \hat{\tau}_{k}(x)\right)$. Define $w=\mathbb{Y}-\mathbb{X} \beta^{*}, \hat{\nu}=\hat{\beta}_{k}(x)-\beta^{*}$ Following Hastie et al., 2015, define

$$
\mathcal{C}(S, \alpha)=\left\{u \in \mathbb{R}^{D}:\left\|u_{\bar{S}}\right\|_{1} \leq \alpha\left\|u_{S}\right\|_{1}\right\}
$$

and let $\hat{\gamma}_{n}$ be defined as

$$
\hat{\gamma}_{n}=\inf _{u \in \mathcal{C}(S, 3)} \frac{\|\mathbb{X} u\|_{2}^{2}}{k\|u\|_{2}^{2}}
$$

Hence, $\hat{\gamma}_{n}$ is the smallest eigenvalue (restricted to the cone) of the design matrix \mathbb{X}. From Lemma 11.1 in Hastie et al., 2015, we have the following: whenever

$$
\lambda \geq(2 / k)\left\|\mathbb{X}^{T} w\right\|_{\infty}
$$

it holds that

$$
\begin{gathered}
\hat{\nu} \in \mathcal{C}(S, 3), \\
\|\hat{\nu}\|_{2} \leq \frac{3 \sqrt{\# \mathcal{S}_{x}}}{\hat{\gamma}_{n}} \lambda
\end{gathered}
$$

Consequently, the proof will be completed if, with probability $1-\delta$,

$$
\begin{align*}
\frac{2}{k}\left\|\mathbb{X}_{j}^{T} w\right\|_{\infty} & \leq \bar{\tau}_{k}\left(\sqrt{\frac{2 \sigma^{2} \log (16 D / \delta)}{k}}+L_{2} \bar{\tau}_{k}^{2}\right) \tag{14}\\
\hat{\gamma}_{n} & \geq \frac{\bar{\tau}_{k}^{2}}{24 \times 8} \tag{15}
\end{align*}
$$

Proof of (14). In the next few lines, we show that (14) holds with probability $1-\delta / 2$. By definition

$$
\mathbb{X}^{T} w=\sum_{i: X_{i} \in \mathcal{B}\left(x, \hat{\tau}_{k}(x)\right)} w_{i}^{c} X_{i}^{c}=\sum_{i: X_{i} \in \mathcal{B}\left(x, \hat{\tau}_{k}(x)\right)} w_{i} X_{i}^{c}
$$

Using that $w_{i}=\xi_{i}+m\left(X_{i}\right)-\beta^{* T} X_{i}$,

$$
\begin{aligned}
\mathbb{X}^{T} w & =\sum_{i: X_{i} \in \mathcal{B}\left(x, \hat{\tau}_{k}(x)\right)} X_{i}^{c} \xi_{i}+\sum_{i: X_{i} \in \mathcal{B}\left(x, \hat{\tau}_{k}(x)\right)} X_{i}^{c}\left(m\left(X_{i}\right)-\beta^{* T} X_{i}\right) \\
& =\sum_{i: X_{i} \in \mathcal{B}\left(x, \hat{\tau}_{k}(x)\right)} X_{i}^{c} \xi_{i}+\sum_{i: X_{i} \in \mathcal{B}\left(x, \hat{\tau}_{k}(x)\right)} X_{i}^{c}\left(m\left(X_{i}\right)-m(x)-\beta^{* T}\left(X_{i}-x\right)\right)
\end{aligned}
$$

where we have used the covariance structure (with empirically centred terms) to derive the last line. Note that for any $\tau>0, \max _{i: X_{i} \in \mathcal{B}(x, \tau)}\left|X_{i, j}^{c}\right| \leq \tau$. Hence, from Proposition 9, because $\bar{\tau}_{k} \leq \tau_{0}$ and $k \geq 4 \log (8 D n / \delta)$ (taking C_{1} large enough), we have with probability $1-\delta /(4 D)$,

$$
\left|\sum_{i: X_{i} \in \mathcal{B}\left(x, \hat{\tau}_{k}(x)\right)} X_{i, j}^{c} \xi_{i}\right| \leq \sqrt{2 k \sigma^{2} \bar{\tau}_{k}^{2} \log (16 D / \delta)}
$$

Moreover,

$$
\sum_{i: X_{i} \in \mathcal{B}\left(x, \hat{\tau}_{k}(x)\right)}\left|X_{i, j}^{c}\right|\left|m\left(X_{i}\right)-m(x)-g(x)^{T}\left(X_{i}-x\right)\right| \leq k L_{2} \hat{\tau}_{k}(x)^{2} \max _{i: X_{i} \in \mathcal{B}\left(x, \hat{\tau}_{k}(x)\right)}\left|X_{i, j}^{c}\right| \leq k L_{2} \hat{\tau}_{k}(x)^{3}
$$

Using Proposition 6 , because $k \geq 4 \log (4 D n / \delta)$, it holds, with probability $1-\delta /(4 D)$,

$$
\sum_{i: X_{i} \in \mathcal{B}\left(x, \hat{\tau}_{k}(x)\right)}\left|X_{i, j}^{c}\right|\left|m\left(X_{i}\right)-m(x)-\beta^{* T}\left(X_{i}-x\right)\right| \leq k L_{2} \bar{\tau}_{k}^{3}
$$

We finally obtain that for any $j=1, \ldots, D$, it holds, with probability $1-\delta /(2 D)$,

$$
\left|\mathbb{X}_{j}^{T} w\right| \leq \sqrt{2 k \sigma^{2} \bar{\tau}_{k}^{2} \log (16 / \delta)}+k L_{2} \bar{\tau}_{k}^{3}
$$

and from the union bound, we deduce that, with probability $1-\delta / 2$,

$$
\max _{j=1, \ldots, D}\left|\mathbb{X}_{j}^{T} w\right| \leq \bar{\tau}_{k}\left(\sqrt{2 k \sigma^{2} \log (16 D / \delta)}+k L_{2} \bar{\tau}_{k}^{2}\right)
$$

Proof of (15). We show that (15) holds with probability $1-\delta / 2$. Define

$$
\begin{aligned}
& \hat{\Sigma}_{k}=\sum_{i: X_{i} \in \mathcal{B}\left(x, \underline{\tau}_{k}\right)}\left(X_{i}-x\right)\left(X_{i}-x\right)^{T} . \\
& \hat{\mu}(\tau)=\sum_{i: X_{i} \in \mathcal{B}(x, \tau)}\left(X_{i}-x\right)
\end{aligned}
$$

First, note that

$$
\mathbb{X}^{T} \mathbb{X}=\sum_{i: X_{i} \in \mathcal{B}\left(x, \hat{\tau}_{k}(x)\right)}\left(X_{i}-x\right)\left(X_{i}-x\right)^{T}-k^{-1} \hat{\mu}\left(\hat{\tau}_{k}\right) \hat{\mu}\left(\hat{\tau}_{k}\right)^{T}
$$

Then, using Proposition 7 , because $k \geq 4 \log (4 n / \delta)$, with probability $1-\delta / 4, \hat{\tau}_{k}(x) \geq \tau_{k}$, implying that

$$
\mathbb{X}^{T} \mathbb{X} \geq \hat{\Sigma}_{k}-k^{-1} \hat{\mu}\left(\hat{\tau}_{k}\right) \hat{\mu}\left(\hat{\tau}_{k}\right)^{T}=\mathbb{E}\left[\hat{\Sigma}_{k}\right]+\left(\hat{\Sigma}_{k}-\mathbb{E}\left[\hat{\Sigma}_{k}\right]\right)-k^{-1} \hat{\mu}\left(\hat{\tau}_{k}\right) \hat{\mu}\left(\hat{\tau}_{k}\right)^{T}
$$

Let $u \in \mathbb{R}^{D}$. We have that

$$
\left|u^{T} \hat{\mu}\left(\hat{\tau}_{k}\right)\right|^{2} \leq\|u\|_{1}^{2} \max _{j=1, \ldots, D}\left|\left(\hat{\mu}\left(\hat{\tau}_{k}\right)\right)_{j}\right|^{2} \leq \# \mathcal{S}_{x}\|u\|_{2}^{2} \max _{j=1, \ldots, D}\left|\left(\hat{\mu}\left(\hat{\tau}_{k}\right)\right)_{j}\right|^{2}
$$

Similarly, we have:

$$
\left|u^{T}\left(\hat{\Sigma}_{k}-\mathbb{E} \hat{\Sigma}_{k}\right) u\right| \leq\|u\|_{1}^{2}\left\|\hat{\Sigma}_{k}-\mathbb{E} \hat{\Sigma}_{k}\right\|_{\infty} \leq \# \mathcal{S}_{x}\|u\|_{2}^{2}\left\|\hat{\Sigma}_{k}-\mathbb{E} \hat{\Sigma}_{k}\right\|_{\infty} .
$$

Using the variable change $y=x+2 \underline{\tau}_{k} v$ and that $\underline{\tau}_{k} \leq \tau_{0}$, we have that

$$
\begin{aligned}
\mathbb{E} \hat{\Sigma}_{k} & =n \mathbb{E}\left[\left(X_{1}-x\right)\left(X_{1}-x\right)^{T} 1_{\mathcal{B}\left(x, \tau_{k}\right)}\left(X_{1}\right)\right]=n \int(y-x)(y-x)^{T} 1_{\left\{y \in \mathcal{B}\left(x, \tau_{k}\right)\right\}} f(y) d y \\
& \geq n b_{f} \int(y-x)(y-x)^{T} 1_{\left\{y \in \mathcal{B}\left(x, \tau_{k}\right)\right\}} d y=n\left(2 \tau_{k}\right)^{2+D} b_{f} \int_{v \in \mathcal{B}(0,1 / 2)} v v^{T} d v \\
& =n\left(2 \underline{\tau}_{k}\right)^{2+D} b_{f}\left(\int_{[-1 / 2,1 / 2]} v_{1}^{2} d v_{1}\right) I_{D} \\
& =\frac{b_{f}}{12} n\left(2 \underline{\tau}_{k}\right)^{2+D} I_{D}=\frac{b_{f}}{6 U_{f}} \tau_{k}^{2} k I_{D} \geq \frac{\tau_{k}^{2} k}{12} I_{D},
\end{aligned}
$$

using that $U_{f} / b_{f} \leq 2$. Consequently,

$$
\frac{\|\mathbb{X} u\|_{2}^{2}}{\|u\|_{2}^{2}} \geq \frac{\tau_{k}^{2} k}{12}-\# \mathcal{S}_{x}\left(\left\|\hat{\Sigma}_{k}-\mathbb{E} \hat{\Sigma}_{k}\right\|_{\infty}+k^{-1} \max _{j=1, \ldots, D}\left|\left(\hat{\mu}\left(\hat{\tau}_{k}\right)\right)_{j}\right|^{2}\right) .
$$

Proposition 10 can be applied because $24 n U_{f}\left(2 \underline{\tau}_{k}\right)^{D}=12 k \geq \log \left(16 D^{2} / \delta\right)$ which is satisfied whenever C_{1} is large. Combined with Proposition 11 (our conditions ensure that (13) is satisfied), we obtain that, with probability $1-\delta / 4$,

$$
\begin{aligned}
\frac{\|\mathbb{X} u\|_{2}^{2}}{\|u\|_{2}^{2}} & \geq \frac{\tau_{k}^{2} k}{12}-\# \mathcal{S}_{x}\left(4 \tau_{k}^{2} \sqrt{\frac{k}{3} \log \left(16 D^{2} / \delta\right)}+2 C^{2}\left(\bar{\tau}_{k}^{2} \log (8 n D / \delta)+\frac{L^{2} k \bar{\tau}_{k}^{4}}{b_{f}^{2}}\right) .\right) \\
& \geq \frac{\bar{\tau}_{k}^{2} k}{24 \times 8}\left(2-\# \mathcal{S}_{x} C_{3}\left(\sqrt{\frac{\log (n D / \delta)}{k}}+\frac{\log (n D / \delta)}{k}+\frac{\bar{\tau}_{k}^{2} L^{2}}{b_{f}^{2}}\right)\right),
\end{aligned}
$$

where $C>0$ is a universal constant. To obtain the last inequality we use $\bar{\tau}_{k}=C_{f}^{1 / D} \mathcal{\tau}_{k}$ with $C_{f} \leq 8$, we choose $C_{3}>0$ large enough and $C_{2}>0$ small enough. Choose C_{1} large enough to get that $C_{3} \# \mathcal{S}_{x} \sqrt{\log (n D / \delta) / k} \leq 1 / 3$ and $C_{3} \# \mathcal{S}_{x} \log (n D / \delta) / k \leq 1 / 3$. Finally, noting that $C_{3} \# \mathcal{S}_{x} \bar{\tau}_{k}^{2} L^{2} / b_{f}^{2} \leq 1 / 3$ we obtain the result.

Proof of Theorem 2

We rely on the bias-variance decomposition expressed in (7). On the first hand, we have

$$
\begin{aligned}
\left|m_{k}(x)-m(x)\right| & =\left|\frac{\sum_{i=1}^{n}\left(m\left(X_{i}\right)-m(x)\right) \mathbb{1}_{\left\{\mathcal{B}\left(x, \hat{\tau}_{k}(x)\right)\right\}}\left(X_{i}\right)}{\sum_{i=1}^{n} \mathbb{1}_{\left\{\mathcal{B}\left(x, \hat{\tau}_{k}(x)\right)\right\}}\left(X_{i}\right)}\right| \\
& \leq \sup _{y \in \mathcal{B}\left(x, \hat{\tau}_{k}(x)\right)}|m(y)-m(x)| \\
& \leq L_{1} \hat{\tau}_{k}(x) .
\end{aligned}
$$

Applying Lemma 6 we obtain that, with probability $1-\delta / 2$,

$$
\left|m_{k}(x)-m(x)\right| \leq L_{1} \bar{\tau}_{k} .
$$

On the other hand, we apply Proposition 8 to get that, with probability $1-\delta / 2$,

$$
\left|\hat{m}_{k}(x)-m_{k}(x)\right| \leq \sqrt{\frac{2 \sigma^{2} \log (4 / \delta)}{k}} .
$$

Choose C_{1} large enough to get that $C\left|\mathcal{S}_{x}\right| \sqrt{\log (2 D / \delta)} \leq \sqrt{k} / 3$ and $C\left|\mathcal{S}_{x}\right| D \log (2 n D / \delta) \leq k / 3$. Finally, noting that $C\left|\mathcal{S}_{x}\right| \bar{\tau}_{k}^{2} L^{2} \leq b_{f}^{2} / 3$ we obtain the result.

