
Nearest Neighbour Based Estimates of Gradient

SUPPLEMENTARY MATERIAL - TECHNICAL PROOFS

Auxiliary Results

As a first go, we recall or prove various auxiliary results that are involved in the proof of Theorem 1, and in that
of Theorem 2 as well.

The following inequality follows from the well-known Chernoff bound, see e.g. (Boucheron et al., 2013).

Lemma 3 Let (Zi)i≥1 be a sequence of i.i.d. random variables valued in {0, 1}. Set µ = nE[Z1] and S =
∑n

i=1 Zi.
For any δ ∈ (0, 1) and all n ≥ 1, we have with probability 1− δ:

S ≥

(
1−

√
2 log(1/δ)

µ

)
µ.

In addition, for any δ ∈ (0, 1) and n ≥ 1, we have with probability 1− δ:

S ≤

(
1 +

√
3 log(1/δ)

µ

)
µ.

Proof Using the Chernoff lower tail (Boucheron et al., 2013), for any t > 0 and n ≥ 1, it holds that

P (S < (1− t)µ) ≤
(

exp(−t)
(1− t)1−t

)µ

.

Because for any t ∈ (0, 1), exp(−t)/(1− t)1−t ≤ exp(−t2/2), we obtain that for any t > 0 and n ≥ 1,

P (S < (1− t)µ) ≤ exp

(
− t2µ

2

)
,

the bound being obvious when t ≥ 1. In the previous bound ,choose t =
√

2 log(1/δ)/µ to get the stated inequality.
The second inequality is obtained by inverting the Chernoff upper tail:

P (S > (1 + t)µ) ≤
(

exp(t)

(1 + t)1+t

)µ

.

The following inequality is a well-known concentration inequality for sub-Gaussian random variables, see e.g.
(Boucheron et al., 2013).

Lemma 4 Suppose that Z is sub-Gaussian with parameter s2 > 0, i.e. Z is real-valued, centred and for all λ > 0,
E[exp(λZ)] ≤ E[exp(λ2s2/2)], then with probability 1− δ,

|Z| ≤
√

2s2 log(2/δ).

We shall also need a concentration inequality tailored to Vapnik-Chervonenkis (VC) classes of functions. The
result stated in Lemma 5 below is mainly a consequence of the work in Giné and Guillou, 2001. Our formulation
is slightly different, the role played by the VC constants (v and A below) being clearly quantified.

Let F be a bounded class of measurable functions defined on X . Let U be a uniform bound for the class F , i.e.
|f(x)| ≤ U for all f ∈ F and x ∈ X . The class F is called VC with parameters (v,A) and uniform bound U if

sup
Q
N (εU,F , L2(Q)) ≤

(
A

ε

)v

,

where N (.,F , L2(Q)) denotes the covering numbers of the class F relative to L2(Q), see e.g. (van der Vaart and
Wellner, 1996). For notational simplicity and with no loss of generality, we require in the definition of a VC class
that A ≥ 3

√
e and v ≥ 1. Define σ2 ≥ supf∈F Var(f(X1)). We shall work with the condition

√
nσ ≥ c1

√
U2v log(AU/(σδ)), (12)

where the constant c1 and c2 are specified in the following statement.
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Lemma 5 Let F be a VC class of functions with parameters (v,A) and uniform bound U > 0 such that σ ≤ U .
Let n ≥ 1 and δ ∈ (0, 1). There are two positive universal constants c1 and c2 such that, under condition (12), we
have with probability 1− δ,

sup
f∈F

∣∣∣∣∣
n∑

i=1

{f(Xi)− Ef(X1)}

∣∣∣∣∣ ≤ c2
√

nσ2v log(AU/(σδ)).

Proof Set Λ = v log(AU/σ). Using Giné and Guillou, 2001, equation (2.5) and (2.6), we get

E

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

{f(Xi)− Ef(X1)}

∣∣∣∣∣
]
≤ C
√
Λ
(√

nσ + U
√
Λ
)
≤ 2C

√
nσ2Λ,

E

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

{f(Xi)− Ef(X1)}2
∣∣∣∣∣
]
≤
(√

nσ +KU
√
Λ
)2
≤ 4nσ2 := V ,

where C > 0 and K > 0 are two universal constants. Both previous inequalities are obtained by taking c1 large
enough. Let

Z = sup
f∈F

∣∣∣∣∣
n∑

i=1

{f(Xi)− Ef(X1)}

∣∣∣∣∣
We recall Talagrand’s inequality (Talagrand, 1996, Theorem 1.4) (or Giné and Guillou, 2001, equation (2.7)), for
all t > 0,

P (|Z − EZ| > t) ≤ K ′ exp

(
− t

2K ′U
log(1 + 2tU/V )

)
,

where K ′ > 1 is a universal constant. Using the fact that for all t ≥ 0, t/(2 + 2t/3) ≤ log(1 + t), we get

P (|Z − EZ| > t) ≤ K ′ exp

(
− t2

2K ′(V + 2tU/3)

)
.

Inverting the bound, we find that for any δ ∈ (0, 1), with probability 1− δ,

|Z − EZ| ≤
√
2K ′V log(K ′/δ) + (4K ′U/3) log(K ′/δ)

≤
√
2K ′V K ′′ log(2/δ) + (4K ′U/3)K ′′ log(2/δ)

for some K ′′ > 0. Taking c1 large enough and using that AU/σ > 2, we ensure that 2V = 8nσ2 ≥
(4U/3)2K ′K ′′ log(2/δ). Then using the previous bound on the expectation, it follows that with probability
1− δ,

|Z| ≤ 2C
√
nσ2Λ + 2

√
8nσ2K ′K ′′ log(2/δ)

= 2C
√
nσ2

(√
Λ +

√
8K ′K ′′ log(2/δ))

)
.

We then conclude by using the bound
√
a+
√
b ≤
√
2
√
a+ b.

Intermediary Results

We now prove some intermediary results used in the core of the proof of the main results.

Define

τk =

(
2k

nbfVD

)1/D

.

Proposition 6 Suppose that Assumption 1 is fulfilled and that τk ≤ τ0. Then for any δ ∈ (0, 1) such that
k ≥ 4 log(n/δ), we have with probability 1− δ:

τ̂k(x) ≤ τk.
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Proof Using Assumption 1 yields

P(X ∈ B(x, τk)) =
∫
B(x,τk)

fX ≥ bf

∫
B(x,τk)

dλ = bfVDτDk = 2k/n.

Consider the set formed by the n balls B(x, τk), 1 ≤ k ≤ n. From Lemma 3 with Zi = 1B(x,τk)(Xi), µ ≥ 2k, and
the union bound, we obtain that for all δ ∈ (0, 1) and any k = 1, . . . , n:

n∑
i=1

1B(x,τk)(Xi) ≥

(
1−

√
2 log(n/δ)

2k

)
2k.

As k ≥ 4 log(n/δ), it follows that

n∑
i=1

1B(x,τk)(Xi) ≥ k − (
√
4k log(n/δ)− k) ≥ k.

Hence Pn(B(x, τk)) ≥ k/n, denoting by Pn the empirical distribution of the Xi’s. By definition of τ̂k(x) it holds
that τ̂k(x) ≤ τk(x).

Define

τk =

(
k

2nUfVD

)1/D

.

Proposition 7 Suppose that Assumption 1 is fulfilled and that τk ≤ τ0. Then for any δ ∈ (0, 1) such that
k ≥ 4 log(n/δ), we have with probability 1− δ:

τ̂k ≥ τk.

Proof Using Assumption 1 yields

P(X ∈ B(x, τk)) =
∫
B(x,τk)

fX ≤ Uf

∫
B(x,τk)

dλ = UfVDτDk = k/(2n).

Consider the set formed by the n balls B(x, τk), 1 ≤ k ≤ n. From Lemma 3 with Zi = 1B(x,τk)
(Xi), µ ≤ k/2,

and the union bound, we obtain that for all δ ∈ (0, 1) and k = 1, . . . , n

n∑
i=1

1B(x,τk)
(Xi) ≤

(
1 +

√
6 log(n/δ)

k

)
k/2.

Using that k ≥ 6 log(n/δ), it follows that

n∑
i=1

1B(x,τk)
(Xi) ≤ k + (

√
(6/4)k log(n/δ)− k/2) ≤ k.

Hence Pn(B(x, τk)) ≤ k/n. By definition of τ̂n(k)(x) it holds that τk ≤ τ̂k(x).

Proposition 8 Suppose that Assumption 2 is fulfilled. Then for any δ ∈ (0, 1), we have with probability 1− δ:∣∣∣∣∣
n∑

i=1

ξi1B(x,τ̂k(x))(Xi)

∣∣∣∣∣ ≤√2kσ2 log(2/δ).

Proof Set wi = 1B(x,τ̂k(x))(Xi). Note that
∑n

i=1 w
2
i = k almost surely. The result follows from the application

of Lemma 4 to the random variable
∑n

i=1 ξiwi, which is sub-Gaussian with parameter kσ2. To check this, it is



Guillaume Ausset, Stephan Clémençon, François Portier

enough to write

E

[
exp

(
λ

n∑
i=1

ξiwi

)]
= E

[
E

[
exp

(
λ

n∑
i=1

ξiwi

)
| X1, . . . Xn

]]

= E

[
n∏

i=1

E [exp (λξiwi) | X1, . . . Xn]

]

≤ E

[
n∏

i=1

E
[
exp

(
λ2σ2w2

i /2
)
| X1, . . . Xn

]]

= E

[
exp

(
λ2σ2

n∑
i=1

w2
i /2

)]
= exp

(
λ2σ2k/2

)
.

Proposition 9 Suppose that Assumption 1 and 2 are fulfilled and that τk ≤ τ0. Let ĥi := hi(X1, . . . , Xn) such
that ak = supi:Xi∈B(x,τk)

|ĥi|. Then for any δ ∈ (0, 1) such that k ≥ 4 log(2n/δ), we have with probability 1− δ:∣∣∣∣∣
n∑

i=1

ξiĥi1B(x,τ̂k(x))(Xi)

∣∣∣∣∣ ≤√2kσ2a2k log(4/δ).

Proof Set wi = 1B(x,τ̂k(x))(Xi). Note that
∑n

i=1 w
2
i = k almost surely. The result follows from the fact that

conditioned upon X1, . . . , Xn, the random variable
∑n

i=1 ξihiwi is sub-Gaussian with parameter σ2kâ2k with
âk = supi:Xi∈B(x,τk)

|ĥi|. To check this, it suffices to write

E

[
exp

(
λ

n∑
i=1

ξiĥiwi

)
| X1, . . . Xn

]
=

n∏
i=1

E
[
exp

(
λξiĥiwi

)
| X1, . . . Xn

]
≤

n∏
i=1

exp
(
λ2σ2ĥ2

iw
2
i /2
)

= exp

(
λ2σ2

n∑
i=1

ĥ2
iwi/2

)
≤ exp

(
λ2σ2kâ2k/2

)
.

Then, for any t > 0,

P

(∣∣∣∣∣
n∑

i=1

ξihiwi

∣∣∣∣∣ > t

)
≤ P

(∣∣∣∣∣
n∑

i=1

ξihiwi

∣∣∣∣∣ > t, τ̂k(x) ≤ τk(x)

)
+ P(τ̂k(x) ≤ τk(x))

≤ E

[
P

(∣∣∣∣∣
n∑

i=1

ξihiwi

∣∣∣∣∣ > t | X1, . . . , Xn

)
1{τ̂k(x)≤τk(x)}

]
+ P(τ̂k(x) ≤ τk(x))

≤ E
[
2 exp(−t2/(2kσ2â2k))1{τ̂k(x)≤τk(x)}

]
+ P(τ̂k(x) ≤ τk(x))

≤ 2 exp(−t2/(2kσ2a2k)) + P(τ̂k(x) ≤ τk(x))

We obtain the result by choosing t =
√
2kσ2a2k log(4/δ) and applying Proposition 6 (to obtain that P(τ̂k(x) ≤

τk(x)) ≤ δ/2).

Proposition 10 Suppose that Assumption 1 and 4 is fulfilled. Let τ > 0, n ≥ 1, and δ ∈ (0, 1) such that τ ≤ τ0
and 24nUf (2τ)

D ≥ log(2D2/δ), then with probability 1− δ,

max
1≤j,j′≤D

∣∣∣∣∣
n∑

i=1

{
(Xi,j − x)(Xi,j′ − x)T1B(x,τ)(Xi)− E[(X1,j − x)(X1,j′ − x)T1B(x,τ)(X1)]

}∣∣∣∣∣
≤ (2τ)2

√
2Ufn(2τ)D

3
log(2D2/δ).
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Proof We use Bernstein’s inequality: for any collection (Z1, . . . , Zn) of independent zero-mean random variables
such that for all i = 1, . . . , n, |Zi| ≤ m and EZ2

i ≤ v, it holds that with probability 1− δ,∣∣∣∣∣
n∑

i=1

Zi

∣∣∣∣∣ ≤√2nv log(2/δ) + (m/3) log(2/δ).

Applying this with

Wi =
(Xi,j − x)

2τ

(Xi,j′ − x)

2τ
1B(0,τ)(Xi),

Zi = Wi − E[Wi],

we can use

|Zi| ≤ 2|Wi| ≤ 1/4 = m,

and

E[(Wi − EWi)
2] ≤ E[W 2

i ] = E

[∣∣∣∣ (Xi,j − x)

2τ

(Xi,j′ − x)

2τ

∣∣∣∣2 1B(0,τ)(Xi)

]

=

∫ ∣∣∣∣ (yj − x)

2τ

(yj′ − x)

2τ

∣∣∣∣2 1B(0,τ)(y)f(y)dy

≤ Uf

∫ ∣∣∣∣ (yj − x)

2τ

(yj′ − x)

2τ

∣∣∣∣2 1B(0,τ)(y)dy

= Uf (2τ)
D

∫
|ujuj′ |2 1B(0,1/2)(u)du

≤ Uf (2τ)
D

∫
(u2

j + u2
j′)/21B(0,1/2)(u)du

= Uf (2τ)
D

∫
u2
11B(0,1/2)(u)du

= Uf (2τ)
D

∫
[−1/2,1/2]

u2
1du1 =

Uf (2τ)
D

12
= v.

We have shown that, with probability 1− δ,∣∣∣∣∣
n∑

i=1

Zi

∣∣∣∣∣ ≤
√

nUf (2τ)D

6
log(2/δ) + (1/12) log(2/δ).

Because 24nUf (2τ)
D ≥ log(2/δ), we obtain that∣∣∣∣∣

n∑
i=1

Zi

∣∣∣∣∣ ≤ 2

√
nUf (2τ)D

6
log(2/δ).

Replacing δ by δ/D2 and using the union bound, we get the desired result.

An important quantity in the framework we develop is∑
i:Xi∈B(x,τ̂k(x))

(Xi,j − xj),

for which we provide an upper bound in the following theorem. Note that we improve upon the straightforward
bound of kτ̂k(x) which is unfortunately not enough for the analysis carried out here. We shall work with the
following assumption

C1 log(Dn/δ) ≤ k ≤ C2n, (13)

where the two constants C1 > 0 and C2 > 0 are given in the following proposition.
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Proposition 11 Suppose that Assumption 1 and 4 are fulfilled. Let n ≥ 1, k ≥ 1 and δ ∈ (0, 1). There exist
universal positive constants C1, C2, and C3 such that, under (13), we have with probability 1− δ,

max
j=1,...,D

∣∣∣∣∣∣
∑

i:Xi∈B(x,τ̂k(x))

(Xi,j − xj)

∣∣∣∣∣∣ ≤ C3

(
τk
√
k log(nD/δ) +

Lkτ2k
bf

)
.

Proof Taking C1 greater than 4, we ensure that k ≥ 4 log(2n/δ). Taking C2 small enough, we guarantee that
τk ≤ τ0. From Proposition 6, we have that τ̂k(x) ≤ τk is valid with probability 1− δ/2.

Let µ(τ) = E[(X1 − x)1B(x,τ)(X1)]. Consider the following decomposition

|
∑

i:Xi∈B(x,τ̂k(x))

(Xi,j − xj)| ≤

∣∣∣∣∣
n∑

i=1

{(Xi,j − xj)1B(x,τ̂k(x))(Xi,j)− µj(τ̂k(x))}

∣∣∣∣∣+ nµj(τ̂k(x))

≤ sup
0<τ≤τk

∣∣∣∣∣
n∑

i=1

{(Xi,j − xj)1B(x,τ)(Xi,j)− µj(τ)}

∣∣∣∣∣+ nµj(τ̂k(x)).

Notice that

µ(τ) =

∫
(y − x)1B(x,τ)(y)f(y)dy = (2τ)1+D

∫
B(0,1/2)

vf(x+ τv)dv

= (2τ)1+D

∫
B(0,1/2)

v(f(x+ τv)− f(x))dv.

Hence

|µj(τ)| ≤
L

2
(2τ)2+D

∫
B(0,1/2)

vj |v|∞dv ≤ L

8
(2τ)2+D =

L

8
(2τ)2+D.

And we find

sup
j=1,...,D

|µj(τ̂k)| ≤
L

8
(2τk)

2+D =
Lk

bfn
τ2k.

The class of rectangles R = {y 7→ 1B(x,τ)(y) : τ > 0} cannot shatter 2 points x1 and x2. Considering the case
‖x1−x‖∞ < ‖x2−x‖∞, it fails to pick out x2. Hence its VC index is v = 2. From Theorem 2.6.4 in van der Vaart
and Wellner, 1996, we have

N (ε,R, L2(Q)) ≤ Kv(4e)v
(
1

ε

)2(v−1)

for any probability measure Q. This implies that N (ε,R, L2(Q)) ≤ (A/ε)
2, where A is a universal constant. As

a result, the class

Fj =

{
y 7→ (y − xj)

τk
1B(x,τ)(y) : τ ∈ (0, τk]

}
,

which is uniformly bounded by 1, satisfies the exact same bound for its covering number, that is

N (ε,Fj , L2(Q)) ≤
(
A

ε

)2

.

We can therefore apply Lemma 5 with v = 2, A a universal constant, U = 1 and σ2 defined as

Var

(
(X1 − x)j

τk
1B(x,τ)(X1)

)
≤ E[1B(x,τ)(X1)] ≤ E[1B(x,τk)(X1)] ≤

2Uf

bf

k

n
≤ 4k

n
:= σ2.
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Condition 12 is valid under (13) when C1 (resp. C2) is a large (resp. small) enough constant. The fact that
σ2 ≤ 1 is provided by (13) as well. We obtain that

sup
0<τ≤τk

∣∣∣∣∣
n∑

i=1

{(Xi,j − xj)1B(x,τ)(Xi,j)− µj(τ)}

∣∣∣∣∣ ≤ τkC
√
kD log(n/δ),

where C is a universal constant (C should be large enough to absorb the other constants involved until now).
Using the union bound, this bound is extended to a uniform bound over j ∈ {1, . . . , D}. We then obtain the
statement of the proposition.

Proof of Theorem 2

We rely on the bias-variance decomposition expressed in (7). On the first hand, we have

|mk(x)−m(x)| =
∣∣∣∣∑n

i=1(m(Xi)−m(x))1{B(x,τ̂k(x))}(Xi)∑n
i=1 1{B(x,τ̂k(x))}(Xi)

∣∣∣∣
≤ sup

y∈B(x,τ̂k(x))

|m(y)−m(x)|

≤ L1τ̂k(x).

Applying Lemma 6 we obtain that, with probability 1− δ/2,

|mk(x)−m(x)| ≤ L1τk.

On the other hand, we apply Proposition 8 to get that, with probability 1− δ/2,

|m̂k(x)−mk(x)| ≤
√

2σ2 log(4/δ)

k
.

Proof of Theorem 1

Denote by X the design matrix of the (local) regression problem

X = (Xc
i1 , . . . , X

c
ik
)T

Y = (yci1 , . . . , y
c
ik
)T .

where for any j = 1, . . . , k, ij is such that Xij ∈ B(x; τ̂k(x)). Define w = Y − Xβ∗, ν̂ = β̂k(x) − β∗ Following
Hastie et al., 2015, define

C(S, α) = {u ∈ RD : ‖uS‖1 ≤ α‖uS‖1}.

and let γ̂n be defined as

γ̂n = inf
u∈C(S,3)

‖Xu‖22
k‖u‖22

.

Hence, γ̂n is the smallest eigenvalue (restricted to the cone) of the design matrix X. From Lemma 11.1 in Hastie
et al., 2015, we have the following: whenever

λ ≥ (2/k)‖XTw‖∞,

it holds that

ν̂ ∈ C(S, 3),

‖ν̂‖2 ≤
3
√
#Sx
γ̂n

λ.

Consequently, the proof will be completed if, with probability 1− δ,

2

k
‖XT

j w‖∞ ≤ τk

(√
2σ2 log(16D/δ)

k
+ L2τ

2
k

)
, (14)

γ̂n ≥
τ2k

24× 8
. (15)
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Proof of (14). In the next few lines, we show that (14) holds with probability 1− δ/2. By definition

XTw =
∑

i:Xi∈B(x,τ̂k(x))

wc
iX

c
i =

∑
i:Xi∈B(x,τ̂k(x))

wiX
c
i .

Using that wi = ξi +m(Xi)− β∗TXi,

XTw =
∑

i:Xi∈B(x,τ̂k(x))

Xc
i ξi +

∑
i:Xi∈B(x,τ̂k(x))

Xc
i (m(Xi)− β∗TXi)

=
∑

i:Xi∈B(x,τ̂k(x))

Xc
i ξi +

∑
i:Xi∈B(x,τ̂k(x))

Xc
i (m(Xi)−m(x)− β∗T (Xi − x))

where we have used the covariance structure (with empirically centred terms) to derive the last line. Note that for
any τ > 0, maxi:Xi∈B(x,τ) |Xc

i,j | ≤ τ . Hence, from Proposition 9, because τk ≤ τ0 and k ≥ 4 log(8Dn/δ) (taking
C1 large enough), we have with probability 1− δ/(4D),∣∣∣∣∣∣

∑
i:Xi∈B(x,τ̂k(x))

Xc
i,jξi

∣∣∣∣∣∣ ≤
√

2kσ2τ2k log(16D/δ)

Moreover, ∑
i:Xi∈B(x,τ̂k(x))

|Xc
i,j ||m(Xi)−m(x)− g(x)T (Xi − x)| ≤ kL2τ̂k(x)

2 max
i:Xi∈B(x,τ̂k(x))

|Xc
i,j | ≤ kL2τ̂k(x)

3

Using Proposition 6, because k ≥ 4 log(4Dn/δ), it holds, with probability 1− δ/(4D),∑
i:Xi∈B(x,τ̂k(x))

|Xc
i,j ||m(Xi)−m(x)− β∗T (Xi − x)| ≤ kL2τ

3
k

We finally obtain that for any j = 1, . . . , D, it holds, with probability 1− δ/(2D),

|XT
j w| ≤

√
2kσ2τ2k log(16/δ) + kL2τ

3
k,

and from the union bound, we deduce that, with probability 1− δ/2,

max
j=1,...,D

|XT
j w| ≤ τk

(√
2kσ2 log(16D/δ) + kL2τ

2
k

)
.

Proof of (15). We show that (15) holds with probability 1− δ/2. Define

Σ̂k =
∑

i:Xi∈B(x,τk)

(Xi − x)(Xi − x)T .

µ̂(τ) =
∑

i:Xi∈B(x,τ)

(Xi − x).

First, note that
XTX =

∑
i:Xi∈B(x,τ̂k(x))

(Xi − x)(Xi − x)T − k−1µ̂(τ̂k)µ̂(τ̂k)
T .

Then, using Proposition 7, because k ≥ 4 log(4n/δ), with probability 1− δ/4, τ̂k(x) ≥ τk, implying that

XTX ≥ Σ̂k − k−1µ̂(τ̂k)µ̂(τ̂k)
T = E[Σ̂k] + (Σ̂k − E[Σ̂k])− k−1µ̂(τ̂k)µ̂(τ̂k)

T

Let u ∈ RD. We have that

|uT µ̂(τ̂k)|2 ≤ ‖u‖21 max
j=1,...,D

|(µ̂(τ̂k))j |2 ≤ #Sx‖u‖22 max
j=1,...,D

|(µ̂(τ̂k))j |2.
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Similarly, we have:

|uT (Σ̂k − EΣ̂k)u| ≤ ‖u‖21‖Σ̂k − EΣ̂k‖∞ ≤ #Sx‖u‖22‖Σ̂k − EΣ̂k‖∞.

Using the variable change y = x+ 2τkv and that τk ≤ τ0, we have that

EΣ̂k = nE[(X1 − x)(X1 − x)T 1B(x,τk)
(X1)] = n

∫
(y − x)(y − x)T 1{y∈B(x,τk)}f(y)dy

≥ nbf

∫
(y − x)(y − x)T 1{y∈B(x,τk)}dy = n(2τk)

2+Dbf

∫
v∈B(0,1/2)

vvT dv

= n(2τk)
2+Dbf

(∫
[−1/2,1/2]

v21dv1

)
ID

=
bf
12

n(2τk)
2+DID =

bf
6Uf

τ2kkID ≥
τ2kk

12
ID,

using that Uf/bf ≤ 2. Consequently,

‖Xu‖22
‖u‖22

≥ τ2kk

12
−#Sx

(
‖Σ̂k − EΣ̂k‖∞ + k−1 max

j=1,...,D
|(µ̂(τ̂k))j |2

)
.

Proposition 10 can be applied because 24nUf (2τk)
D = 12k ≥ log(16D2/δ) which is satisfied whenever C1 is large.

Combined with Proposition 11 (our conditions ensure that (13) is satisfied), we obtain that, with probability
1− δ/4,

‖Xu‖22
‖u‖22

≥ τ2kk

12
−#Sx

(
4τ2k

√
k

3
log(16D2/δ) + 2C2

(
τ2k log(8nD/δ) +

L2kτ4k
b2f

)
.

)

≥ τ2kk

24× 8

(
2−#SxC3

(√
log(nD/δ)

k
+

log(nD/δ)

k
+

τ2kL
2

b2f

))
,

where C > 0 is a universal constant. To obtain the last inequality we use τk = C
1/D
f τk with Cf ≤ 8, we choose

C3 > 0 large enough and C2 > 0 small enough. Choose C1 large enough to get that C3#Sx
√
log(nD/δ)/k ≤ 1/3

and C3#Sx log(nD/δ)/k ≤ 1/3. Finally, noting that C3#Sxτ2kL2/b2f ≤ 1/3 we obtain the result.

Proof of Theorem 2

We rely on the bias-variance decomposition expressed in (7). On the first hand, we have

|mk(x)−m(x)| =
∣∣∣∣∑n

i=1(m(Xi)−m(x))1{B(x,τ̂k(x))}(Xi)∑n
i=1 1{B(x,τ̂k(x))}(Xi)

∣∣∣∣
≤ sup

y∈B(x,τ̂k(x))

|m(y)−m(x)|

≤ L1τ̂k(x).

Applying Lemma 6 we obtain that, with probability 1− δ/2,

|mk(x)−m(x)| ≤ L1τk.

On the other hand, we apply Proposition 8 to get that, with probability 1− δ/2,

|m̂k(x)−mk(x)| ≤
√

2σ2 log(4/δ)

k
.

Choose C1 large enough to get that C|Sx|
√
log(2D/δ) ≤

√
k/3 and C|Sx|D log(2nD/δ) ≤ k/3. Finally, noting

that C|Sx|τ2kL2 ≤ b2f/3 we obtain the result.


