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A More on Related Work

For any forecasting strategy whose output ŷt at time t depends only on past observations, we have E[(ŷt−yt)2]−E[(f(xit)−
yt)

2] = E[(ŷt − f(xit))
2]. Hence any algorithm that minimizes the dynamic regret against the sequence f(xi1), . . . , f(xin)

with `t(x) = (x − yt)
2 being the loss at time t, can be potentially applied to solve our problem. However as noted

in (Baby and Wang, 2019) a wide array of techniques such as (Zinkevich, 2003; Hall and Willett, 2013; Besbes et al.,
2015; Chen et al., 2018b; Jadbabaie et al., 2015; Yang et al., 2016; Zhang et al., 2018a,b; Chen et al., 2018a; Yuan and
Lamperski, 2019) are unable to achieve the optimal rate. However, we note that many of these algorithms support general
convex/strongly-convex losses. The existence of a strategy with Õ(n1/3C

2/3
n ) rate for Rn, even in the more general (in

comparison to offline problem) online setting considered in Fig. 1 is implied by the results of (Rakhlin and Sridharan, 2014)
on online non-parametric regression with Besov spaces via a non-constructive argument. (Kotłowski et al., 2016) studies the
problem of forecasting isotonic sequences. However, the techniques are not extensible to forecasting the much richer family
of TV bounded sequences.

We acknowledge that univariate TV-denoising is a simple and classical problem setting, and there had been a number of
studies on TV-denoising in multiple dimensions and on graphs, and to higher order TV functional, while establishing the
optimal rates in those settings (Tibshirani, 2014; Wang et al., 2016; Hutter and Rigollet, 2016; Sadhanala et al., 2016, 2017;
Li et al., 2018). The problem of adaptivity in Cn is generally open for those settings, except for highly special cases where
the optimal tuning parameter happens to be independent to Cn (see e.g., (Hutter and Rigollet, 2016)). Generalization of the
techniques developed in this paper to these settings are possible but beyond the scope of this paper. That said, as (Padilla
et al., 2017) establishes, an adaptive univariate fused lasso is already able to handle signal processing tasks on graphs with
great generality by simply taking the depth-first-search order as a chain.

Using a specialist aggregation scheme to incur low adaptive regret was explored in (Adamskiy et al., 2016). However, the
experts they use are same as that of (Hazan and Seshadhri, 2007). Due to this, their techniques are not directly applicable in
our setting where the exogenous variables are queried in an arbitrary manner.

There are image denoising algorithms based on deep neural networks such as (Zhang et al., 2017). However, this body of
work is complementary to our focus on establishing the connection between denoising and strongly adaptive online learning.

B Proofs of Technical Results

For the sake of clarity, we present a sequence of lemmas and sketch how to chain them to reach the main result in Section
B.1. This is followed by proof of all lemmas in Section B.2 and finally the proof of Theorem 5 in Section B.3.

B.1 Proof strategy for Theorem 5

We first show that ALIGATOR suffers logarithmic regret against any expert in the pool E during its awake period. Then
we exhibit a particular partition of the underlying TV bounded function such that number of chunks in the partition is
O(n1/3C

2/3
n ). Following this, we cover each chunk with atmost log n experts and show that each expert in the cover suffers

a Õ(1) estimation error. The Theorem then follows by summing the estimation error across all chunks.
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Some notations. In the analysis thereafter, we will use the following notations. Let σ̃ = σ
√

2 log(4n/δ),Rσ = 16(B+ σ̃)2

and T (I) = {t ∈ [n] : it ∈ I} for any I ∈ I|[n], where I|[n] is defined according to the terminology in Section 2.1. Let
θt := f(xit).

First, we show that ALIGATOR is competitive against any expert in the pool E .

Lemma 1. For any interval I ∈ I|[n] such that T (I) is non-empty, the predictions made by ALIGATOR ŷt satisfy

∑
t∈T (I)

(ŷt − θt)2 ≤
e− 1

3− e
∑

t∈T (I)

(AI(t)− θt)2 +
log(n log n)Rσ + 2R2

σ log(2n log n/δ)

3− e
,

with probability atleast 1− δ.

Corollary 2. Let S = {P1, . . . , PM} be an arbitrary ordered set of consecutive intervals in [n]. For each i ∈ [n]
let Ui be the set containing elements of the GC that covers the interval Pi according to Proposition 1. Denote λ :=
log(n logn)Rσ+2R2

σ log(2n logn/δ)
3−e . Then ALIGATOR forecasts ŷt satisfy

n∑
t=1

(ŷt − θt)2 ≤ min
S

M∑
i=1

∑
I∈Ui

1{|T (I)|> 0}

e− 1

3− e
∑

t∈T (I)

(AI(t)− θt)2 + λ

 ,

with probability atleast 1− δ.

The minimum across all partitions in the Corollary above hints to the novel ability of ALIGATOR to incur potentially very
low estimation errors.

Next, we proceed to exhibit a partition of the set of exogenous variables queried by the adversary that will eventually lead to
the minimax rate of Õ(n1/3C

2/3
n ). The existence of such partitions is a non-trivial matter.

Lemma 3. Let S = {xk1 < . . . , < xkm} ⊆ X be the exogenous variables queried by the adversary over n rounds
where each ki ∈ [n]. Denote θ(i) := f(xki) and p(i) := #{t : xit = xki} for each i ∈ [m]. Denote [xi, xj ] :=

{xki , xki+1 , . . . , xkj}. For any [xi, xj ] ⊆ S, define V (xi, xj) =
∑j−1
k=i |θ(i) − θ(i+1)|. There exists a partitioning P =

{[x1, xr1 ], [xr1+1, xr2 ], . . . , [xrM−1+1, xm]} of S that satisfies

1. For any [xi, xj ] ∈ P \ {[xrM−1+1, xm]}, V (xi, xj) ≤ B√∑j
k=i p(k)

.

2. V (xrM−1+1, xm−1) ≤ B√∑m−1
k=rM−1+1 p(k)

.

3. Number of partitions M ≤ max{3n1/3C2/3
n B−2/3, 1}.

The next lemma controls the estimation error incurred by an expert during its awake period.

Lemma 4. Let {
¯
x,< . . . , < x̄} be the exogenous variables queried by the adversary over n rounds in an arbitrary interval

I ∈ I|[n]. Then with probability atleast 1− δ∑
t∈T (I)

(θt −AI(t))2 ≤ 2V (
¯
x, x̄)2|T (I)|+2σ2 log(2n3 log n/δ) log(|T (I)|),

where V (·, ·) is defined as in Lemma 3.

To prove Theorem 5, our strategy is to apply Corollary 2 to the partition in Lemma 3. By the construction of the GC, each
chunk in the partition can be covered using atmost log n intervals. Now consider the estimation error incurred by an expert
corresponding to one such interval. Due to statements 1 and 2 in Lemma 3 the V (

¯
x, x̄)2|T (I)| term of error bound in

Lemma 4 can be shown to O(1). When summed across all intervals that cover a chunk, the total estimation error within a
chunk becomes Õ(1). Now appealing to statement 3 of Lemma 3, we get a total error of Õ(n1/3C

2/3
n ) when the error is

summed across all chunks in the partition.
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B.2 Omitted Lemmas and Proofs

Lemma 5. Let V be the event that for all t ∈ [n], |εt|≤ σ
√

2 log(4n/δ). Then P(V) ≥ 1− δ/2.

Proof. By gaussian tail inequality, we have for a fixed t P (|εt|> σ
√

2 log(4n/δ)) ≤ δ/2n. By taking a union bound we
get P (|εt|≥ σ

√
2 log(4n/δ)) ≤ δ/2 for all t ∈ [n].

Some notations. In the analysis thereafter, we will use the following filtration.

Fj = σ((i1, yi1), . . . , (ij−1, yij−1
)).

Let’s denote Ej [·] := E[·|Fj ] and Varj [·] := Var[·|Fj ]. Let θj = f(xij ) and σ̃ = σ
√

2 log(4n/δ). Let Rσ = 16(B + σ̃)2

and T (I) = {t ∈ [n] : it ∈ I}
Lemma 6. (Freedman type inequality, (Beygelzimer et al., 2011)) For any real valued martingale difference sequence
{Zt}Tt=1 with |Zt|≤ R it holds that,

T∑
t=1

Zt ≤ η(e− 2)

T∑
t=1

Vart[Zt] +
R log(1/δ)

η
,

with probability atleast 1− δ for all η ∈ [0, 1/R].

Lemma 7. For any j ∈ [n], we have

1. Ej [(yj −AI(j))2 − (yj − θj)2|V] = Ej [(AI(j)− θj)2|V].

2. Varj [(yj −AI(j))2 − (yj − θj)2|V] ≤ RσEj [(AI(j)− θj)2|V].

Proof. We have,

Ej [(yj −AI(j))2 − (yj − θj)2|V] =(a) Ej [(AI(j)− θj)2|V]− 2Ej [εj |V]Ej [(AI(j)− θj)|V],

= Ej [(AI(j)− θj)2|V],

where line (a) is due to the independence of εj with the past. Since (AI(j) + θj − 2yj)
2 ≤ 16(B + σ̃)2 under the event V ,

it holds that

Varj [(yj −AI(j))2 − (yj − θj)2|V] ≤ Ej [(yj −AI(j))2 − (yj − θj)2|V]2,

≤ 16(B + σ̃)2Ej [(AI(j)− θj)2|V].

Lemma 8. For any interval I ∈ I, it holds with probability atleast 1− δ that

1.
∑
j∈T (I)(yj −AI(j))2 − (yj − θj)2 ≤

∑
j∈T (I)(e− 1)(AI(j)− θj)2 +R2

σ log(2n log n/δ),

2.
∑
j∈T (I)(yj − ŷj)2 − (yj − θj)2 ≥

∑
j∈T (I)(3− e)(ŷj − θj)2 −R2

σ log(2n log n/δ).

Proof. Define Zj = (yj −AI(j))2 − (yj − θj)2 − (AI(j)− θj)2.

Condition on the event V that |εt|≤ σ
√

2 log(4n/δ).∀t ∈ [n] which happens with probability atleast 1− δ/2 by Lemma 5.
By Lemma 7, we have {Zj}j∈T (I) is a martingale difference sequence and |Zj |≤ 16(B + σ̃)2 = Rσ. Note that once
we condition on the filtration Fj , there is no randomness remaining in the terms (AI(j) − θj)2 and (ŷj − θj)2. Hence
Ej [(AI(j)− θj)2|V] = (AI(j)− θj)2 and Ej [(ŷj − θj)2|V] = (ŷj − θj)2. Using Lemma 6 and taking η = 1/Rσ we get,∑

j∈T (I)

(yj −AI(j))2 − (yj − θj)2 ≤
∑

j∈T (I)

(e− 1)(AI(j)− θj)2 +R2
σ log(4n log n/δ),
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with probability atleast 1 − δ/(4n log n) for a fixed expert AI . Taking a union bound across all O(n log n) experts in E
leads to,

P

 ∑
j∈T (I)

(yj −AI(j))2 − (yj − θj)2 ≥
∑

j∈T (I)

(e− 1)(AI(j)− θj)2 +R2
σ log(2n log n/δ)|V

 ≤ δ/4,
for any expert AI .

By similar arguments on the martingale difference sequence (ŷj − θj)2 − (yj − ŷj)2 − (yj + θj)
2, it can be shown that

P

 ∑
j∈T (I)

(yj − ŷj)2 − (yj − θj)2 ≤
∑

j∈T (I)

(3− e)(ŷj − θj)2 −R2
σ log(2n log n/δ)|V

 ≤ δ/4,
for any interval I ∈ I|[n]. Taking union bound across the previous two bad events and multiplying the probability of noise
boundedness event V leads to the lemma.

Lemma 1. For any interval I ∈ I|[n] such that T (I) is non-empty, the predictions made by ALIGATOR ŷt satisfy

∑
t∈T (I)

(ŷt − θt)2 ≤
e− 1

3− e
∑

t∈T (I)

(AI(t)− θt)2 +
log(n log n)Rσ + 2R2

σ log(2n log n/δ)

3− e
,

with probability atleast 1− δ.

Proof. Condition on the event V . Then the losses ft(x) = (yt − x)2 are 1

4(B+σ
√

log(2n/δ))2
:= η exp-concave (Haussler

et al., 1998; Cesa-Bianchi and Lugosi, 2006). Since we pass η · ft(x) as losses to SAA in ALIGATOR, Lemma 2 gives

∑
t∈T (I)

− log

(∑
J∈At

wt,Je
−ηft(AJ (t))

)
− ηft(AI(t)) ≤ log(n log n). (1)

By η exp-concavity of ft(x), we have

− log

(∑
J∈At

wt,Je
−ηft(AJ (t)))

)
≥ ηft

(∑
J∈At

wt,JAI(t)

)
,

= ηft(ŷt). (2)

Combining (1) and (2) gives, ∑
t∈T (I)

ft(ŷt)− ft(AI(t)) ≤
log(n log n)

η
,

≤ log(n log n)Rσ.

So, ∑
t∈T (I)

(yt − ŷt)2 − (yt − θt)2 ≤
∑

t∈T (I)

(yt −AI(t))2 − (yt − θt)2 + log(n log n)Rσ,

Now invoking Lemma (8) followed by a trivial rearrangement completes the proof.

Lemma 3. Let S = {xk1 < . . . , < xkm} ⊆ X be the exogenous variables queried by the adversary over n rounds
where each ki ∈ [n]. Denote θ(i) := f(xki) and p(i) := #{t : xit = xki} for each i ∈ [m]. Denote [xi, xj ] :=

{xki , xki+1 , . . . , xkj}. For any [xi, xj ] ⊆ S, define V (xi, xj) =
∑j−1
k=i |θ(i) − θ(i+1)|. There exists a partitioning P =

{[x1, xr1 ], [xr1+1, xr2 ], . . . , [xrM−1+1, xm]} of S that satisfies
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1. For any [xi, xj ] ∈ P \ {[xrM−1+1, xm]}, V (xi, xj) ≤ B√∑j
k=i p(k)

.

2. V (xrM−1+1, xm−1) ≤ B√∑m−1
k=rM−1+1 p(k)

.

3. Number of partitions M ≤ max{3n1/3C2/3
n B−2/3, 1}.

Proof. We provide below a constructive proof. Consider the following scheme of partitioning S.

1. Set pings = p(1),TV = 0,M = 1.

2. Start a partition from x1.

3. For i = 2 to m

(a) If TV + |θ(i) − θ(i−1)|> B√
pings+p(i)

:

i. pings = p(i),TV = 0 // start a new bin (partition) from position xi.
ii. M = M + 1 // increase the bin counter

(b) Else:
i. pings = pings + p(i),TV = TV + |θ(i) − θ(i−1)|

Statements 1 and 2 of the Lemma trivially follows from the strategy. Next, we provide an upper bound on number of bins M
spawned by the above scheme. Let [x1, xr1 ], [xr1+1, xr2 ], . . . , [xrM−1,xrM

] be the partition of S discovered by the above
scheme.

Define the quantity TV1 :=
∑r1
i=1|θ(i) − θ(i+1)| associated with bin 1. Similarly define TV2, . . . ,TVM−1 for other bins.

Define N(1) =
∑r1+1
i=1 p(i). Similarly define N(2), . . . N(M − 1). It is immediate that

∑M−1
i=1 N(i) ≤ 2n.

We have,

Cn ≥
M−1∑
i=1

TVi,

≥(1)

M−1∑
i=1

B√
N(i)

,

≥(2)
(M − 1)3/2 ·B√

2n
,

where (1) follows from step 3(a) of the partitioning scheme and (2) is due to convexity of 1/
√
x, x > 0 and applying

Jensen’s inequality. Rearranging and noting that M − 1 ≥M/2, when M > 1, we obtain

M ≤ 3n1/3C2/3
n B−2/3.

Note that when Cn = 0, M will remain 1 as a result of the partitioning scheme.

Lemma 4. Let {
¯
x,< . . . , < x̄} be the exogenous variables queried by the adversary over n rounds in an arbitrary interval

I ∈ I|[n]. Then with probability atleast 1− δ∑
t∈T (I)

(θt −AI(t))2 ≤ 2V (
¯
x, x̄)2|T (I)|+2σ2 log(2n3 log n/δ) log(|T (I)|),

where V (·, ·) is defined as in Lemma 3.
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Proof. Let q(t) =
∑t−1
s=1 1{is ∈ I}. Assume q(t) > 0. Fix a particular expert AI and a time t. Since yt ∼ N(θt, σ

2) by
gaussian tail inequality we have,

P

(∣∣∣∣∣
∑t−1
s=1(ys − θs)1{is ∈ I}∑t−1

s=1 1{is ∈ I}

∣∣∣∣∣ ≥ σ√
q(t)

√
log

(
2n3 log n

δ

))
≤ δ

(n3 log n)
.

Applying a union bound across all time points and all experts implies that for any expert AI and t ∈ T (I) with q(t) > 0,∣∣∣∣∣AI(t)−
∑t−1
s=1 θs1{is ∈ I}

q(t)

∣∣∣∣∣ ≤ σ√
q(t)

√
log

(
2n3 log n

δ

)
with probability atleast 1− δ.

Now adding and subtracting θt inside the |·| on LHS and using |a− b|≥ |a|−|b| yields,

|AI(t)− θt| ≤

∣∣∣∣∣θt −
∑t−1
s=1 θs1{is ∈ I}

q(t)

∣∣∣∣∣+
σ√
q(t)

√
log

(
2n3 log n

δ

)
.

Hence,

∑
t∈T (I)

(θt −AI(t))2 ≤(a)

∑
t∈T (I)

2

(
θt −

∑t−1
s=1 θs1{is ∈ I}

q(t)

)2

+ 2
σ2

q(t)
log

(
2n3 log n

δ

)

≤
∑

t∈T (I)

2

(
θt −

∑t−1
s=1 θs1{is ∈ I}

q(t)

)2

+ 2σ2 log(|T (I)|) log

(
2n3 log n

δ

)
, (3)

with probability atleast 1− δ. In (a) we used the relation (a+ b)2 ≤ 2a2 + 2b2.

Further we have,

∑
t∈T (I)

2

(
θt −

∑t−1
s=1 θs1{is ∈ I}

q(t)

)2

≤ 2V (
¯
x, x̄)2|T (I)|. (4)

Combining (3) and (4) completes the proof.

B.3 Proof of the main result: Theorem 5

Proof. Throughout the proof we carry forward all notations used in Lemmas 3 and 4.

We will apply Corollary 2 to the partition in Lemma 3. Take a specific partition [xi, xj ] ∈ P with j 6= m. Consider a set of
indices F = {ki, ki + 1, . . . , kj} of consecutive natural numbers between ki and kj . By Proposition 1 F can be covered
using elements in I|[n]. Let this cover be U . For any I ∈ U , we have∑

t∈T (I)

(θt −AI(t))2 ≤(a) 2V (
¯
x, x̄)2|T (I)|+2σ2 log(2n3 log n/δ) log(|T (I)|)

≤ 2V (
¯
x, x̄)2|T (F )|+2σ2 log(2n3 log n/δ) log(|T (I)|)

≤(b) 2B2 + 2σ2 log(2n3 log n/δ) log(n),

, with probability atleast 1− δ. Step (a) is due to Lemma 4 and (b) is due to statement 1 of Lemma 3.

Using Lemma 1 and a union bound on the bad events in Lemmas 1 and 4 yields,∑
t∈T (I)

(ŷt − θt)2 ≤
e− 1

3− e
(
2B2 + 2σ2 log(2n3 log n/δ) log(n)

)
+ λ,
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with probability atleast 1− 2δ and λ is as defined in Corollary 2. Due to the property of exponentially decaying lengths as
stipulated by Proposition 1, there are only atmost 2 log|F |≤ 2 log n intervals in U . So,

∑
t∈T (F )

(ŷt − θt)2 ≤ 2 log n

(
e− 1

3− e
(
2B2 + 2σ2 log(2n3 log n/δ) log(n)

)
+ λ

)
.

Similar bound can be obtained for the last bin [xrM−1+1, xm] in P . There are two cases to consider. In case 1, we consider
the scenario when V (xrM−1+1, xm) obeys relation 1 of Lemma 3. Then the analysis is identical to the one presented above.
In case 2, we consider the scenario when V (xrM−1+1, xm−1) obeys relation 2 of Lemma 3 while V (xrM−1+1, xm) doesn’t.
Then the error incurred within the interior [xrM−1+1, xm−1] can be bounded as before. To bound the error at last point, we
only need to bound the error of expert that performs mean estimation of iid gaussians. It is well known that the cumulative
squared error for this problem is atmost σ2 log(n/δ) with probability atleast 1− δ.

By Lemma 3, |P|= max{3n1/3C2/3
n B−2/3, 1}. Hence the total error summed across all partitions in P becomes,

n∑
t=1

(ŷt − θt)2 ≤ 2 log n

(
e− 1

3− e

(
4n1/3C2/3

n B4/3 + 4σ2 log(2n3 log n/δ) log(n)n1/3C2/3
n B−2/3

))
+ 4 log(n)

e− 1

3− e
λn1/3C2/3

n B−2/3

+ 2 log(n)

(
e− 1

3− e
(
2B2 + 2σ2 log(2n3 log n/δ) log(n)

)
+ λ

)
+ σ2 log(n/δ),

= Õ(n1/3C2/3
n ),

(5)

with probability atleast 1− 2δ. A change of variables from 2δ → δ completes the proof. As a closing note, we remark that
the aggressive dependence of B in (5) on cases when B is too small can be dampened by using a threshold of 1√

pings+p(i)
in the partition scheme presented in proof of Lemma 3.

C Excluded details in Experimental section

Waveforms. The waveforms shown in Fig. 1 and 2 are borrowed from (Donoho and Johnstone, 1994). Note that both
functions exhibit spatially inhomogeneous smoothness behaviour.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e4

1.0

0.5

0.0

0.5

1.0
Doppler function

Figure 1: Doppler function, TV = 27
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Figure 2: Heavisine function, TV = 7.2
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Figure 3: Fitted signals for Doppler function with noise level σ = 0.35
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Figure 4: Histogram of residuals for various algorithms when run on Doppler function with noise level σ = 0.35. Note that
they are residuals w.r.t to ground truth. ALIGATOR incurs lower bias than wavelets. The bias incurred by dof fused lasso is
roughly comparable to ALIGATOR while former is more compute intensive.
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Figure 5: Fitted signals for Heavisine function with noise level σ = 0.35
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Figure 6: Histogram of residuals for various algorithms when run on Heavisine function with noise level σ = 0.35. Note
that they are residuals w.r.t to ground truth. ALIGATOR incurs lower bias than wavelets. The bias incurred by dof fused
lasso is roughly comparable to ALIGATOR while former is more compute intensive.
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Figure 7: Hyper-parameter search for learning rate in ALIGATOR (heuristics).

Hyper-parameter search. Initially we used a grid search on an exponential grid to realize that the
optimal λ across all experiments fall within the range [0.125, 8]. Then we used a fine-tuned grid
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[0.125, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 10, 12, 14, 16] to search for the final hyper parame-
ter value. For ALIGATOR (heuristics), we searched for different noise levels in order to find best learning rate. We set search
method as Loss/(para ∗ (σ2 + σ2/m)). As Fig. 7 shows, para = 2 is found to provide good results across all signals we
consider.

Padding for wavelets. For “wavelet” estimator in Fig. 6, when data length is not a power of 2, we used the reflect padding
mode in (Lee et al., 2019), though the results are similar for other padding schemes.

Experiments on Real Data. We follow the experimental setup described in Section 5. A qualitative comparison of the
forecasts for the state of New Mexico, USA is illustrated in Fig. 8. The average RMSE of ALIGATOR and Holt ES for all
states in USA is reported in Table 1.
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Figure 8: A demo on forecasting COVID cases based on real world data. We display the two weeks forecasts of hedged
ALIGATOR and Holt ES, starting from the time points identified by the dotted lines. Both the algorithms are trained on a 2
month data prior to each dotted line. We see that hedged ALIGATOR detects changes in trends more quickly than Holt ES.
Further, hedged ALIGATOR attains a 12% reduction in the average RMSE from that of Holt ES (see Table 1).
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State RMSE
Aligator

RMSE
Holt ES % improvement

New Jersey 411.87 546.89 24.69
Ohio 216.24 280.24 22.84
Florida 1330.33 1671.23 20.4
Alabama 290.71 362.13 19.72
New York 876.35 1054.2 16.87
Rhode Island 85.11 98.23 13.35
Vermont 7.59 8.7 12.76
Kansas 142.17 162.16 12.33
New Mexico 57.88 65.99 12.29
Connecticut 206.79 235.6 12.23
California 1456.48 1650.25 11.74
Pennsylvania 258.21 290.6 11.14
Kentucky 145.61 163.59 10.99
New Hampshire 25.16 27.99 10.1
Minnesota 161.41 179.12 9.89
Michigan 315.86 350.24 9.82
Hawaii 30.24 33.18 8.86
Texas 1510.42 1650.73 8.5
South Dakota 56.83 61.8 8.04
Utah 118.97 128.96 7.74
Alaska 17.54 18.96 7.52
Washington 188.8 202.74 6.88
North Carolina 265.74 284.47 6.58
Nebraska 98.49 105.41 6.56
Montana 28.31 30.28 6.51
Missouri 224.51 239.9 6.42
Iowa 205.77 219.28 6.16
District of Columbia 33.58 35.74 6.04
Virginia 194.29 206.44 5.89
Nevada 159.88 168.92 5.35
Wyoming 16.43 17.25 4.73
Georgia 493.93 518.27 4.7
Oregon 55.48 58.21 4.68
Louisiana 562.89 590.49 4.67
Maryland 209.95 218.22 3.79
Illinois 475.49 492.09 3.37
West Virginia 37.34 38.63 3.33
Delaware 64.1 66.26 3.26
Tennessee 384.55 396.95 3.12
Arizona 481.91 493.73 2.39
South Carolina 271.87 277.42 2.0
Idaho 93.83 95.44 1.68
Colorado 142.58 144.53 1.35
Mississippi 206.67 209.11 1.16
Arkansas 164.83 164.88 0.03
Massachusetts 302.79 301.8 -0.32
Oklahoma 151.82 146.65 -3.41
Indiana 185.1 178.2 -3.73
North Dakota 42.14 40.49 -3.92
Wisconsin 219.04 203.37 -7.15
Maine 14.59 13.37 -8.36

Table 1: Average RMSE across all states in USA. The experimental setup and computation of error metrics are as described
in Section 5. The % improvement tab is computed as follows. Let x1 and x2 be the RMSE of ALIGATOR and Holt ES
respectively. Then % improvement = (x2 − x1)/max{x1, x2}.
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