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A SAMPLE COMPLEXITY: FORMAL DEFINITIONS

We provide formal definitions for the notions of deterministic algorithm, sample complexity, and rate-optimal
algorithm.

We first precisely define deterministic algorithms that query values of functions sequentially and rely only on
this information to build approximations of their level sets (sketched in Online Protocol 1). The behavior of
any such algorithm is completely determined by a pair (ϕ,ψ), where ϕ = (ϕn)n∈N∗ is a sequence of functions
ϕn : Rn−1 → [0, 1]d mapping the n−1 previously observed values f(x1), . . . , f(xn−1) to the next query point
xn, and ψ = (ψn)n∈N∗ is a sequence of functions ψn : Rn →

{
subsets of [0, 1]d

}
mapping the n currently

known values f(x1), . . . , f(xn) to an approximation Sn of the target level set.

We can now define the notion of sample complexity, which corresponds to the smallest number of queries after
which the outputs Sn of an algorithm are all ε-approximations of the level set {f = a} (recall Definition 1
in the Introduction).

Definition 7 (Sample complexity). For all functions f : [0, 1]d → R, all levels a ∈ R, any deterministic
algorithm A, and any accuracy ε > 0, we denote by n(f,A, ε, a) the smallest number of queries to f that A
needs in order for its output sets Sn to be ε-approximations of the level set {f = a} for all n ≥ n(f,A, ε, a),
i.e.,

n(f,A, ε, a) := inf
{
n′ ∈ N∗ : ∀n ≥ n′, Sn is an ε-approximation of {f = a}

}
. (10)

We refer to n(f,A, ε, a) as the sample complexity of A (for the ε-approximation of {f = a}).

We can now define rate-optimal algorithms rigorously. At a high-level, they output the tightest (up to
constants) approximations of level sets that can possibly be achieved by deterministic algorithms.

Definition 8 (Rate-optimal algorithm). For any level a ∈ R and some given family F of real-valued functions
defined on [0, 1]d, we say that a deterministic algorithm A is rate-optimal (for level a and family F) if, in
the worst-case, it needs the same number of queries (up to constants) of the best deterministic algorithm
in order to output approximations of level sets within any given accuracy, i.e., if there exists a constant
κ = κ(a,F) ≥ 1, depending only on a and F , such that, for all ε > 0,

sup
f∈F

n(f,A, ε, a) ≤ κ inf
A′∈A

sup
f∈F

n(f,A′, ε, a) , (11)

where A denotes the set of all deterministic algorithms.

B USEFUL INEQUALITIES ABOUT PACKING AND COVERING
NUMBERS

For all r > 0, the r-covering number M(E, r) of a bounded subset E of Rd (with respect to the sup-norm
‖·‖∞) is the smallest cardinality of an r-covering of E, i.e.,

M(E, r) := min
(
k ∈ N∗ : ∃x1, . . . ,xk ∈ Rd, ∀x ∈ E, ∃i ∈ {1, . . . , k}, ‖x− xi‖∞ ≤ r

)
if E is nonempty, zero otherwise.



Covering numbers and packing numbers (2) are closely related. In particular, the following well-known
inequalities hold (see, e.g., Wainwright 2019, Lemmas 5.5 and 5.7, with permuted notation of M and N ).10

Lemma 2. For any subset E of [0, 1]d and any real number r > 0,

N (E, 2r) ≤M(E, r) ≤ N (E, r) . (12)

Furthermore, for all δ > 0 and all r > 0, if B(δ) =
{
x ∈ R : ‖x‖∞ ≤ δ

}
,

M
(
B(δ), r

)
≤
(

1 + 2
δ

r
Ir<δ

)d
. (13)

We now state a known lemma about packing numbers at different scales.

Lemma 3. For any subset E of [0, 1]d and any real numbers r1, r2 > 0,

N (E, r1) ≤
(

1 + 4
r2

r1
Ir2>r1

)d
×N (E, r2) .

Proof. We can assume without loss of generality that E is nonempty and that r1 < r2. Then,

N (E, r1) ≤M(E, r1/2) (by (12))

≤M(E, r2)×M
(
B(r2), r1/2

)
(see below)

≤ N (E, r2)×M
(
B(r2), r1/2

)
(by (12))

≤ N (E, r2)×
(

1 +
4r2

r1

)d
. (by (13))

The second inequality is obtained by building the r1/2-covering of E in two steps. First, we cover E with
balls of radius r2. Second, we cover each ball of the first cover with balls of radius r1/2.

The next lemma upper bounds the packing number of the unit hypercube in the sup-norm, at all scales r.

Lemma 4. For any positive real number r > 0, the r-packing number of the unit cube in the sup-norm
satisfies

N
(
[0, 1]d, r

)
≤
(⌊

1

r

⌋
+ 1

)d
.

Proof. Since the diameter (in the sup-norm ‖·‖∞) of the unit hypercube is 1, if r ≥ 1, then the packing

number is N
(
[0, 1]d, r

)
= 1 ≤ (b1/rc+ 1)

d
. Consider now the case r < 1. Let ρ := 1− b1/rcr ∈ [0, r) and G

be the set of r-equispaced points
{
ρ/2, ρ/2 + r, ρ/2 + 2r, . . . , ρ/2 + b1/rcr

}d
. Note that each point in [0, 1]d

is at most (r/2)-away from a point in G (in the sup-norm), i.e., G is an (r/2)-covering of [0, 1]d. We can thus

use (12) in Lemma 2 at scale r/2 so see that N
(
[0, 1]d, r

)
≤M

(
[0, 1]d, r/2

)
≤ |G| =

(
b1/rc+ 1

)d
.

The next lemma upper bounds the r-packing number (in the sup-norm) of an inflated level set at scale r.

Lemma 5. For any function f : [0, 1]d → R and all scales r ∈ (0, 1),

N
({
|f − a| ≤ r

}
, r
)
≤ 2d

(
1

r

)d
.

10The definition of r-covering number of a subset A of Rd implied by (Wainwright, 2019, Definition 5.1) is slightly
stronger than the one used in our paper, because elements x1, . . . , xk of r-covers belong to A rather than just Rd.
Even if we do not need it for our analysis, Inequality (13) holds also in this stronger sense.
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Figure 1: Constructing the partition when d = 2. In orange, the original enumeration A0. In yellow, the
family Ci(1).

Proof. Let f : [0, 1]d → R be an arbitrary function and r ∈ (0, 1) any scale. By the monotonicity of the
packing number (E ⊆ F implies N (E, r) ≤ N (E, r) by definition of packing number —Definition 2) and the
previous lemma (Lemma 4), we get

N
({
|f − a| ≤ r

}
, r
)
≤ N

(
[0, 1]d, r

)
≤
(

1

r
+ 1

)d
≤
(

1

r
+

1

r

)d
≤ 2d

(
1

r

)d
.

C MISSING PROOFS OF SECTION 3

We now provide the missing proof of a claim we made in the proof of Theorem 2.

Claim 1. Under the assumptions of Theorem 2, let δ ∈ (0, 1) and i ∈ N∗. Then, the family of hypercubes Ci
maintained by Algorithm 2 can be partitioned into 2d subfamilies Ci(1), . . . , Ci(2d) with the property that for
all k ∈ {1, . . . , 2d} and all C,C ′ ∈ Ci(k), C 6= C ′, we have infx∈C,y∈C′‖x− y‖∞ > δ 2−i

Proof. We build our partition by induction. For a two-dimensional picture, see Figure 1. Denote the elements
of the standard basis of Rd by e1, . . . , ed. For any x ∈ [0, 1]d and all E ⊆ [0, 1]d, we denote by E + x the
Minkowski sum

{
y + x : x ∈ E

}
. Let E be the collection of all the hypercubes obtained by partitioning

[0, 1]d with a standard uniform grid with step size 2−i, i.e., E :=
{

[0, 2−i]d +
∑d
k=1 rk 2−i ek : r1, . . . , rk ∈

{0, 1, . . . , 2i − 1}
}

.

Consider the family A0 containing the hypercube [0, 2−i] and all other hypercubes of E adjacent to it;

formally, A0 :=
{

[0, 2−i]d +
∑d
k=1 rk 2−i ek : r1, . . . , rd ∈ {0, 1}

}
. Assign to each of the 2d hypercubes in A0

a distinct number between 1 and 2d. Fix any k ∈ {0, . . . , d − 1}. For each hypercube C ∈ Ak, proceeding
in the positive direction of the xk+1 axis, assign the same number as C to every other hypercube in E;
formally, assign the same number as C to all hypercubes in

{
C + 2 r 2−i ek+1 : r ∈ {1, . . . 2i−1 − 1}

}
.

Denote by Ak+1 the collection of all hypercubes that have been assigned a number so far. By construction,
Ad coincides with the whole E and consists of 2d distinct subfamilies of hypercubes, each containing only
hypercubes that have been assigned the same number. For any number k ∈ {1, . . . , 2d}, we denote by Ci(k)
the subfamily of all hypercubes numbered with k. Fix any k ∈ {1, . . . , 2d}. By construction, each C ∈ Ci(k)
contains no adjacent hypercubes. Thus, the smallest distance between two distinct hypercubes C,C ′ ∈ Ci(k)
is infx∈C,y∈C′‖x− y‖∞ ≥ 2−i > δ 2−i for all δ ∈ (0, 1).

D MISSING PROOFS OF SECTION 4

In this section, we prove Theorem 3 of Section 4. The proof is divided into two parts: one for the upper
bound, one for the lower bound. Each time, we restate the corresponding result to ease readability.



D.1 Upper Bound

Proposition 1 (Theorem 3, upper bound). Consider the BAH algorithm run with input a, c, γ. Let
f : [0, 1]d → R be an arbitrary (c, γ)-Hölder function with level set {f = a} 6= ∅. Fix any accuracy ε > 0.
Then, for all

n > κ
1

εd/γ
, where κ :=

(
2γ/d8γ 2 c

)d/γ
,

the output Sn returned after the n-th query is an ε-approximation of {f = a}.

Proof. The proof is a simple application of Theorem 2, with (b, β) = (c, γ). Since we are assuming that the
level set {f = a} is nonempty, we only need to check that for all iterations i and all hypercubes C ′ ∈ C′i, the
constant approximator gC′ ≡ f(cC′) is a (c, γ)-accurate approximation of f on C ′. For any iteration i and
all hypercubes C ′ ∈ C′i, we have that

sup
x∈C′

∣∣gC′(x)− f(x)
∣∣ = sup

x∈C′

∣∣f(cC′)− f(x)
∣∣ ≤ c 2−γi ,

by definition of gC′ , the (c, γ)-Hölderness of f , and the fact that the diameter of all hypercubes C ′ ∈ C′i (in
the sup-norm) is 2−i. Thus, Theorem 2 implies that for all n > n(ε), the output Sn returned after the n-th
query is an ε-approximation of {f = a} where n(ε) is

4d
i(ε)−1∑
i=0

lim
δ→1−

N
({
|f − a| ≤ 2 c 2−γi

}
, δ 2−i

)
(14)

and i(ε) := d(1/γ) log2(2c/ε)e. If ε ≥ 2c, than the sum in (14) ranges from 0 to a negative value, thus n(ε) = 0
by definition of sum over an empty set and the result is true with κ = 0. Assume then that ε < 2c so that
the sum in (14) is not trivially zero. Upper-bounding, for any δ ∈ (0, 1) and all i ≥ 0,

N
({
|f − a| ≤ 2 c 2−γi

}
, δ 2−i

)
≤ N

(
[0, 1]d, δ 2−i

) (†)
≤
(
2i/δ + 1

)d ≤ (2/δ)d 2di

(for completeness, we include a proof of the known upper bound (†) in Section B, Lemma 4) and recognizing
the geometric sum below, we can conclude that

n(ε) ≤ 8d
d(1/γ) log2(2c/ε)e−1∑

i=0

(
2d
)i

= 8d
2dd(1/γ) log2(2c/ε)e − 1

2d − 1

≤ 8d
2d((1/γ) log2(2c/ε)+1)

2d −
(

2d/2
) = 2 8d (2 c)d/γ

1

εd/γ
.

D.2 Lower Bound

In this section, we prove our lower bound on the worst-case sample complexity of Hölder functions. We
begin by stating a simple known lemma on bump functions. Bump functions are a standard tool to build
lower bounds in nonparametric regression (see, e.g., (Györfi et al., 2002, Theorem 3.2), whose construction
we also adapt for our following result and Proposition 4).

Lemma 6. Fix any amplitude α > 0, a step-size η ∈ (0, 1/4], let Z := {0, 2η, . . . , b1/2ηc2η}d ⊆ [0, 1]d, and fix
an arbitrary z = (z1, . . . , zd) ∈ Z. Consider the bump functions

f̃ : R→ [0, 1] fα,η,z : Rd → R

x 7→ f̃(x) :=

exp

( −x2

1− x2

)
if x ∈ (−1, 1)

0 otherwise ,

x 7→ fα,η,z(x) := α

d∏
j=1

f̃

(
xj − zj
η

)
.



Then f̃ is 3-Lipschitz and fα,η,z satisfies:

1. fα,η,z is infinitely differentiable;
2. fα,η,z(x) ∈ [0, α) for all x ∈ Rd \ {z}, and fα,η,z(z) = α;
3. {fα,η,u1 > 0} ∩ {fα,η,u2 > 0} = ∅ for any two distinct u1,u2 ∈ Z;

4. ‖x− y‖∞ ≤ 2η for all x,y in the closure {fα,η,z > 0} of {fα,η,z > 0} and all z ∈ Z.

The proof is a straightforward verification and it is therefore omitted. We now prove our worst-case lower
bound for Hölder functions.

Proposition 2 (Theorem 3, lower bound). Fix any level a ∈ R, any two Hölder constants c > 0, γ ∈ (0, 1],
and an arbitrary accuracy ε ∈

(
0, c/(3d2γ)

)
. Let n < κ/εd/γ be a positive integer, where κ := (c/12d)d/γ . For

each deterministic algorithm A there is a (c, γ)-Hölder function f such that, if A queries n values of f , then
its output set Sn is not an ε-approximation of {f = a}. This implies in particular that (recall Definition 7),

inf
A

sup
f

n(f,A, ε, a) ≥ κ 1

εd/γ
,

where the inf is over all deterministic algorithms A and the sup is over all (c, γ)-Hölder functions f .

Note that the leading constant κ = (c/12d)d/γ in our lower bound decreases quickly with the dimension d.
Though we keep our focus on sample complexity rates, there are ways to improve the multiplicative constants
appearing in our lower bounds. For instance, in the proof below, a larger constant κ := (1/4 (c/2)1/γ)d can

be obtained by replacing bump functions with spike functions x 7→
[
2 ε− c ‖x− z‖γ∞

]+
, where x 7→ [x]+ :=

max{x, 0} denotes the positive part of x. We choose to use bump functions instead because they are
well-suited for any smoothness (e.g., in Section E.2, we will apply the same argument to gradient-Hölder
functions).

Proof. The following construction is a standard way to prove lower bounds on sample complexity (for a
similar example, see Györfi et al. 2002, Theorem 3.2). Consider the set of bump functions {fz}z∈Z , where
Z and fz := fα,η,z are defined as in Lemma 6,11 for α := 2ε and some η ∈ (0, 1/4] to be selected later. Fix
an arbitrary u = (u1, . . . , ud) ∈ Z. We show now that fu is (c, γ)-Hölder, for a suitable choice of η. For all
x,y in the closure {fu > 0} of {fu > 0}, Lemma 6 gives

∣∣fu(x)− fu(y)
∣∣ ≤ 2ε

d∑
j=1

∣∣∣∣f̃(xj − ujη

)
− f̃

(
yj − uj
η

)∣∣∣∣ ≤ 2ε

d∑
j=1

3

∣∣∣∣xj − ujη
− yj − uj

η

∣∣∣∣ ≤ 6εd

η
‖x− y‖∞

=
6εd

η
‖x− y‖1−γ∞ ‖x− y‖γ∞ ≤

6εd

η
(2η)1−γ‖x− y‖γ∞ =

6εd21−γ

ηγ
‖x− y‖γ∞ ,

where the first inequality follows by applying d times the elementary consequence of the triangular inequality∣∣g1(x1)g2(x2) − g1(y1)g2(y2)
∣∣ ≤ max

{
‖g1‖∞, ‖g2‖∞

}(
|g1(x1)− g1(y1)| + |g2(x2)− g2(y2)|

)
, which holds

for any two bounded functions gi : Ei ⊆ Rdi → R (di ∈ N∗, i ∈ {1, 2}). If x′,y′ /∈ {fu > 0}, then
fu(x′) = 0 = fu(y′), hence

∣∣fu(x′)− fu(y′)
∣∣ = 0. Finally, if x ∈ {fu > 0} but y′ /∈ {fu > 0}, let y be the

unique12 point in the intersection of the segment [x,y′] and the boundary ∂{fu > 0} of {fu > 0}; since fu
vanishes at the boundary of {fu > 0}, then fu(y) = fu(y′), therefore

∣∣fu(x) − fu(y′)
∣∣ =

∣∣fu(x) − fu(y)
∣∣

and we can reapply the argument above for x,y now both in {fu > 0}, obtaining

∣∣fu(x)− fu(y′)
∣∣ =

∣∣fu(x)− fu(y)
∣∣ ≤ 6εd21−γ

ηγ
‖x− y‖γ∞ ≤

6εd21−γ

ηγ
‖x− y′‖γ∞ ,

where the last inequality follows by ‖x− y‖∞ ≤ ‖x− y′‖∞ and the monotonocity of x 7→ xγ on [0,∞).
Thus, selecting η = (6εd21−γ/c)1/γ so that 6εd21−γ/ηγ = c, we obtain that fz is (c, γ)-Hölder for all z ∈ Z.

11More precisely, fz is the restriction of fα,η,z to [0, 1]d.
12This follows from two simple observations. First, since fu is continuous, the set {fu > 0} is open, hence x

belongs to its interior. Second, {fu > 0} is (the interior of) a hypercube, therefore it is convex.



Moreover, by definition of Z (Lemma 6) and κ, we have that

|Z| =
⌊

1

2η
+ 1

⌋d
≥
(

1

2η

)d
=

(
1

2(6εd21−γ/c)1/γ

)d
=
( c

12d

)d/γ 1

εd/γ
= κ

1

εd/γ
.

Recall that the sets {fz1
> 0} and {fz2

> 0} are disjoint for distinct z1, z2 ∈ Z (Lemma 6). Thus, consider
an arbitrary deterministic algorithm and assume that only n < κ/εd/γ values are queried. By construction,
there exists at least a z ∈ P such that, if the algorithm is run for the level set {f = 0} of the constant
function f ≡ 0, no points are queried inside {fz > 0} (and being f constant, the algorithm always observes 0
as feedback for the n evaluations). Being deterministic, if the algorithm is run for the level set {fz = 0} of fz
it will also query no points inside {fz > 0}, observing only zeros for all the n evaluations. Since either way,
only zeros are observed, using again the fact that the algorithm is deterministic, it returns the same output
set Sn in both cases. This set cannot be simultaneously an ε-approximation of both {f = 0} and {fz = 0}.
Indeed, for the first set we have that {f = 0} = [0, 1]d = {f ≤ ε}. Thus, if Sn is an ε-approximation of
{f = 0} it has to satisfy {f = 0} ⊆ Sn ⊆ {f ≤ ε}, which in turn gives Sn = [0, 1]d. On the other hand,
maxx∈[0,1]d fz(x) = 2 ε, which implies that {fz ≤ ε} is properly included in [0, 1]d. Hence, if Sn = [0, 1]d

were also an ε-approximation of {fz = 0}, we would have that [0, 1]d = Sn ⊆ {fz ≤ ε} 6= [0, 1]d, which yields
a contradiction. This concludes the proof of the first claim. The second claim follows directly from the first
part and Definition 7.

E MISSING PROOFS OF SECTION 5

In this section, we present all missing proofs of our results in Section 4. We restate them to ease readability.

E.1 Upper Bound

Lemma (Lemma 1). Let f : C ′ → R be a (c1, γ1)-gradient-Hölder function, for some c1 > 0 and γ1 ∈ (0, 1].

Let C ′ ⊆ [0, 1]d be a hypercube with diameter ` ∈ (0, 1] and set of vertices V ′, i.e., C ′ =
∏d
j=1[uj , uj + `], for

some u := (u1, . . . , ud) ∈ [0, 1− `]d, and V ′ =
∏d
j=1{uj , uj + `}. The function

hC′ : C
′ → R

x 7→
∑
v∈V ′

f(v)

d∏
j=1

pvj (xj) ,

where

pvj (xj) :=

(
1− xj − uj

`

)
Ivj=uj +

xj − uj
`

Ivj=uj+`,

interpolates the 2d pairs
{

(v, f(v))
}
v∈V ′ and it satisfies

sup
x∈C′

∣∣hC′(x)− f(x)
∣∣ ≤ c1d `1+γ1 .

Proof. Up to applying the translation x 7→ x + u, we can (and do) assume without loss of generality that
u = 0. The hypercube and its set of vertices then become C ′ = [0, `]d and V ′ = {0, `}d respectively. To
verify that hC′ interpolates the 2d pairs

{
(v, f(v))

}
v∈V ′ , note that by definition of hC′ , for any vertex

w ∈ V ′ = {0, `}d, we have

hC′(w) =
∑
v∈V ′

f(v)

d∏
j=1

pvj (wj) =
∑
v∈V ′

f(v)

d∏
j=1

Iwj=vj = f(w) .

To prove the inequality, for all k ∈ {0, . . . , d}, let (Pk) be the property: if an x ∈ C ′ has at most k components
which are not in {0, `}, then it holds that

∣∣hC′(x) − f(x)
∣∣ ≤ c1k `

1+γ1 . To show that
∣∣hC′(x) − f(x)

∣∣ ≤
c1d `

1+γ1 for all x ∈ C ′ (therefore concluding the proof) we then only need to check that the property (Pd) is



true. We do so by induction. If k = 0, then (P0) follows by hC′ being an approximator for
{

(v, f(v))
}
v∈V ′ .

Assume now that (Pk) holds for k ∈ {0, . . . , d− 1}. To prove (Pk+1), fix an arbitrary x := (x1, . . . , xd) ∈ C ′,
assume that k+1 components of x are not in {0, `} and let i ∈ {1, . . . , d} be any one of them (i.e., xi ∈ (0, `)).
Consider the two univariate functions

hi : [0, `]→ R
t 7→ hC′(x1, . . . , xi−1, t, xi+1, . . . , xd) ,

fi : [0, `]→ R
t 7→ f(x1, . . . , xi−1, t, xi+1, . . . , xd) .

Being hi linear (by definition of hC′), we get

hi(xi) =
`− xi
`

hi(0) +
xi
`
hi(`) . (15)

Being fi continuous on [0, `] and derivable on (0, `) (by our assumptions on f), the mean value theorem
applied to fi on [0, xi] and [0, `] respectively yields the existence of ξ1 ∈ (0, xi) and ξ2 ∈ (0, `) such that

fi(xi) = fi(0) + f ′i(ξ1)xi , (16)

fi(`) = fi(0) + f ′i(ξ2) ` . (17)

Putting everything together, we get that∣∣hC′(x)− f(x)
∣∣ =

∣∣hi(xi)− fi(xi)∣∣
(by definition of hi and fi). By (15) and (16), the right-hand side is equal to∣∣∣∣`− xi`

hi(0) +
xi
`
hi(`)− fi(0)− f ′i(ξ1)xi

∣∣∣∣ ,
which by the triangular inequality is at most∣∣∣∣`− xi`

hi(0) +
xi
`
hi(`)− fi(0)− xi

fi(`)− fi(0)

`

∣∣∣∣+

∣∣∣∣xi fi(`)− fi(0)

`
− f ′i(ξ1)xi

∣∣∣∣ .
By (17), this is equal to∣∣∣∣`− xi`

(
hi(0)− fi(0)

)
+
xi
`

(
hi(`)− fi(`)

)∣∣∣∣+
∣∣xi f ′i(ξ2)− f ′i(ξ1)xi

∣∣ .
Finally, using again the triangular inequality, we can further upper bound with

`− xi
`

∣∣∣(hi(0)− fi(0)
)∣∣∣︸ ︷︷ ︸

≤c1k`1+γ1

+
xi
`

∣∣∣(hi(`)− fi(`))∣∣∣︸ ︷︷ ︸
≤c1k`1+γ1

+ xi︸︷︷︸
≤`

∣∣f ′i(ξ2)− f ′i(ξ1)
∣∣︸ ︷︷ ︸

≤c1`γ1

≤ c1(k + 1)`1+γ1 ,

where on the last line, we applied property (Pk) to the first two terms and we upper bounded the last one
leveraging the (c1, γ1)-Hölderness of the gradients of f . This proves (Pk+1) and concludes the proof.

Proposition 3 (Theorem 4, upper bound). Consider the BAG algorithm (Algorithm 4) run with input
a, c1, γ1. Let f : [0, 1]d → R be an arbitrary (c1, γ1)-gradient-Hölder function with level set {f = a} 6= ∅. Fix
any accuracy ε > 0. Then, for all

n > κ
1

εd/(1+γ1)
, if κ :=

(
25+4γ1+(1+γ1)/d c1d

)d/γ
,

the output Sn returned after the n-th query is an ε-approximation of {f = a}.



Proof. We proceed as in the proof of Theorem 3. Theorem 2 implies that for all n > n(ε), where i(ε) :=
d(1/(1+γ1)) log2(2c1d/ε)e and n(ε) is

8d
i(ε)−1∑
i=0

lim
δ→1−

N
({
|f − a| ≤ 2c1d2−(1+γ1)i

}
, δ2−i

)
,

the output Sn returned after the n-th query is an ε-approximation of {f = a}. If ε ≥ 2c1d, than the sum in
the definition of n(ε) ranges from 0 to a negative value, thus n(ε) = 0 by definition of sum over an empty
set and the result is true with κ = 0. Assume then that ε < 2c1d so that such sum is not trivially zero.
Upper-bounding, for any δ ∈ (0, 1) and all i ≥ 0,

N
({
|f − a| ≤ 2c1d 2−(1+γ1)i

}
, δ 2−i

)
≤ N

(
[0, 1]d, δ 2−i

) (†)
≤
(
2i/δ + 1

)d ≤ (2/δ)d 2di

(for completeness, we include a proof of the known upper bound (†) in Section B, Lemma 4) and recognizing
the geometric sum below, we can conclude that

n(ε) ≤ 16d
d(1/(1+γ1)) log2(2c1d/ε)e−1∑

i=0

(
2d
)i

≤ 16d
2d((1/(1+γ1)) log2(2c1d/ε)+1)

2d −
(

2d/2
)

= 2 · 16d (2c1d)d/(1+γ1) 1

εd/(1+γ1)
.

E.2 Lower Bound

We conclude the section by proving a matching lower bound. Similarly to Proposition 2, we adapt some
already known techniques from nonparametric regression (see, e.g., Györfi et al. 2002, Theorem 3.2).

Proposition 4 (Theorem 4, lower bound). Fix any level a ∈ R, any two Hölder constants c1 > 0, γ1 ∈
(0, 1], and any accuracy ε ∈

(
0, c1/(132d23+γ1)

)
. Let n < κ/εd/(1+γ1) be a positive integer, where κ :=(

c1/(528d)
)d/(1+γ1)

. For each deterministic algorithm A there is a (c1, γ1)-gradient-Hölder function f such
that, if A queries n values of f , then its output set Sn is not an ε-approximation of {f = a}. This implies
in particular that (recall Definition 7),

inf
A

sup
f

n(f,A, ε, a) ≥ κ 1

εd/(1+γ1)
,

where the inf is over all deterministic algorithms A and the sup is over all (c1, γ1)-gradient-Hölder func-
tions f .

As we pointed out after Proposition 2, the leading constant κ =
(
c1/(528d)

)d/(1+γ1)
in our lower bound is

small, and could likely be improved using smoothness-specific perturbations of the zero function, instead of
the more universal bump functions.

Proof. The following construction is a standard way to prove lower bounds on sample complexity (for a
similar example, see Györfi et al. 2002, Theorem 3.2). Consider the set of bump functions {fz}z∈Z , where
Z and fz := fα,η,z are defined as in Lemma 6,13 for α := 2ε and some η ∈ (0, 1/4] to be selected later. Fix
an arbitrary u = (u1, . . . , ud) ∈ Z. We show now that fu is (c1, γ1)-gradient-Hölder, for a suitable choice of
η. This is sufficient to prove the result, following the same argument as in the proof of Proposition 2. Note

13More precisely, fz is the restriction of fα,η,z to [0, 1]d.



first that for all i ∈ {1, . . . , d} and any x ∈ [0, 1]d, denoting by ∂i the partial derivative with respect to the
i-th variable,

∂ifu(x) =
2ε

η
f̃ ′
(
xi − ui
η

) d∏
j=1
j 6=i

f̃

(
xj − uj

η

)
.

Hence, using the fact that f̃ is 3-Lipschitz (Lemma 6) and 22-gradient-Lipschitz (the latter can be done by

checking that
∥∥f̃ ′′∥∥∞ ≤ 22), for all i ∈ {1, . . . , d} and any x,y ∈ [0, 1]d, we get

∣∣∂ifu(x)− ∂ifu(y)
∣∣ ≤ 2ε

η
3

22

∣∣∣∣xi − uiη
− yi − ui

η

∣∣∣∣+ 3

d∑
j=1
j 6=i

∣∣∣∣xj − ujη
− yj − uj

η

∣∣∣∣
 ≤ 132εd

η2
‖x− y‖∞ , (18)

where the first inequality follows by applying d times the elementary consequence of the triangular inequality∣∣g1(x1)g2(x2)−g1(y1)g2(y2)
∣∣ ≤ max

{
‖g1‖∞, ‖g2‖∞

}(
|g1(x1)− g1(y1)|+ |g2(x2)− g2(y2)|

)
, which holds for

any two bounded functions gi : Ei ⊆ Rdi → R (di ∈ N∗, i ∈ {1, 2}), and then using the Lipschitzness of f̃ and

f̃ ′. Similarly to Proposition 2, to prove that fu is (c1, γ1)-gradient-Hölder, we only need to check that the
gradient of fu is (c1, γ1)-Hölder on the closure {fu > 0} of {fu > 0}. For all x,y ∈ {fu > 0}, Equation (18)
and Lemma 6 yield

∥∥∇fu(x)−∇fu(y)
∥∥
∞ ≤

132εd

η2
‖x− y‖∞ =

132εd

η2
‖x− y‖1−γ1∞ ‖x− y‖γ1∞

≤ 132εd

η2
(2η)1−γ1‖x− y‖γ1∞ =

132εd21−γ1

η1+γ1
‖x− y‖γ1∞ .

Therefore, selecting η = (132εd21−γ1/c1)1/(1+γ1) so that 132εd21−γ1/η1+γ1 = c1, we obtain that fz is
(c1, γ1)-Hölder for all z ∈ Z. Moreover, by definition of Z and κ, we have that

|Z| ≥
(

1

2η

)d
=

(
1

2(132εd21−γ1/c1)1/(1+γ1)

)d
=
( c1

528d

)d/(1+γ1) 1

εd/(1+γ1)
= κ

1

εd/(1+γ1)
.

Thus, proceeding as in the proof of Proposition 2, no deterministic algorithm can output a set that is an
ε-approximation of the level set {f = 0} = [0, 1]d of the constant function f ≡ 0 and simultaneously an
ε-approximation of the level set {fz = 0} of all bump functions fz (z ∈ Z), without querying at least one
value in each one of the |Z| ≥ κ/εd/(1+γ1) disjoint sets {fz > 0} (z ∈ Z) when applied to f ≡ 0.

F THE BENEFITS OF ADDITIONAL STRUCTURAL ASSUMPTIONS

In this section, we present some examples showing how our general results can be applied to yield (slightly)
improved sample complexity bounds when f satisfies additional structural assumptions, such as convexity.

F.1 NLS Dimension

In order to derive more readable bounds on the number of queries needed to return approximations of level
sets, we now introduce a quantity that measures the difficulty of finding such approximations.

Definition 9 (NLS dimension). Fix any level a ∈ R and a function f : [0, 1]d → R. We say that d? ∈ [0, d]
is a NLS (or Near-Level-Set) dimension of the level set {f = a} if there exists C? > 0 such that (recalling
Definition 2 —packing number)

∀r ∈ (0, 1), N
({
|f − a| ≤ r

}
, r
)
≤ C?

(
1

r

)d?
. (19)
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Figure 2: The “dimension” of the level set is at least the same as that of hyperplanes Hx and Hy.

NLS dimensions are a natural generalization of the well-known concept of near-optimality dimension, from
the field of non-convex optimization (see, e.g., (Bouttier et al., 2020, Section 2.3 and following discussion in
Appendix B)). The idea behind Inequality (19) is that inflated level sets at, say, scale r ∈ (0, 1), are hard to
pinpoint if their complement

{
|f − a| > r

}
is large. Since for any increasing sequence r := r0 < r1 < r2 < . . .,

the set
{
|f − a| > r

}
of points at which f is more than r-away from a can be decomposed into a union

of “layers”
{
r0 < |f − a| ≤ r1

}
,
{
r1 < |f − a| ≤ r2

}
,
{
r2 < |f − a| ≤ r3

}
, . . ., and each of these layers{

rs−1 < |f − a| ≤ rs
}

is by definition included in
{
|f − a| ≤ rs

}
, by controlling the size of each of these{

|f − a| ≤ rs
}

we can control the size of
{
|f − a| > r

}
. Therefore, by controlling how large the inflated

level sets
{
|f − a| ≤ r

}
can be at all scales r ∈ (0, 1), the parameters C? and d? quantify the difficulty of the

level set approximation problem. In contrast, scales r ≥ 1 are not informative since in this case the packing
number in (19) is always 1. To see this, simply note that if r ≥ 1, no more than 1 strictly r-separated point
can be packed in

{
|f − a| ≤ r

}
, which is included in [0, 1]d, that has diameter 1 (in the sup-norm).

The dimension d of the domain is always a NLS dimension of any function f : [0, 1]d → R (with C? = 2d; we
add a proof of this claim in Section B, Lemma 5). Hence, it is sufficient to consider NLS dimensions d? ≤ d,
as we do in our Definition 9. While (as we will see in Section F.2) d? is in general strictly smaller than d,
bounds expressed in terms of a NLS dimension should only be considered slight refinements of worst-case
bounds expressed in terms of d. Indeed, the following result shows that, with the exceptions of sets of
minimizers and maximizers, level sets {f = a} of continuous functions f have NLS dimension at least d− 1.

Theorem 6 (Theorem 1). Let f : [0, 1]d → R be a non-constant continuous function, and a ∈ R be any level
such that minx∈[0,1]d f(x) < a < maxx∈[0,1]d f(x). Then, there exists C? > 0 such that, for all r > 0,

N
(
{f = a}, r

)
≥ C?

(
1

r

)d−1

.

Proof. For all d0 ∈ N∗, z ∈ Rd0 , and ρ > 0, we denote by Bd0(z, ρ) the closed d0-dimensional Euclidean ball
{x ∈ Rd0 : ‖x− z‖2 ≤ ρ} with center z and radius ρ. Since a is neither the maximum nor the minimum of f
and f is continuous, then the two sets {f < a} and {f > a} are non-empty and open. Therefore, we claim that
there exist two points x ∈ {f < a}, y ∈ {f > a}, and a radius ρ > 0, such that Bd(x, ρ) ⊆ {f < a} ∩ (0, 1)d

and Bd(y, ρ) ⊆ {f > a} ∩ (0, 1)d (Figure 2). To see this, note that if f were identically equal to a on (0, 1)d,
then, by continuity, f would be identically equal to a on the whole [0, 1]d, contradicting the assumption that
it is non-constant. Hence there exists an x ∈ (0, 1)d such that f(x) 6= a. Assume that f(x) < a (for the
opposite case, proceed analogously). Then, being {f < a} ∩ (0, 1)d open, there exists a radius ρ1 > 0 such
that Bd(x, ρ1) ⊆ {f < a} ∩ (0, 1)d. Now, if f were lower than or equal to a on (0, 1)d, then, by continuity,
f would be lower than or equal to a on the whole [0, 1]d (and so would be its maximum), contradicting
the assumption that a < max(f). Hence, there exists an y ∈ (0, 1)d such that f(y) > a. Then, being
{f > a} ∩ (0, 1)d open, there exists a radius ρ2 > 0 such that Bd(y, ρ2) ⊆ {f > a} ∩ (0, 1)d. The claim is
therefore proven by letting ρ := min(ρ1, ρ2).



Now, for all r ≥ ρ/
√
d, we have

N
(
{f = a}, r

)
≥ 1 ≥

(
ρ√
d

)d−1(
1

r

)d−1

and the result is proven with C? =
(
ρ/
√
d
)d−1

.

Fix now an arbitrary r ∈
(
0, ρ/
√
d
)
. Consider the line L :=

{
(1− t)x+ ty : t ∈ R

}
passing through x and y

and the two hyperplanes Hx and Hy orthogonal to L and passing through x and y respectively. We denote,
for each z ∈ Rd and E ⊆ Rd, the Minkowski sum {z + u : u ∈ E} of {z} and E by z + E. Note that, by
construction, (y − x) +

(
Hx ∩ Bd(x, ρ)

)
= Hy ∩ Bd(y, ρ), and there is a rigid transformation T : Rd → Rd

that maps Hx ∩ Bd(x, ρ) into the (d − 1)-dimensional Euclidean ball Bd−1(0, ρ) =
{
z ∈ Rd−1 : ‖z‖2 ≤ ρ

}
of Rd−1 (where, with a slight abuse of notation, we identify from here on out Rd−1 with the subspace{

(z1, . . . , zd) ∈ Rd : zd = 0
}

of Rd). By the symmetry of the Euclidean balls, for all z′ ∈
(
Hx∩Bd(x, ρ)

)
and

ρ′ > 0, the transformed through the rigid transformation T of the intersection Bd(z
′, ρ′) ∩

(
Hx ∩ Bd(x, ρ)

)
of an arbitrary d-dimensional Euclidean ball Bd(z

′, ρ′) centered at Hx ∩ Bd(x, ρ) and Hx ∩ Bd(x, ρ) itself
is simply the intersection Bd−1(z′′, ρ′) ∩ Bd−1(0, ρ) between the ball Bd−1(0, ρ) and a (d − 1)-dimensional
ball Bd−1(z′′, ρ′) with some center z′′ ∈ Bd−1(0, ρ) and the same radius ρ′ of Bd(z

′, ρ′). We recall that for
any dimension d0 ∈ N∗, norm ‖·‖ on Rd0 , scale r0 > 0, and non-empty subset E0 of Rd0 , a set P ⊆ E0 is an
r0-packing of E0 in Rd0 with respect to ‖·‖ if each two distinct points z1, z2 ∈ P satisfy ‖z1 − z2‖ > r0, and
a set C ⊆ E0 is an r0-covering of E0 in Rd0 with respect to ‖·‖ if for all z ∈ E0 there exists c ∈ C such that
‖z − c‖ ≤ r0; we denote by Nd0,‖·‖(E0, r0) the largest cardinality of an r0-packing of E0 in Rd0 with respect

to ‖·‖, and byMd0,‖·‖(E0, r0) the smallest cardinality of an r0-covering of E0 in Rd0 with respect to ‖·‖. By

the previous observation, then, for all r0 > 0, a set is an r0-packing (resp., covering) of Hx ∩Bd(x, ρ) in Rd
with respect to the d-dimensional Euclidean norm if and only if its transformed under T is an r0-packing
(resp., covering) of Bd−1(0, ρ) in Rd−1 with respect to the (d− 1)-dimensional Euclidean norm. Hence

Nd,‖·‖2
(
Hx ∩Bd(x, ρ),

√
d r
)

= Nd−1,‖·‖2
(
Bd−1(0, ρ),

√
d r
)

≥Md−1,‖·‖2
(
Bd−1(0, ρ),

√
d r
)
≥
(

ρ√
d r

)d−1

,

where the first inequality follows from the fact that each packing that is maximal with respect to the inclusion
is also a covering, and the second one is a known lower bound on the number of balls with the same radius
that are needed to cover a ball with a bigger radius, expressed in terms of a ratio of volumes (see, e.g.,
(Wainwright, 2019, Lemma 5.7)). Thus, we determined a

(√
d r
)
-packing P of Hx ∩ Bd(x, ρ) in Rd with

respect to the d-dimensional Euclidean norm consisting of C?(1/r)d−1 points, where again C? :=
(
ρ/
√
d
)d−1

.
For all p ∈ P , consider the segment [p,p + y − x]. By construction, all these segments are parallel, with
an endpoint in Hx ∩ Bd(x, ρ) ⊆ {f < a} and the other in Hy ∩ Bd(y, ρ) ⊆ {f > a}. Thus, the d-
dimensional Euclidean distance between any two points belonging to distinct segments is at least equal to
the minimum distance between the corresponding lines, which is strictly greater than

√
d r by construction.

By the continuity of f , then, for each p ∈ P there exists a pa belonging to the segment [p,p + y − x] such
that f(pa) = a which, together with the previous remark, implies that the family Pa :=

⋃
p∈P pa obtained

this way is a
(√
dr
)
-packing of {f = a} in Rd with respect to the d-dimensional Euclidean norm. Since the

two norms ‖·‖∞ and ‖·‖2 on Rd satisfy ‖·‖∞ ≥ ‖·‖2/
√
d, then Pa is also an r-packing of {f = a} in Rd

with respect to the sup-norm ‖·‖∞, therefore its cardinality |Pa| = C?(1/r)d−1 is smaller than or equal to
the largest cardinality N

(
{f = a}, r

)
of an r-packing of {f = a} with respect to the sup-norm ‖·‖∞. This

concludes the proof.

We remark that our definition in Equation (19) could be refined by considering variable d?(r) and C?(r) at
different scales r. This would take into account that at different scales, the inflated level sets could have
smaller size. Notably, our general result (Theorem 2) would naturally adapt to this finer definition as they



are stated in terms of packing numbers at decreasing scales. For the sake of clarity, in this work we will stick
to our worst-case definition of NLS dimension and we begin by showing how Theorem 2 has an immediate
corollary in terms of d?. Note that in the following results, our BA instances are oblivious to the NLS
dimension. Also, recall from the comment before Theorem 6 that typical level sets have NLS dimension
d? ≥ d− 1.

Corollary 2 (of Theorem 2). Consider a Bisect and Approximate algorithm (Algorithm 2) run with input
a, k, b, β. Let f : [0, 1]d → R be an arbitrary function with level set {f = a} 6= ∅ and let d? ∈ [0, d] be a NLS
dimension of {f = a} (Definition 9). Assume that the approximators gC′ (defined at line 10) are (b, β)-
accurate approximations of f (Definition 4), with β ≥ 1. Fix any accuracy ε > 0. Then, for all n > m(ε),
the output Sn returned after the n-th query is an ε-approximation of {f = a}, where

m(ε) :=


κ1 + κ2 log2

(
1

ε1/β

)+

if d? = 0 ,

κ(d?)
1

εd?/β
if d? > 0 ,

for κ1, κ2, κ(d?) ≥ 0 independent of ε, that depend exponentially on the dimension d, where x+ = max{x, 0}
for all x ∈ R.

Proof. Since all the conditions of Theorem 2 are met by assumption, we have that for all n > n(ε), the
output Sn returned after the n-th query is an ε-approximation of {f = a}, where n(ε) is

4d k

i(ε)−1∑
i=0

lim
δ→1−

N
({
|f − a| ≤ 2 b 2−βi

}
, δ 2−i

)
(20)

and i(ε) :=
⌈
(1/β) log2(2b/ε)

⌉
. If ε ≥ 2b, than the sum in the definition of n(ε) ranges from 0 to a negative

value, thus n(ε) = 0 by definition of sum over an empty set and the result is true with κ1 = κ2 = κ(d?) = 0.
Assume then that ε < 2b so that such sum is not trivially zero. Being β ≥ 1, we can further upper bound
n(ε) by

4d k

i(ε)−1∑
i=0

lim
δ→1−

N
({
|f − a| ≤ 2b 2−i

}
, δ 2−i

)
.

By Lemma 3, the packing number is at most(
1 + 4

2b

δ
I2b>δ

)d
N
({
|f − a| ≤ 2b 2−i

}
, 2b 2−i

)
.

Taking the limit for δ → 1−, the first term becomes
(
1 + 8b I2b≥1

)d
, while our NLS assumption (19) implies

that the packing number is smaller than, or equal to

I2b2−i≥1 + C?
(

1

2b 2−i

)d?
I2b2−i<1 (21)

A direct computation shows that the sum over i of the first term in (21) is

i(ε)−1∑
i=0

I2b2−i≥1 ≤ log2(4b) I2b≥1 . (22)

For the sum over i of second term in (21), we upper bound the indicator function I2b2−i<1 with 1 for all i
and study separately the two cases d? = 0 and d? > 0. If d? = 0, then, by definition of i(ε),

i(ε)−1∑
i=0

(
2d
?)i

= i(ε) ≤ log2

(
1

ε1/β

)
+ log2

(
2 (2b)1/β

)
.



Hence, the result follows by defining the additive and multiplicative terms κ1 and κ2, respectively, by

κ′ k
(
log2(4b) I2b≥1 + C? log2

(
2 (2b)1/β

))
and κ′ k C?

(2b)d?
, where κ′ :=

(
4 + 32 b I2b≥1

)d
.

If on the other hand, d? > 0, recognizing the geometric sum below, we have, by definition of i(ε)

i(ε)−1∑
i=0

(
2d
?)i

=

(
2d
?)i(ε) − 1

2d? − 1
≤ 2d

?

(2 b)d
?/β

2d? − 1

1

εd?/β
.

Thus, if 2b < 1 or if simultaneously 2b ≥ 1 and ε ≤ 1/
(
log2(4b)

)β/d?
—so that the term log2(4b) I2b≥1 in

(22) can be upper bounded by 1/εd
?/β I2b≥1— the result follows by defining κ(d?) as(

4 + 32 b I2b≥1

)d
k

C?

(2b)d?

(
I2b≥1 +

2d
?

(2 b)d
?/β

2d? − 1

)
.

Finally, we consider the case in which 2b ≥ 1 and ε > 1/
(
log2(4b)

)β/d?
. In this simpler instance, we upper

bound n(ε) as in the proofs of Theorems 3 and 4. Look back at Equation (20). Upper-bounding, for any
δ ∈ (0, 1) and all i ≥ 0,

N
({
|f − a| ≤ 2 b 2−βi

}
, δ 2−i

)
≤ N

(
[0, 1]d, δ 2−i

) (†)
≤
(
2i/δ + 1

)d ≤ (2/δ)d 2di

(for completeness, we include a proof of the known upper bound (†) in Section B, Lemma 4) and recognizing
the geometric sum below, we have

n(ε) ≤ 8d k

d(1/β) log2(2b/ε)e−1∑
i=0

(
2d
)i

= 8dk
2dd(1/β) log2(2b/ε)e − 1

2d − 1
≤ 8dk

2d((1/β) log2(2b/ε)+1)

2d −
(

2d/2
)

= 2 8d k (2 b)d/β
1

εd/β
.

Finally, using the assumption ε > 1/
(
log2(4b)

)β/d?
, we can upper bound the term 1/εd/β with

1

εd/β
=

(
1

ε

)(d−d?)/β
1

εd?/β

<
((

log2(4b)
)β/d?)(d−d?)/β 1

εd?/β

=
(
log2(4b)

)(d−d?)/d? 1

εd?/β
,

and the results follows after defining the constant κ(d?) := 2 8d k (2 b)d/β
(
log2(4b)

)(d−d?)/d?

.

The previous result has the following immediate consequence for BAG algorithms. Recall from the comment
before Theorem 6 that typical level sets have NLS dimension d? ≥ d− 1.

Corollary (Corollary 1). Consider the BAG algorithm (Algorithm 4) run with input a, c1, γ1. Let
f : [0, 1]d → R be an arbitrary (c1, γ1)-gradient-Hölder function with level set {f = a} 6= ∅ and let d? ∈ [0, d]
be a NLS dimension of {f = a} (Definition 9). Fix any accuracy ε > 0. Then, for all n > m(ε), the output
Sn returned after the n-th query is an ε-approximation of {f = a}, where

m(ε) :=


κ1 + κ2 log2

(
1

ε1/(1+γ1)

)
if d? = 0 ,

κ(d?)
1

εd?/(1+γ1)
if d? > 0 ,

for κ1, κ2, κ(d?) ≥ 0 independent of ε, that depend exponentially on the dimension d.



Proof. The result follows immediately from Corollary 2 and Lemma 1.

The two previous corollaries suggest a general method for solving the level set approximation problem for
a given class F , obtaining bounds that are slightly more refined than the worst-case ones that we saw in
Sections 4 and 5. First, determine a family of approximators that accurately approximate the functions
in F . Second, obtain for the resulting choice of BA algorithm a sample complexity bound in terms of
packing numbers of inflated level sets (as in Theorem 2). Third, find a NLS dimension of an arbitrary
f ∈ F . Importantly, both steps one and three of this process are decoupled from the task of determining
approximations of level sets, and as such, they can be investigated independently. For step two, we can
simply plug in Theorem 2.

In the next section, we will discuss the notable convex case, in which the estimation of the NLS dimension
is non-trivial. As it turns out, this also leads to a rate-optimal sample complexity for BA algorithms.

F.2 Upper Bound for Convex gradient-Hölder Functions

In this section we show a non trivial application of the theory presented so far. We will prove that our BAG
algorithm is rate-optimal for approximating the level set of convex gradient-Lipschitz functions.

For the sake of simplicity, we will focus on the approximation of what we call proper level sets (Definition 10,
below). Informally, a level set is proper if it is non-empty, bounded away from the set of minimizers (where
the problem collapses into a simpler, standard minimization problem) and it is not cropped by the boundary
of [0, 1]d.

Definition 10 (Proper level sets). Fix any level a ∈ R, a function f : [0, 1]d → R, and a margin ∆ > 0. We
say that {f = a} is a ∆-proper level set (for f), if {f = a} 6= ∅ and

min
x∈[0,1]d

f(x) + ∆ ≤ a ≤ min
x∈∂[0,1]d

f(x) ,

where we denoted by ∂[0, 1]d the boundary of [0, 1]d. When we need not explicitly refer to the margin ∆, we
simply say that {f = a} is a proper level set.

In this section, we present an upper bound on the number of samples that our BAG algorithm needs in order
to guarantee that its output is an approximation of the target level set of a convex gradient-Hölder function.
As we discussed in Section F, now that we established a method on how to get these types of results, we only
need to determine a NLS dimension d? (Definition 9) of the level set of an arbitrary convex gradient-Hölder
function. The following results shows that d? = d− 1.

Proposition 5. Fix any level a ∈ R, two Hölder constants c > 0, γ ∈ (0, 1], and an arbitrary convex (c, γ)-
Hölder function f : [0, 1]d → R with proper level set {f = a}. Then, there exists a constant C? > 0 such
that

∀r ∈ (0, 1) , N
({
|f − a| ≤ r

}
, r
)
≤ C?

(
1

r

)d−1

.

Proof. Let ∆ > 0 be a margin such that {f = a} is ∆-proper. Fix any r ∈ (0, 1). If r > ∆/2, we can simply
apply Lemma 5 in Section B and use the lower bound on r to obtain

N
({
|f − a| ≤ r

}
, r
)
≤ 2d

(
1

r

)d
≤ 2d+1

∆

(
1

r

)d−1

.

Hence, without loss of generality, we can (and do) assume that r ∈ (0,∆/2). In the following, we denote
by Sd−1 the (d − 1)-dimensional unit sphere

{
x ∈ Rd : ‖x‖2 ≤ 1

}
with respect to the Euclidean norm

‖·‖2. Let x? be a minimizer of f . Note that, being {f = a} a proper level set (Definition 10), we have
that f(x?) < a ≤ minx∈∂[0,1]d f(x) , therefore x? belongs to the interior (0, 1)d of [0, 1]d. Now, for each

z ∈ Sd−1, let pz be the unique element of ∂[0, 1]d such that (pz−x?)/‖pz − xm‖2 = z (Figure 3) and define
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Figure 3: In black, the unit hypercube [0, 1]d; in red, the unit sphere centered at the minimizer x?; in
magenta, the level set {f = a}.

the convex univariate function

fz :
[
0, ‖x? − pz‖2

]
→ R
t 7→ f(x? + tz) .

Being {f = a} a proper level set, for all z ∈ Sd−1, the function fz satisfies

min
x∈[0,1]d

f(x) = fz(0) < a ≤ min
x∈∂[0,1]d

f(x) ≤ fz
(
‖x? − pz‖2

)
.

Thus, for each z ∈ Sd−1, by the convexity and continuity of fz, there exists a unique value tz ∈[
0, ‖x? − pz‖2

]
such that fz(tz) = a (Figure 3), which we use to define the following function on the

unit sphere

s : Sd−1 → R
z 7→ s(z) := tz .

In words, tz is the distance between the minimizer x? and the level set {f = a} in the direction of z. We
show now that s is Lipschitz with respect to the geodesic distance θ on Sd−1, i.e., that there exists a constant
` > 0 such that, for all z1, z2 ∈ Sd−1, ∣∣s(z1)− s(z2)

∣∣ ≤ ` θ(z1, z2) ,

where θ(z1, z2) = arccos
(
〈z1, z2〉

)
is the angle between the two unit vectors z1, z2. Fix two arbitrary

z1, z2 ∈ Sd−1 with geodesic distance θ := θ(z1, z2) ∈ (0, π]. If θ ≥ π/6, we have∣∣s(z1)− s(z2)
∣∣

θ
≤ 6
√
d

π
.

Assume now that θ < π/6. Consider the two-dimensional plane containing the triangle with vertices x?,
v1 := x? + s(z1)z1 and v2 := x? + s(z2)z2 (note that the three points are not aligned). Let v be the
orthogonal projection of x? on the line containing v1 and v2. Assume first that v belongs to the segment
[v1,v2] (Figure 4, left). Then, the function

gv1,v2
: R→ [0,+∞)

t 7→ gv1,v2
(t) :=

∥∥∥x? − (v1 + t(v2 − v1)
)∥∥∥2

2

has its unique minimum at some t? ∈ [0, 1]. For all t ∈ R, we have

gv1,v2
(t) =

∥∥(1− t)(v1 − x?) + t(v2 − x?)
∥∥2

2

= (1− t)2s(z1)2 + t2s(z2)2 + 2t(1− t)s(z1)s(z2) cos(θ)

= t2
(
s(z1)2 + s(z2)2 − 2s(z1)s(z2) cos(θ)

)
+ t
(
2s(z1)s(z2) cos(θ)− 2s(z1)2

)
+ s(z1)2 .
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Figure 4: In the left (resp., right) picture, v belongs (resp., does not belong) to the segment [v1,v2].

The derivative of this function is given, for all t ∈ R, by

g′v1,v2
(t) = 2t

(
s(z1)2 + s(z2)2 − 2s(z1)s(z2) cos(θ)

)
+
(
2s(z1)s(z2) cos(θ)− 2s(z1)2

)
.

Hence we have

0 ≤ t? =
2s(z1)2 − 2s(z1)s(z2) cos(θ)

2
(
s(z1)2 + s(z2)2 − 2s(z1)s(z2) cos(θ)

) .
Since the above denominator is strictly positive, we obtain

2s(z1)2 ≥ 2s(z1)s(z2) cos(θ) ,

thus, being s(z1) and s(z2) also strictly positive,

cos(θ) ≤ 1− s(z2)− s(z1)

s(z2)

and in turn, since s(z) ≤
√
d for all z ∈ Sd−1,

s(z2)− s(z1) ≤
√
d
(
1− cos(θ)

)
.

Being θ > 0, we have 1− cos(θ) ≤ θ and thus

s(z2)− s(z1)

θ
≤
√
d .

Swapping the roles of v1 and v2 (i.e., considering the function gv2,v1
) we obtain similarly

s(z1)− s(z2)

θ
≤
√
d .

Hence, when v belongs to the segment [v1,v2], we obtained∣∣s(z1)− s(z2)
∣∣

θ
≤
√
d .

Consider now the last case where v does not belong to the segment [v1,v2] (Figure 4, right). Without loss
of generality, we can (and do) assume that s(z2) > s(z1), and thus that v is closer to v1 than to v2. By
convexity of f on the line containing v1 and v2, we have f(v) ≥ a. Using the fact that the level set {f = a}
is ∆-proper and the (c, γ)-Hölderness of f , we get

∆ ≤ a− min
x∈[0,1]d

f(x) ≤ f(v)− f(x?) ≤ c‖v − x?‖γ∞ ≤ c‖v − x?‖γ2 ,

which in turn implies

‖v − x?‖2 ≥
(

∆

c

)1/γ

. (23)
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Figure 5: The isosceles triangle z1,0, z2.

Let φ be the angle between x?−v1 and v2−v1. Applying the sine rule to the triangle x?,v1,v2, we obtain

sin(θ)

‖v1 − v2‖2
=

sin(φ)

s(z2)

and thus

sin(φ) =
s(z2) sin(θ)

‖v1 − v2‖2
. (24)

Let φ′ = π − φ be the angle between x? − v1 and v − v1. Note that the angle between x? − v and v1 − v
is π/2, being v the orthogonal projection of x? on the line containing v1 and v2. Hence, applying the sine
rule to the triangle x?,v1,v we obtain

sin(φ′)
‖v − x?‖2

=
sin(π/2)

s(z1)

and thus
‖v − x?‖2 = s(z1) sin(φ) . (25)

From (23), (25), and (24), we obtain

s(z1)s(z2) sin(θ)

‖v1 − v2‖2
≥
(

∆

c

)1/γ

.

The triangle inequality yields∣∣s(z1)− s(z2)
∣∣ =

∣∣∥∥v1 − x?
∥∥

2
−
∥∥v2 − x?

∥∥
2

∣∣ ≤ ∥∥(v1 − x?)− (v2 − x?)
∥∥

2
= ‖v1 − v2‖2

and thus ∣∣s(z1)− s(z2)
∣∣ ≤ ( c

∆

)1/γ

d sin(θ) ≤
( c

∆

)1/γ

dθ ,

where we used again s(z) ≤ d1/2 for any z ∈ Sd−1. Putting everything together, we have shown that∣∣s(z1)− s(z2)
∣∣

θ
≤ max

(
6

π

√
d,
( c

∆

)1/γ

d

)
:= ` , (26)

for all θ ∈ (0, π], i.e., that s is `-Lipschitz on Sd−1 with respect to the geodesic distance.

Consider now a covering of Sd−1 with respect to the geodesic distance, with radius βr, where β ∈ (0, 1] will
be selected later. This is a set of points z1, . . . ,zn ∈ Sd−1 such that the union of all the balls (with respect to
the geodesic distance θ) with radius βr centered at these points contains the whole Sd−1. We show now how
such a covering can be taken using order of 1/rd−1 points. Fix any two distinct z1, z2 ∈ Sd−1 with geodesic
distance θ(z1, z2) ∈ (0, π/2] and consider the isosceles triangle z1,0, z2 with angles ∠(z1 0 z2) = θ(z1, z2)
and ∠(0 z2 z1) = ∠(z2 z1 0) =

(
π − θ(z1, z2)

)
/2 = π/2− θ(z1, z2)/2 (Figure 5). The sine rule yields

‖z1 − z2‖2
sin
(
θ(z1, z2)

) =
1

cos
(
θ(z1, z2)/2

)



or, equivalently stated,

‖z1 − z2‖2 =
sin
(
θ(z1, z2)

)
cos
(
θ(z1, z2)/2

) .
Using the fact that sin(x) ≥ (2/π)x, for all x ∈ [0, π/2], the equality above gives

‖z1 − z2‖2 ≥ sin
(
θ(z1, z2)

)
≥ 2

π
θ(z1, z2) .

Therefore, if x ≤ π/2, each ball with center c radius (2/π)ρ with respect to the Euclidean distance is
included in the corresponding ball with center c and radius ρ with respect to the geodesic distance. Thus,
being r < 1 ≤ π/2, in order to cover Sd−1 with balls with radius βr with respect to the geodesic distance,
it is enough to cover Sd−1 with balls with radius (2/π)βr with respect to the Euclidean distance. Moreover,
since for any two points x,y ∈ ∂[−1, 1]d on the boundary of the hypercube [−1, 1]d, their Euclidean distance
‖x− y‖2 is larger than the Euclidean distance

∥∥x/‖x‖2 − y/‖y‖2
∥∥

2
between their projections on the unit

sphere, and since any point in the unit sphere can be reached this way, in order to cover the unit sphere
with balls with radius (2/π)βr with respect to the Euclidean distance it is sufficient to cover the boundary
∂[−1, 1]d of [−1, 1]d with balls with radius (2/π)βr with respect to the Euclidean distance. This is easy
to do, as each one of the 2d faces

{
[−1, 1] × . . . × [−1, 1] × {−1, 1} × [−1, 1] × . . . × [−1, 1]

}
of ∂[−1, 1]d

can be covered with the same number of balls of radius (2/π)βr with respect to the (d − 1)-dimensional
Euclidean distance that cover the hypercube [−1, 1]d−1. This can be done, e.g., by taking a uniform grid of
(2/π)βr-spaced points. Projecting these points onto Sd−1 gives a covering z1, . . . ,zn of Sd−1 with respect
to the geodesic distance, with radius βr, and with a number of points n that is at most

n ≤ 2d

(
1 +

⌈
π

2βr

⌉)d−1

≤ 2d

(
2 +

π

2βr

)d−1

≤ 2d

(
3

2
π

)d−1(
1

βr

)d−1

. (27)

Fix this covering z1, . . . ,zn. Fix also an arbitrary x ∈
{
|f − a| ≤ r|

}
. Note that, being r ≤ ∆/2 and {f = a}

a ∆-proper level set, then the minimizer x? cannot belong to the set
{
|f − a| ≤ r|

}
, hence x 6= x?. Let

z = (x−x?)/‖x− x?‖2. Similarly as before, define for all t ∈
[
0, ‖x− x?‖2

]
, the function fz(t) := f(x?+tz).

Then fz is convex, fz(0) = f(x?), fz
(
s(z)

)
= a and

∣∣fz(‖x− x?‖2
)
− a
∣∣ ≤ r. If fz

(
‖x− x?‖2

)
< a, by

convexity, we have s(z) > ‖x− x?‖2, hence

a− r − f(x?)

‖x− x?‖2
≤ fz

(
‖x− x?‖2

)
− fz(0)

‖x− x?‖2 − 0
≤ a− fz

(
‖x− x?‖2

)
s(z)− ‖x− x?‖2

≤ r

s(z)− ‖x− x?‖2
and recalling that r ≤ ∆/2 so that a− r − f(x?) ≥ ∆/2 > 0, we have

s(z)− ‖x− x?‖2 ≤ r
√
d

a− r − f(x?)
≤
(

2

√
d

∆

)
r ,

where we used ‖x− xm‖2 ≤
√
d. If fz

(
‖x− x?‖2

)
≥ a, proceed similarly. By convexity of fz we have

s(z) ≤ ‖x− x?‖2. If s(z) = ‖x− x?‖2, then trivially ‖x− x?‖2 − s(z) = 0 ≤
(
2
√
d/∆

)
r. If on the other

hand, s(z) < ‖x− x?‖2, using the convexity of fz once again, we get

a− fz(0)

s(z)− 0
≤ fz

(
‖x− x?‖2

)
− a

‖x− x?‖2 − s(z)
≤ r

‖x− x?‖2 − s(z)

and using a− f(x?) ≥ ∆ > 0 and s(z) ≤
√
d, yields

‖x− x?‖2 − s(z) ≤
(√

d

∆

)
r ≤

(
2

√
d

∆

)
r .

Thus we proved that ∣∣s(z)− ‖x− x?‖2
∣∣ ≤ (2

√
d

∆

)
r . (28)



Furthermore, there exists i ∈ {1, . . . , n} such the geodesic distance of zi and z is smaller than or equal to
βr. Therefore we have, from (28), and the `-Lipschitzness of the function r with respect to the geodesic
distance, ∣∣s(zi)− ‖x− x?‖2

∣∣ ≤ ∣∣s(zi)− s(z)
∣∣+
∣∣s(z)− ‖x− x?‖2

∣∣ ≤ (`β) r +

(
2

√
d

∆

)
r .

Hence, with γ > 0 to be chosen later, there exists

x′i := x? + s(zi)zi + kγrzi ,

with k ∈ Z such that

|k| ≤ `β + 2
√
d

∆

γ

and with ∣∣‖x′i − x?‖2 − ‖x− x?‖2
∣∣ ≤ γr . (29)

This is obtained by covering the segment [−`βr− 2rd1/2/∆, `βr+ 2rd1/2/∆] with points with equidistance
γr. Then, we obtain

‖x− x′i‖∞ ≤ ‖x− x′i‖2
=
∥∥∥(x? + ‖x− x?‖2 z

)
−
(
x? + ‖x′i − x?‖2 zi

)∥∥∥
2

=
∥∥‖x− x?‖2 z − ‖x′i − x?‖2 zi

∥∥
2

=
∥∥∥‖x− x?‖2(z − zi)

−
(
‖x′i − x?‖2 − ‖x− x?‖2

)
zi

∥∥∥
2

≤
∣∣‖x− x?‖2 − ‖x′i − x?‖2

∣∣+
√
d‖z − zi‖2

≤
(
γ +
√
dβ
)
r ,

from (29). Hence, with

n′ ≤ 2d

(
3

2
π

)d−1(
1

βr

)d−1
(

1 + 2
`β + 2

√
d

∆

γ

)
points, we have obtained a covering of

{
|f − a| ≤ r

}
with radius

(
γ +
√
dβ
)
r with respect to the sup-norm

‖·‖∞. Choosing β := 1/
(
4
√
d
)

and γ := 1/4 so that that
(
γ +
√
dβ
)
≤ 1/2, we therefore determined a

covering of
{
|f − a| ≤ r

}
with radius r/2 with respect to the sup-norm consisting of n′ elements. Thus, n′

is greater than or equal to the smallest cardinality M
({
|f − a| ≤ r

}
, r/2

)
of a covering of

{
|f − a| ≤ r

}
with radius r/2 with respect to the sup-norm. For a known result relating pickings and coverings (we recall
it in (12), Section B), we have

M
({
|f − a| ≤ r

}
, r/2

)
≥ N

({
|f − a| ≤ r

}
, r
)
,

which concludes the proof.

Theorem 7. Consider the BAG algorithm (Algorithm 4) run with input a, c1, γ1. Let f : [0, 1]d → R be an
arbitrary convex (c1, γ1)-gradient-Hölder function with proper level set {f = a}. Fix any accuracy ε > 0.
Then, for all

n > κ
1

ε(d−1)/(1+γ1)

the output Sn returned after the n-th query is an ε-approximation of {f = a}, where κ > 0 is a constant
independent of ε that depends exponentially on the dimension d.

Proof. Being f the restriction of a differentiable function defined on on an open set containing [0, 1]d, it is
Lipschitz on the compact [0, 1]d. Thus we can apply Proposition 5 to get a NLS dimension d? = d− 1 for f .
The result then follows directly from Corollary 1.



F.3 Rate-optimal Sample Complexity for Convex Gradient-Lipschitz Functions

Theorem 7 applied to the special case of gradient-Lipschitz functions, states that the BAG algorithm (Al-
gorithm 4) needs order of 1/ε(d−1)/2 queries to reliably output an ε-approximation of a gradient-Lipschitz
function. The following theorem shows that this rate cannot be improved, i.e., that BAG is rate-optimal
(Definition 8) for determining proper level sets of gradient-Lipschitz functions.

Theorem 8. Fix any level a ∈ R and an arbitrary accuracy ε > 0. No deterministic algorithm A can
guarantee to output an ε-approximation of any ∆-proper level set {f = a} of an arbitrary convex c1-gradient-
Lipschitz functions f with c1 ≥ 3 and ∆ ∈ (0, 1/4], querying less than κ/ε(d−1)/2 of their values, where κ > 0
is a constant independent of ε. This implies in particular that (recall Definition 7),

inf
A

sup
f

n(f,A, ε, a) ≥ κ 1

ε(d−1)/2
,

where the inf is over all deterministic algorithms A and the sup is over all c1-gradient-Lipschitz functions f
with ∆-proper level set {f = a}, with c1 ≥ 3 and ∆ ∈ (0, 1/4].

Proof. We will prove the equivalent statement that no algorithm can output a (κ′ε)-approximation of any
∆-proper level set {f = a} of an arbitrary c1-gradient-Lipschitz functions f with c1 ≥ 3 and ∆ ∈ (0, 1/4],
querying less than 1/ε(d−1)/2 of their values, where κ′ > 0 is a constant independent of ε.

Let o := (1/2, . . . , 1/2) ∈ [0, 1]d, o1 := (1/2 + 1/(4d)1/2, . . . , 1/2 + 1/(4d)1/2) ∈ (0, 1)d, and

f0 : [0, 1]d → R

x 7→ f0(x) := a− 1

4
+ ‖x− o‖22 .

Then f0 is the restriction to [0, 1]d of the differentiable function x 7→ a − 1
4 + ‖x− o‖22 defined on Rd, and

it satisfies, for all x,y ∈ [0, 1]d∥∥∇f0(x)−∇f0(y)
∥∥
∞ =

∥∥2(x− o)− 2(y − o)
∥∥
∞

= 2 ‖x− y‖∞ , (30)

i.e., it is 2-gradient-Lipschitz. Moreover, f0 has minimum equal to a− 1/4 at o and satisfies f0(o1) = a. Also,
the minimum of f0 over ∂[0, 1]d is equal to a + (1/2)2 − 1/4 = a. Hence {f0 = a} is a ∆-proper level set,
with ∆ = 1/4.

Consider an arbitrary deterministic algorithm A applied to the level set {f0 = a} of f0 and assume that only
n < 1/ε(d−1)/2 values are queried before outputting a set Sn.

Let S be the Euclidean sphere with center o and radius ‖o− o1‖2 = 1/2 (Figure 6). Note that {f0 = a} = S.
For any constant κ1 > 0 and each point x0 in S, consider the convex cone having origin o, and with
intersection with S equal to the geodesic ball on S with center x0 and radius κ1ε

1/2. Then we can choose
κ1 (small enough) and x0 such that this cone does not contain any points of f0 queried by the algorithm.
Fix such a κ1. If Sn does not contain x0 then, since f0(x0) = a, we have shown that {f0 = a} 6⊆ Sn, and
the result follows.

Assume now that x0 ∈ Sn. We will define a function f1 : [0, 1]d → R such that the sum f0 + f1 is convex
and 3-gradient-Lipschitz, the level set {f0 + f1 = a} is ∆-proper, and the algorithm applied to the level set
{f0 + f1 = a} of f0 + f1 does not return a (κ′ε)-approximation of {f0 + f1 = a}. The idea is to carefully
design a function f1 that is non-zero only on the cone that has not been explored by the algorithm. This way,
we can make f0 +f1 a perturbation of f0 that is not far enough from f0 so that the algorithm can distinguish
the two, but it is different enough so that no (κ′ε)-approximation of {f0 = a} can be a (κ′ε)-approximation
of {f0 + f1 = a}. The subtle part is that by construction, such an f1 is not convex, but the sum f0 + f1 has
to retain the convexity of f0.
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Figure 6: The blue circle is the level set S; the geodesic ball on S with center x0 and radius κ1ε
1/2 is the

arc in magenta and the corresponding cone is in red.

We begin by defining three non-negative auxiliary functions φ1, φ2, φ3 : [0, 1]→ R, for all t ∈ [0, 1]d, by

φ1(t) :=


t if t ∈ [0, 1/4]
1/4− (t− 1/4) if t ∈ [1/4, 3/4]

−1/4 + (t− 3/4) if t ∈ [3/4, 1]

,

φ2(t) :=
∫ t

0
dx
∫ x

0
φ1(u) du, and φ3(t) := φ2(1 − t). We remark that φ2 is twice differentiable with second

derivative φ1. We see that φ2(0) = 0, φ′2(0) = 0 and φ′′2(0) = 0. We see that φ′2 is strictly positive on
[0, 1]. Hence, κ2 := φ2(1) > 0. We also see that φ′2(1) = 0 and φ′′2(1) = 0. Then φ3 is twice differentiable
and non-negative on [0, 1] and satisfies φ′′3(0) = 0, φ′′3(1) = 0, φ′3(0) = 0, φ′3(1) = 0, φ3(0) = κ2 > 0 and
φ3(1) = 0.

We write B(x, r) for the closed Euclidean ball with center x and radius r intersected with [0, 1]d. We define
the function f1 : [0, 1]d → R, for all x ∈ [0, 1]d, by

f1(x) :=

βεφ3

(‖x− x0‖2
κ3ε1/2

)
if x ∈ B(x0, κ3ε

1/2)

0 otherwise ,

with κ3, β > 0 to be selected later. We can find κ3 > 0 small enough such that B(x0, κ3ε
1/2) is included in

the cone discussed above (recall Figure 6). Fix such a κ3. Then, f0 and f0 +f1 differ only on this cone which
is not explored by the algorithm. As a consequence, the algorithm applied to f0 + f1 returns the same set
Sn, which contains x0. Since f0(x0) + f1(x0) = a+ βεκ2, the proof will be completed (letting κ′ := βκ2/2)
once we show that we can select β > 0, independently of ε, such that f0 +f1 is a convex 3-gradient-Lipschitz
function with ∆-proper level set {f0 + f1 = a}, where ∆ = 1/4.

Because of the above discussed inclusion of the ball in the cone, we have f1(o) = 0. Hence

min
x∈[0,1]d

(
f0(x) + f1(x)

)
≤ f0(o) + f1(o) = a− 1

4
≤ a = min

x∈∂[0,1]d
f0(x) ≤ min

x∈∂[0,1]d

(
f0(x) + f1(x)

)
,

which proves that the level set {f0 + f1 = a} is ∆-proper, with ∆ = 1/4.

By definition of f1, its gradient is, for x ∈ [0, 1]d,

∇f1(x) = βεφ′3

(‖x− x0‖2
κ3ε1/2

)
1

κ3ε1/2

x− x0

‖x− x0‖2

if x ∈ B(x0, κ3ε
1/2), 0 otherwise. We remark that in the above formula, by convention, ∇f1(x0) = 0, which



follows from the properties of φ3. Next, we observe that ∇f1 satisfies

sup
u,v∈[0,1]d

u6=v

∥∥∇f1(u)−∇f1(v)
∥∥

2

‖u− v‖2
≤ sup

u,v∈B(x0,κ3ε
1/2)

u6=v

∥∥∇f1(u)−∇f1(v)
∥∥

2

‖u− v‖2
,

Indeed, for u,v /∈ B(x0, κ3ε
1/2) the gradient difference is zero while for u ∈ B(x0, κ3ε

1/2) and v /∈
B(x0, κ3ε

1/2) the gradient difference is equal to the difference between the gradient at u and the gradi-
ent at the intersection of the segment [u, v] and the boundary ∂B(x0, κ3ε

1/2). Hence,

sup
u,v∈[0,1]d

u6=v

∥∥∇f1(u)−∇f1(v)
∥∥

2

‖u− v‖2

≤ sup
u,v∈B(x0,κ3ε

1/2)
u6=v

βε

‖u− v‖2

∥∥∥∥φ′3(‖u− x0‖2
κ2ε1/2

)
1

κ3ε1/2

u− x0

‖u− x0‖2
− φ′3

(‖v − x0‖2
κ2ε1/2

)
1

κ3ε1/2

v − x0

‖v − x0‖2

∥∥∥∥
2

= sup
u,v∈B(0,1)

u6=v

β
κ2
3

∥∥∥φ′3(‖u‖2) u
‖u‖2

− φ′3
(
‖v‖2

)
v
‖v‖2

∥∥∥
2

‖u− v‖2
.

Letting f̃1 : B(0, 1)→ R be defined for all t ∈ B(0, 1), by f̃1(x) = φ3

(
‖x‖2

)
, we obtain

sup
u,v∈[0,1]d

u6=v

∥∥∇f1(u)−∇f1(v)
∥∥

2

‖u− v‖2
≤ sup

u,v∈B(0,1)
u6=v

β
κ2
3

∥∥∇f̃1(u)−∇f̃1(v)
∥∥

2

‖u− v‖2
.

Since f̃1 is a fixed twice differentiable function which does not depend on ε, we can choose β > 0 small
enough, independently of ε, such that

sup
u,v∈[0,1]d

u6=v

∥∥∇f1(u)−∇f1(v)
∥∥

2

‖u− v‖2
≤ 1√

d
.

This implies that, for all u,v ∈ [0, 1]d,∥∥∇f1(u)−∇f1(v)
∥∥
∞ ≤

∥∥∇f1(u)−∇f1(v)
∥∥

2
≤ 1√

d
‖u− v‖2 ≤ ‖u− v‖∞ . (31)

Thus, the two bounds (30) and (31) yield

sup
u,v∈[0,1]d

u6=v

∥∥∇(f0 + f1)(u)−∇(f0 + f1)(v)
∥∥
∞

‖u− v‖∞
≤ 3 .

Therefore, f0 + f1 is 3-gradient-Lipschitz. Finally, we have

inf
u,v∈[0,1]d

u6=v

〈
∇(f0 + f1)(u)−∇(f0 + f1)(v), u−v

‖u−v‖2

〉
‖u− v‖2

≥ inf
u,v∈[0,1]d

u6=v

〈
∇f0(u)−∇f0(v), u−v

‖u−v‖2

〉
‖u− v‖2

− sup
u,v∈[0,1]d

u6=v

〈
∇f1(u)−∇f1(v), u−v

‖u−v‖2

〉
‖u− v‖2

≥ 2− 1√
d
≥ 1 .

Hence f0 +f1 is 1-strongly convex and thus it is convex. In conclusion, we have eventually selected a constant
β > 0, independent of ε, such that f0 + f1 is a convex 3-gradient-Lipschitz function with ∆-proper level set
{f0 + f1 = a}, but Sn is not a (κ′ε)-approximation of {f0 + f1 = a}. This concludes the proof.



We conclude this section by remarking the analogy between the problem of approximating the level set of
a convex function and that of determining an approximation of a convex body in Hausdorff distance. The
latter problem has been studied extensively in convex geometry. Notably, while the scope of the and the
techniques used in this field differ from ours, the sample complexity results for the two problems are similar.
For an overview of these results, we refer the reader to the two surveys (Kamenev, 2019; Gruber, 1993).


