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Abstract

We study the problem of approximating
the level set of an unknown function by
sequentially querying its values. We in-
troduce a family of algorithms called Bi-
sect and Approximate through which we
reduce the level set approximation prob-
lem to a local function approximation prob-
lem. We then show how this approach leads
to rate-optimal sample complexity guaran-
tees for Hölder functions, and we investi-
gate how such rates improve when addi-
tional smoothness or other structural as-
sumptions hold true.

1 INTRODUCTION

Let f : [0, 1]d → R be any function. For a ∈ R, we
consider the problem of finding the level set

{f = a} def
=
{
x ∈ [0, 1]d : f(x) = a

}
.

Setting: Sequential Black-Box Evaluation.
We study the case in which f is black-box, i.e., ex-
cept for some a priori knowledge on its smoothness,
we can only access f by sequentially querying its val-
ues at a sequence x1,x2, . . . ∈ [0, 1]d of points of our
choice (Online Protocol 1). At every round n ≥ 1,
the query point xn can be chosen as a deterministic
function of the values f(x1), . . . , f(xn−1) observed
so far. At the end of round n, the learner outputs a
subset Sn of [0, 1]d with the goal of approximating
the level set {f = a}.
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Online Protocol 1: Deterministic Scheme

1 for n = 1, 2, . . . do
2 pick the next query point xn ∈ [0, 1]d

3 observe the value f(xn)

4 output an approximating set Sn ⊆ [0, 1]d

The problem of identifying the level set {f = a}
of a black-box function arises often in practice. In
particular, this problem is closely related to excur-
sion set estimation (also called failure domain esti-
mation), where the goal is to estimate {f ≥ a}.1
Level-set identification and failure domain estima-
tion are relevant to the field of computer experiments
and uncertainty quantification, where f(x) provides
the output of a complex computer model for some
input parameter x (Sacks et al., 1989; Santner et al.,
2003). Typical fields of applications are nuclear en-
gineering (Chevalier et al., 2014), coastal flooding
(Azzimonti et al., 2020) and network systems (Ran-
jan et al., 2008). Level set identification is also rele-
vant when f(x) corresponds to natural data (Rahimi
et al., 2004; Galland et al., 2004). In many such sit-
uations, f is so complex that it is considered black-
box.

A typical example of a real use-case of interest is the
Bombardier research aircraft configuration (Priem
et al., 2020). Here, geometry parameters of an air-
craft wing can be selected. Any choice of these pa-
rameters yields a corresponding maximum take-off
weight output, which is obtained by a costly compu-
tational fluid dynamics simulation. From the setting
of Priem et al. (2020), one could for instance tackle
the problem of estimating the set of all x ∈ [0, 1]4,
where x corresponds to the variables wing span, wing
leading edge sweep, wing break location and wingtip

1As it will become apparent later, our techniques for
estimating level sets can be adapted for sub/superlevel
set approximation straightforwardly, whilst retaining the
same sample complexity guarantees (see Footnote 4).



chord (see Table 3 in Priem et al. 2020), for which
f(x) = a for some prescribed value a > 0 of the
maximum take-off weight. Furthermore, by setting
more or less input parameters as active or inactive
in Table 3 in Priem et al. (2020), a series of level set
estimation problems can be obtained, from dimen-
sion 1 to dimension 18.

Learning Goal. There exist several ways to com-
pare the estimators Sn and the level set {f = a}.
A first possibility is to use metrics or pseudomet-
rics ρ(A,B) between sets A,B ⊆ [0, 1]d, such as the
Hausdorff distance or the volume of the symmetric
difference (e.g., Tsybakov 1997). However a small
value of ρ(Sn, {f = a}) does not imply that Sn con-
tains the whole set {f = a}, nor—in the case of the
volume of the symmetric difference—that f(x) ≈ a
for all x ∈ Sn. In practice, we might fail to identify
all critical states of a given system, or raise unnec-
essary false alarms.

In this paper, we therefore consider an alternative
(new) way of quantifying our performance. For any
accuracy ε > 0, denote by{
|f − a| ≤ ε

} def
=
{
x ∈ [0, 1]d :

∣∣f(x)− a
∣∣ ≤ ε}

the inflated level set at scale ε. We will focus on
algorithms whose outputs Sn are ε-approximations
of {f = a}, as defined below.

Definition 1 (ε-approximation of a level set). We
say that a set S ⊆ [0, 1]d is an ε-approximation of the
level set {f = a} if and only if it contains {f = a}
while consisting only of points at which f is at most
ε-away from a, i.e.,

{f = a} ⊆ S ⊆
{
|f − a| ≤ ε

}
. (1)

The main mathematical problem we address is that
of determining the sample complexity of level set ap-
proximation, that is, the minimum number of eval-
uations of f after which Sn is an ε-approximation
of {f = a} (see Section A of the Supplementary
Material for a formal definition). We are interested
in algorithms with rate-optimal worst-case sample
complexity over classical function classes, as well
as (slightly) improved sample complexity bounds in
more favorable cases.

Main Contributions and Outline of the Paper.

• We define a new learning goal for level set ap-
proximation (see above and Section A of the
Supplementary Material) similar in spirit to
that of Gotovos et al. (2013).

• In Section 2 we briefly discuss the inherent
hardness of the level set approximation problem
(Theorem 1) and the role played by smoothness
or structural assumptions on f .

• In Section 3 we design a family of algorithms
called Bisect and Approximate through which
we reduce the level set approximation problem
to a local function approximation problem.

• In Sections 4 and 5 we instantiate Bisect and
Approximate to the cases of Hölder or gradient-
Hölder functions. We derive upper and lower
bounds showing that the sample complexity for
level set approximation is of the order of 1/εd/β

in the worst-case, where β ∈ (0, 2] is a smooth-
ness parameter.

• In Section 5.2 we also show that Bisect and Ap-
proximate algorithms adapt to more favorable
functions f by featuring a slightly improved
sample complexity in such cases.

Some lemmas and proofs are deferred to the Supple-
mentary Material.

Related Works. Sequential learning (sometimes
referred to as sequential design of experiments) for
level set and sublevel set identification is an ac-
tive field of research. Many algorithms are based
on Gaussian process priors over the black box func-
tion f (Ranjan et al., 2008; Vazquez and Bect, 2009;
Picheny et al., 2010; Bect et al., 2012; Chevalier
et al., 2014; Ginsbourger et al., 2014; Wang et al.,
2016; Bect et al., 2017; Gotovos et al., 2013). In
contrast with this large number of algorithms, few
theoretical guarantees exist on the consistency or
rate of convergence. Moreover, the majority of these
guarantees are probabilistic. This means that con-
sistency results state that an error goes to zero al-
most surely with respect to the Gaussian process
prior measure over the unknown function f , and that
the rates of convergence hold in probability, with
respect to the same prior measure. In this proba-
bilistic setting, Bect et al. (2019) provide a consis-
tency result for a class of methods called Stepwise
Uncertainty Reduction. Gotovos et al. (2013) pro-
vide rates of convergence, with noisy observations
and for a classification-based loss function.

The loss function of Gotovos et al. (2013), given for
sublevel set estimation, is similar in spirit to the no-
tion of ε-approximation studied here for level set ap-
proximation, since we both aim at making decisions
that are approximately correct for all x in the input
space. The main difference is that Gotovos et al.
(2013) assume that f is a realization of a Gaussian
process and thus provide guarantees that are prob-
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abilistic, while we prove deterministic bounds (for a
fixed function). On the other hand, they consider
noisy observations, while we assume f can be eval-
uated perfectly.

A related problem studied in statistics is density
level set estimation, in which the superlevel set of
a density f is estimated by looking at i.i.d. draws of
random variables with density f . For this problem,
several different performance measures are consid-
ered, such as the Hausdorff distance (Cadre et al.,
2013; Singh et al., 2009; Tsybakov, 1997) or a mea-
sure of the symmetric difference (Cadre, 2006; Rigol-
let and Vert, 2009; Tsybakov, 1997).

When the function f is convex, our problem is also
related to that of approximating a convex compact
body with a simpler set (e.g., a polytope) in Haus-
dorff distance. This has been studied extensively
in convex geometry and several sequential and non-
sequential algorithms have been proposed (see, e.g.,
the two surveys Kamenev 2019; Gruber 1993 and
references therein).

The closest connections with our work are within the
bandit optimization literature. More precisely, our
Bisect and Approximate algorithm and its analysis
are inspired from the branch-and-bound algorithm of
Locatelli and Carpentier (2018, Appendix A.2) and
from the earlier methods of Perevozchikov (1990),
Bubeck et al. (2011, HOO algorithm), and Munos
et al. (2014, DOO algorithm). All these algorithms
address the problem of finding a global extremum
of f , while we are interested in finding level sets.
However the idea of using a 2d-ary tree to construct
refined partitions of the input domain, and sequen-
tial methods to select which branch to explore next,
are key in this paper.

There are also algorithmic connections with the non-
parametric statistics literature. In particular, the
idea of locally approximating a target function has
been used many times for different purposes (e.g.,
Györfi et al. 2002; Tsybakov 2009).

Additional Notation. We denote the set of all
positive integers {1, 2, . . .} by N∗. For all x ∈ R, we
denote by dxe (resp., bxc) the ceiling (resp., floor)
function at x, i.e., the smallest (resp., largest) inte-
ger larger (resp., smaller) or equal to x. Finally, for
two sets A and B, we write A ⊆ B to say that A is
included in B (possibly with equality).

2 INHERENT HARDNESS

In this section we show that level sets are typically
(d − 1)-dimensional, and discuss the consequences
of this fact in terms of the inherent hardness of the
level set approximation problem.

We evaluate the dimension through the growth rate
of packing numbers, one of the classical ways to mea-
sure the size of a set. In the case of the unit hyper-
cube and the sup-norm, recall that packing numbers
are defined as follows.

Definition 2 (Packing number). For all r > 0, the
r-packing number N (E, r) of a subset E of [0, 1]d

(with respect to the sup-norm ‖·‖∞) is the largest
number of r-separated points contained in E, i.e.,

N (E, r) := sup
{
k ∈ N∗ :

∃x1, . . . ,xk ∈ E, min
i 6=j
‖xi − xj‖∞ > r

}
(2)

if E is nonempty, zero otherwise.

The next theorem indicates that, with the excep-
tions of sets of minimizers or maximizers, ε-packing
numbers of level sets {f = a} of continuous func-
tions f are at least (d− 1)-dimensional. This result
is very natural since {f = a} is the solution set of
one equation with d unknowns.

Theorem 1. Let f : [0, 1]d → R be a non-constant
continuous function, and a ∈ R be any level such
that minx∈[0,1]d f(x) < a < maxx∈[0,1]d f(x). Then,
there exists κ > 0 such that, for all ε > 0,

N
(
{f = a}, ε

)
≥ κ 1

εd−1
.

We restate and prove this result in the Supplemen-
tary Material (Theorem 6, Section F.1).

We note an important difference with the global
optimization problem. Indeed, the set of global
maximizers (or minimizers) of a function f is typ-
ically finite and thus 0-dimensional. This implies
that, depending on the shape of f around a global
optimum, global optimization algorithms feature a
sample complexity ranging roughly between log(1/ε)
and (1/ε)d (see, e.g., Perevozchikov 1990; Munos
et al. 2014).

In our case, by Theorem 1, level sets are large, so
that we can expect the sample complexity to depend
heavily on the input dimension d. This is however
not the end of the story. Indeed, as in nonparamet-
ric statistics (e.g., Györfi et al. 2002; Tsybakov 2009)
or in convex optimization (e.g., Nesterov 2004; Boyd
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and Vandenberghe 2004; Bubeck 2015), additional
smoothness or structural assumptions like convex-
ity of f play a role in the hardness of the level set
approximation problem. Since this problem is im-
portant in practice, designing algorithms that best
exploit such additional assumptions is an important
question. This is what we address in this paper.

3 BA ALGORITHMS & ANALYSIS

In this section, we introduce and analyze a family
of algorithms designed for the problem of approxi-
mating the level set of an unknown function. They
are based on an iterative refinement of the domain
[0, 1]d, as made precise in the following definition.

Definition 3 (Bisection of a family of hypercubes).
Let C be a family of n hypercubes included in [0, 1]d.
We say that bisect(C) is the bisection of C if it con-
tains exactly the 2d n hypercubes obtained by sub-
dividing each C = [a1, b1] × · · · [ad, bd] ∈ C into
the 2d equally-sized smaller hypercubes of the form
C ′ = I1×· · ·×Id with Ij being either

[
aj , (aj+bj)/2

]
or
[
(aj + bj)/2, bj

]
.

Our algorithm is of the branch-and-bound type, sim-
ilarly to other bandit algorithms for global optimiza-
tion such as that of Locatelli and Carpentier (2018,
Appendix A.2) and earlier methods (Perevozchikov,
1990; Bubeck et al., 2011; Munos et al., 2014).

Our Bisect and Approximate algorithms2 (BA, Al-
gorithm 2) maintain, at all iterations i, a collection
Ci of hypercubes on which the target function f is
determined to take values close to the target level a.
A BA algorithm takes as input the level a, a com-
mon number of queries k (to be performed in each
hypercube at all iterations), and a pair of tolerance
parameters b, β > 0, related to the smoothness of f
and the approximation power of the approximators
used by the algorithm. At the beginning of each iter-
ation i, the collection of hypercubes Ci−1 determined
at the end of the last iteration is bisected (line 3),
so that all new hypercubes have diameter 2−i (in
the sup-norm). Then, the values of the target func-
tion f at k points of each newly created hypercube

2We refer to Bisect and Approximate algorithms in
the plural form because different BA algorithms can be
defined with the same input, depending on which rules
are used to pick points at line 7 and approximators at
line 10. E.g., BAH (Section 4) only looks at the center of
each hypercube and uses constant approximators, while
BAG (Section 5) queries the value of f at all vertices
of each hypercube and builds higher-order polynomial
approximators.

are queried (lines 7–8). The output set Sn after n
queries to f is a subset of the union of all hyper-
cubes in Ci−1, i.e., the collection of all hypercubes
determined during to the latest completed iteration.
The precise definition of Sn depends on the approxi-
mators used during the last completed iteration and
the two tolerance parameters b, β (lines 9 and 2).3

After all k values of f are queried from a hypercube
C ′, this information is used to determine a local ap-
proximator gC′ of f (line 10). Finally, the collection
of hypercubes Ci is updated using gC′ as a proxy for
f (line 11) for all hypercubes C ′. In this step, all hy-
percubes C ′ in which the proxy gC′ is too far from
the target level a are discarded, where the tightness
of the rejection rule increases with the passing of
the iterations i and it is further regulated by the
two tolerance parameters b, β.

Algorithm 2: Bisect and Approximate (BA)

input: level a ∈ R, queries k ∈ N∗, tol. b, β > 0
init: D ← [0, 1]d, C0 ← {D}, gD ≡ a, n← 0

1 for iteration i = 1, 2, . . . do
2 S(i)← ⋃

C∈Ci−1

{
x ∈ C :

∣∣gC(x)−a
∣∣ ≤ b 2−β(i−1)

}
3 C′i ← bisect(Ci−1)
4 for each hypercube C ′ ∈ C′i do
5 for j = 1, . . . , k do
6 update n← n+ 1
7 pick a query point xn ∈ C ′
8 observe f(xn)
9 output Sn ← S(i)

10 pick a local approximator gC′ : C
′ → R

11 Ci←
{
C ′ ∈ C′i : ∃x ∈ C ′,

∣∣gC′(x)−a
∣∣≤b 2−βi

}
Our analysis of BA algorithms (Theorem 2) hinges
on the accuracy of the approximators gC′ selected at
line 10, as formalized in the following definition.

Definition 4 (Accurate approximation). Let b, β >
0 and C ⊆ [0, 1]d. We say that a function g : C → R
is a (b, β)-accurate approximation of another func-
tion f : [0, 1]d → R (on C) if the distance (in the
sup-norm on C) between f and g can be controlled
with the diameter (in the sup-norm) of C as

sup
x∈C

∣∣g(x)− f(x)
∣∣ ≤ b( sup

x,y∈C
‖x− y‖∞

)β
.

We now present one of our main results, which states
that BA algorithms run with accurate approxima-
tions of the target function return ε-approximations

3Notably, the output set S(i) at iteration i can be
represented succinctly and testing if x ∈ S(i) can be
done efficiently in all our BA instances in Sections 4, 5.
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of the target level set after a number of queries that
depends on the packing number (Definition 2) of the
inflated level set at decreasing scales.4

Theorem 2. Consider a Bisect and Approximate
algorithm (Algorithm 2) run with input a, k, b, β. Let
f : [0, 1]d → R be an arbitrary function with level set
{f = a} 6= ∅. Assume that the approximators gC′

selected at line 10 are (b, β)-accurate approximations
of f (Definition 4). Fix any accuracy ε > 0, let
i(ε) :=

⌈
(1/β) log2(2b/ε)

⌉
, and define n(ε) by5

4d k

i(ε)−1∑
i=0

lim
δ→1−

N
({
|f − a| ≤ 2 b 2−βi

}
, δ 2−i

)
. (3)

Then, for all n > n(ε), the output Sn returned after
the n-th query is an ε-approximation of {f = a}.

The expression (3) can be simplified by taking δ = 1
and increasing the leading multiplicative constant.
However, in the following sections we will see how
to upper bound this quantity with simpler functions
of 1/ε, for which the limit can be computed exactly.

Proof. Fix any n > n(ε). We begin by proving that

{f = a} ⊆ Sn . (4)

Recall that Sn =
⋃
C∈Cι−1

{
x ∈ C :

∣∣gC(x) − a
∣∣ ≤

b 2−β(ι−1)
}

(line 9), where ι = ι(n) is the iteration
during which the n-th value of f is queried. To prove
(4), we will show the stronger result: for all i ≥ 0,

{f = a} ⊆
⋃
C∈Ci

{
x ∈ C :

∣∣gC(x)−a
∣∣ ≤ b 2−βi

}
, (5)

i.e., that the level set {f = a} is always included in
the output set, not only after iteration ι(n)− 1 has
been completed. We do so by induction. If i = 0,
then {f = a} ⊆ [0, 1]d =

{
x ∈ [0, 1]d : |a− a| ≤

b 2−β·0
}

, which is the union in (5) by definition of

D = [0, 1]d, C0 =
{
D
}

and gD ≡ a in the initial-
ization of Algorithm 2. Assume now that the in-
clusion holds for some i − 1: we will show that it
keeps holding for the next iteration i ∈ N∗. Indeed,
fix any z ∈ {f = a}. By induction, z belongs to
some hypercube C ∈ Ci−1. Since C′i = bisect(Ci−1)
(line 3), by definition of bisection (Definition 3) we

4Note that our BA algorithm can be used for estimat-
ing a sublevel set {f ≤ a} by simply dropping the abso-
lute values in lines 2 and 11 of Algorithm 2. As the reader
might realize, the same proof techniques would apply
with the corresponding (straightforward) changes. An
analogous argument applies to superlevel sets {f ≥ a}.

5Letting
∑−m
i=0 ai = 0 for any m > 0 and all aj ∈ R.

have that
⋃
C′∈C′i C

′ =
⋃
C∈Ci−1

C, which in turns

implies that there exists a hypercube C ′z ∈ C′i such
that z ∈ C ′z. We show now that this C ′z also be-
longs to Ci, i.e., that it is not discarded during the
update of the algorithm at line 11. Indeed, since
gC′z is a (b, β)-accurate approximation of f on C ′z
(by assumption) and the diameter (in the sup-norm)
of C ′z is supx,y∈C′z‖x− y‖∞ = 2−i, we have that∣∣gC′z (z) − a

∣∣ =
∣∣gC′z (z) − f(z)

∣∣ ≤ b 2−βi. This
gives both that z ∈ C ′z ∈ Ci (by definition of Ci
at line 11) and, consequently, that z ∈ ⋃C∈Ci{x ∈
C :

∣∣gC(x) − a
∣∣ ≤ b 2−βi

}
, which clinches the proof

of (5) and in turn yields (4).

We now show the validity of the second inclusion

Sn ⊆
{
|f − a| ≤ ε

}
. (6)

As above, let ι = ι(n) be the iteration during which
the n-th value of f is queried by the algorithm. Fix
any z ∈ Sn. We will prove that z ∈

{
|f − a| ≤ ε

}
or, restated equivalently, that

∣∣f(z) − a
∣∣ ≤ ε. By

definition of Sn =
⋃
C∈Cι−1

{
x ∈ C :

∣∣gC(x) − a
∣∣ ≤

b 2−β(ι−1)
}

(line 9), since z ∈ Sn, then there exists

Cz ∈ Cι−1 such that z ∈ Cz and
∣∣gCz (z) − a

∣∣ ≤
b 2−β(ι−1). Moreover, since Cz ∈ Cι−1 ⊆ C′ι−1 has

diameter supx,y∈Cz
‖x− y‖∞ = 2−(ι−1) (in the sup-

norm) and the approximator gCz is a (b, β)-accurate
approximation of f on Cz (by assumption), we have
that

∣∣f(z)− gCz (z)
∣∣ ≤ b 2−β(ι−1). Thus∣∣f(z)−a

∣∣≤ ∣∣f(z)−gCz (z)
∣∣+∣∣gCz (z)−a

∣∣≤2b2−β(ι−1)

and the right-hand side would be smaller than ε —
proving (6)— if either ε ≥ 2b (trivially), or in case
ε ∈ (0, 2b), if we could guarantee that the itera-
tion ι = ι(n) during which the n-th value of f is
queried satisfies ι − 1 ≥

⌈
(1/β) log2(2b/ε)

⌉
= i(ε).

In other words, assuming without loss of general-
ity that ε ∈ (0, 2b) (so that i(ε) ≥ 1) and recalling
that n > n(ε), in order to prove (6) we only need to
check that the i(ε)-th iteration is guaranteed to be
concluded after at most n(ε) queries, where n(ε) is
defined in terms of packing numbers in (3). To see
this, note that the total number of values of f that
the algorithm queries by the end of iteration i(ε)

is
∑i(ε)
i=1 k |C′i| = 2d k

∑i(ε)
i=1|Ci−1| = 2d k

∑i(ε)−1
i=0 |Ci|.

To conclude the proof, it is now sufficient to show
that for all iterations i ≥ 0, the number of hyper-
cubes maintained by the algorithm can be upper
bounded by

|Ci| ≤ 2d lim
δ→1−

N
({
|f − a| ≤ 2 b 2−βi

}
, δ 2−i

)
. (7)

Fix an arbitrary δ ∈ (0, 1). If i = 0, then |C0| =
1 ≤ N

({
|f − a| ≤ 2 b

}
, δ
)

by the definitions of
5



C0 =
{

[0, 1]d
}

(initialization of Algorithm 2) and

δ-packing number (Definition 2) of
{
|f − a| ≤ 2 b

}
(which is non-empty because it contains {f = a}).
Fix any iteration i ∈ N∗. By definition of Ci (line 11),
for all hypercubes C ∈ Ci there exists a point xC ∈ C
such that |gC(xC)− a| ≤ b 2−βi. Hence, for each hy-
percube C ∈ Ci there exists one of its points xC ∈ C
such that |f(xC)− a| can be upper bounded by

|f(xC)− gC(xC)|+ |gC(xC)− a| ≤ 2 b 2−βi , (8)

where, recalling that all hypercubes in Ci have di-
ameter 2−i (in the sup-norm), the bound on the
term |f(xC)− gC(xC)| is a consequence of gC be-
ing a (b, β)-accurate approximation of f on C.

Now we claim that the family of hypercubes Ci can
be partitioned into 2d subfamilies Ci(1), . . . , Ci(2d)
with the property that all distinct hypercubes C 6=
C ′ belonging to the same family Ci(k) are strictly
(δ 2−i)-separated (in the sup-norm), i.e., that for all
k ∈ {1, . . . , 2d} and all C,C ′ ∈ Ci(k), C 6= C ′, we
have infx∈C,y∈C′‖x− y‖∞ > δ 2−i.

We defer the proof of this claim to Section C
of the Supplementary Material (for an insightful
picture, see Figure 1 in the same section). As-
sume for now that it is true and fix an arbi-
trary k ∈ {1, . . . , 2d}. Then, for all C ∈ Ci(k),
there exists xC such that (8) holds. Therefore, we
determined the existence of

∣∣Ci(k)
∣∣-many

(
δ 2−i

)
-

separated points that are all included in
{
|f − a| ≤

2 b 2−βi
}

. By definition of
(
δ 2−i

)
-packing number

of
{
|f − a| ≤ 2 b 2−βi

}
(i.e., the largest cardinal-

ity of a set of
(
δ 2−i

)
-separated points included in{

|f − a| ≤ 2 b 2−βi
}

—Definition 2), this implies

that
∣∣Ci(k)

∣∣ ≤ N ({|f − a| ≤ 2 b 2−βi
}
, δ 2−i

)
. Re-

calling that Ci(1), . . . , Ci(2d) is a partition of Ci, we
then obtain

∣∣Ci∣∣ =

2d∑
k=1

∣∣Ci(k)
∣∣ ≤ 2dN

({
|f − a| ≤ 2b2−βi

}
, δ2−i

)
which, after taking the infimum over δ ∈ (0, 1)
and by the monotonicity of the packing number
r 7→ N (E, r) (for any E ⊆ [0, 1]d), yields∣∣Ci∣∣ ≤ inf

δ∈(0,1)

(
2dN

({
|f − a| ≤ 2b2−βi

}
, δ2−i

))
= 2d lim

δ→1−
N
({
|f − a| ≤ 2 b 2−βi

}
, δ 2−i

)
.

This gives (7) and concludes the proof.

By looking at the end of the proof of the previous
result, one could see that the exponential term 4d in

our bound (3) could be lowered to 2d under the as-
sumption that at any iteration i, Algorithm 2 picks
at least one xC′ ∈ C ′ for each C ′ ∈ C′i such that∥∥xC′1 − xC′2

∥∥
∞ ≥ 2−i for all distinct C ′1, C

′
2 ∈ C′i.

Notably this property is enjoyed by all our BA in-
stances in Sections 4, 5.

4 HÖLDER FUNCTIONS

In this section, we focus on Hölder functions, and
we present a BA instance that is rate-optimal for
determining their level sets.

Definition 5 (Hölder function). Let c > 0, γ ∈
(0, 1], and E ⊆ [0, 1]d. We say that a function
f : E → R is (c, γ)-Hölder (with respect to the sup-
norm ‖·‖∞) if

∣∣f(x) − f(y)
∣∣ ≤ c ‖x− y‖γ∞, for all

x,y ∈ E.

Our BA instance for Hölder functions (BAH, Algo-
rithm 3) runs Algorithm 2 with k = 1, b = c, β = γ.
The local approximators gC′ are constant and equal
to the value f(cC′) at the center cC′ of C ′. In par-
ticular, the output set Sn is now the entire union of
all hypercubes determined in the latest completed
iteration.

Algorithm 3: BA for Hölder Functions (BAH)

input: level a ∈ R, tol. c > 0, γ ∈ (0, 1]
init: D ← [0, 1]d, C0 ← {D}, n← 0

1 for iteration i = 1, 2, . . . do
2 S(i)← ⋃

C∈Ci−1
C

3 let C′i ← bisect(Ci−1)
4 for each hypercube C ′ ∈ C′i do
5 update n← n+ 1
6 pick the center cC′ of C ′ as the next xn
7 observe f(xn)
8 output Sn ← S(i)

9 Ci ←
{
C ′ ∈ C′i :

∣∣f(cC′)− a
∣∣ ≤ c 2−γi

}
The next result shows that the optimal worst-case
sample complexity of the level set approximation of
Hölder functions is of order 1/εd/γ , and it is attained
by BAH (Algorithm 3).

Theorem 3. Let a ∈ R, c > 0, γ ∈ (0, 1], and
f : [0, 1]d → R be any (c, γ)-Hölder function with
level set {f = a} 6= ∅. Fix any accuracy ε > 0.
Then, there exists κ1 > 0 (independent of ε) such
that, for all n > κ1/ε

d/γ , the output Sn returned by
BAH after the n-th query is an ε-approximation of
{f = a}.
Moreover, there exists κ2 (independent of ε) such
that no deterministic algorithm can guarantee to out-
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put an ε-approximation of the level set {f = a}
for all (c, γ)-Hölder functions f , querying less than
κ2/ε

d/γ of their values.

The proof is deferred to Section D in the Supplemen-
tary Material. The upper bound is an application of
Theorem 2. The lower bound is proven by showing
that no algorithm can distinguish between the func-
tion f ≡ 0 and a function that is non-zero only on a
small ball, on which it attains the value 2ε. We use a
classical construction with bump functions that ap-
pears, e.g., in Theorem 3.2 of Györfi et al. (2002) for
nonparametric regression lower bounds.

We remark that the rate in the previous result is the
same as that of a naive uniform grid filling of the
space with step-size of order ε1/γ . While this rate
cannot be improved in the worst case, the leading
constant of our sequential algorithm may be better
if a large fraction of the input space can be rejected
quickly. More importantly, we will see in Section 5.2
that (slightly) better rates can be attained by BA al-
gorithms if the inflated level sets of the target func-
tion f are smaller (as it happens, e.g., if f is convex
with proper level set {f = a}).
In the following section, we will also investigate if
and to what extent higher smoothness helps. To
this end, we will switch our focus to differentiable
functions with Hölder gradients.

5 ∇-HÖLDER FUNCTIONS: BAG
ALGORITHM & ANALYSIS

In this section, we focus on differentiable functions
with Hölder gradients, and we present a BA instance
that is rate-optimal for determining their level sets.

Definition 6 (Gradient-Hölder/Lipschitz function).
Let c1 > 0, γ1 ∈ (0, 1], and E ⊆ [0, 1]d. We say
that a function f : E → R is (c1, γ1)-gradient-Hölder
(with respect to ‖·‖∞) if it is the restriction6 (to E)
of a continuously differentiable function defined on
Rd such that

∥∥∇f(x)−∇f(y)
∥∥
∞ ≤ c1 ‖x− y‖γ1∞ for

all x,y ∈ E. If γ1 = 1, we say that f is c1-gradient-
Lipschitz.

The next lemma introduces the polynomial approx-
imators that will be used by our BA instance and it
shows that they are (c1d, 1 + γ1)-accurate approxi-
mations of f on all hypercubes.

Lemma 1 (BAG approximators). Let f : C ′ → R be
a (c1, γ1)-gradient-Hölder function, for some c1 >

6They are defined as restrictions of continuously dif-
ferentiable functions in order to have simply and well-
defined gradients on the boundary of their domains.

0 and γ1 ∈ (0, 1]. Let C ′ ⊆ [0, 1]d be a hypercube
with diameter ` ∈ (0, 1] and set of vertices V ′, i.e.,

C ′ =
∏d
j=1[uj , uj + `], for some u := (u1, . . . , ud) ∈

[0, 1−`]d, and V ′ =
∏d
j=1{uj , uj + `}. The function

hC′ : C
′ → R

x 7→
∑
v∈V ′

f(v)

d∏
j=1

pvj (xj) , (9)

where

pvj (xj) :=

(
1− xj − uj

`

)
Ivj=uj+

xj − uj
`

Ivj=uj+`,

interpolates the 2d pairs
{

(v, f(v))
}
v∈V ′ and it sat-

isfies

sup
x∈C′

∣∣hC′(x)− f(x)
∣∣ ≤ c1d `1+γ1 .

The technical proof of the previous lemma is deferred
to Section E of the Supplementary Material.

Our Bisect and Approximate instance for gradient-
Hölder functions (BAG) runs Algorithm 2 with k =
2d, b = c1d, and β = 1+γ1. The local approximator
hC′ (defined in (9)) are computed by querying the
values of f at all vertices of C ′. Note that line 12
of Algorithm 4 can be carried out efficiently since it
is sufficient to check the condition on

∣∣hC′(x) − a
∣∣

at the vertices x of C ′.7 Also, note that the output
set Sn is the union over hypercubes of pre-images of
segments from the polynomial functions in (9).

5.1 Worst-Case Sample Complexity

The next result shows that the optimal worst-case
sample complexity of the level set approximation
of gradient-Hölder functions is of order 1/εd/(1+γ1),
and it is attained by BAG (Algorithm 4).

Theorem 4. Let a ∈ R, c1 > 0, γ1 ∈ (0, 1], and
f : [0, 1]d → R be any (c1, γ1)-gradient-Hölder func-
tion with level set {f = a} 6= ∅. Fix any accuracy
ε > 0. Then, there exists κ1 > 0 (independent of
ε) such that, for all n > κ1/ε

d/(1+γ1), the output

7Indeed, only three cases can occur. We set ρ =
c1d 2−(1+γ1)i. Case 1: if one of the vertices x satisfies∣∣hC′(x)− a

∣∣ ≤ ρ, then the condition is checked. Case 2:
if the values hC′(x) at the vertices are all strictly be-
low a − ρ or all strictly above a + ρ, then it is also the
case for all x ∈ C′, since hC′(x) is a convex combina-
tion of all values at the vertices; so the condition is not
checked. Case 3: if there are two vertices x and y such
that hC′(x) < a−ρ and hC′(y) > a+ρ, then there exists
z ∈ C′ such that

∣∣hC′(z) − a
∣∣ ≤ ρ by continuity of hC′

on C′; so the condition is checked.
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Algorithm 4: BA for ∇-Hölder f (BAG)

input: level a ∈ R, tol. c1 > 0, γ1 ∈ (0, 1]
init: D ← [0, 1]d, C0 ← {D}, hD ≡ a, n← 0

1 for iteration i = 1, 2, . . . do
2 S(i)← ⋃

C∈Ci−1

{
x ∈ C :

∣∣hC(x)− a
∣∣ ≤

c1d 2−(1+γ1)(i−1)
}

3 C′i ← bisect(Ci−1)
4 for each hypercube C ′ ∈ C′i do
5 let V ′ ⊆ C ′ be the set of vertices of C ′

6 for each vertex v ∈ V ′ do
7 update n← n+ 1
8 pick vertex v ∈ V ′ as the next xn
9 observe f(xn)

10 output Sn ← S(i)

11 interpolate the 2d pairs
{(

v, f(v)
)}

v∈V ′
with hC′ : C

′ → R given by (9)

12 update Ci ←
{
C ′ ∈ C′i : there exists x ∈

C ′ such that
∣∣hC′(x)− a

∣∣ ≤ c1d 2−(1+γ1)i
}

Sn returned by BAG after the n-th query is an ε-
approximation of {f = a}.
Moreover, there exists κ2 > 0 (independent of ε)
such that no deterministic algorithm can guarantee
to output an ε-approximation of the level set {f = a}
for all (c1, γ1)-gradient-Hölder functions f , querying
less than κ2/ε

d/(1+γ1) of their values.

The proof proceeds similarly to that of Theorem 3.
It is deferred to Section E of the Supplementary Ma-
terial.

Similarly to Section 4, the rate in the previous result
could also be achieved by choosing query points on a
regular grid with step-size of order ε1/(1+γ1). How-
ever, our sequential algorithm features an improved
sample complexity outside of a worst-case scenario,
as shown in the following section.

5.2 Adaptivity to Smaller d?

Our general result (Theorem 2) suggests that the
sample complexity can be controlled whenever there
exists d? ≥ 0 such that

∀r ∈ (0, 1), N
({
|f − a| ≤ r

}
, r
)
≤ C?

(
1

r

)d?
.

for some C? > 0. We call such a d? a NLS dimen-
sion of {f = a}. Note that such a d? always exists
and d? ≤ d by

{
|f − a| ≤ r

}
⊆ [0, 1]d. However

d? ≥ d − 1 by Theorem 1 for non-degenerate level
sets of continuous functions (for more details, see
Section F.1 in the Supplementary Material). The

definition of NLS dimension leads to the following
result.

Corollary 1. Let a ∈ R, c1 > 0, γ1 ∈ (0, 1], and
f : [0, 1]d → R be any (c1, γ1)-gradient-Hölder func-
tion with level set {f = a} 6= ∅. Let d? ∈ [d − 1, d]
be a NLS dimension of {f = a}. Fix any accu-
racy ε > 0. Then, for all n > m(ε), the output
Sn returned by BAG after the n-th query is an ε-
approximation of {f = a}, where

m(ε) :=


κ1 + κ2 log2

(
1

ε1/(1+γ1)

)+

if d? = 0 ,

κ(d?)
1

εd?/(1+γ1)
if d? > 0 ,

for κ1, κ2, κ(d?) ≥ 0 independent of ε, that depend
exponentially on d, where x+ = max{x, 0}.

We remark that d? = d− 1 can be achieved by well-
behaved functions. This is typically the case when
f is convex or (as a corollary) if it consists of finitely
many convex components.8 This non-trivial claim is
proved in Section F.2 of the Supplementary Material
for convex functions with a proper level set9. The
following result, combined with this fact and Corol-
lary 1, shows that BAG is rate-optimal for deter-
mining proper level sets of convex gradient-Lipschitz
functions.

Theorem 5. Fix any level a ∈ R and an arbitrary
accuracy ε > 0. No deterministic algorithm A can
guarantee to output an ε-approximation of any ∆-
proper level set {f = a} of an arbitrary convex c1-
gradient-Lipschitz functions f with c1 ≥ 3 and ∆ ∈
(0, 1/4], querying less than κ/ε(d−1)/2 of their values,
where κ > 0 is a constant independent of ε.

We give a complete proof of this result in Section F.3
of the Supplementary Material.

6 CONCLUSION

We studied the problem of determining ε-approxi-
mations of the level set of a target function f by only
querying its values. After discussing the inherent
hardness of the problem (Theorem 1), we designed
the class of BA algorithms for which we proved the-
oretical guarantees under the assumption that accu-
rate local approximations of f can be computed by
only looking at its values (Theorem 2).

8More precisely, if for some a′ > a, we have that the
sublevel {f ≤ a′} is a disjoint union of a finite number
of convex sets on which f is convex.

9{f = a} is ∆-proper for some ∆ > 0 if we have
minx∈[0,1]d f(x) + ∆ ≤ a ≤ minx∈∂[0,1]d f(x).
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This provides a general method to reduce our level
set approximation problem to a local approximation
problem, decoupled from the original one.

Such an approach leads to rate-optimal worst-case
sample complexity guarantees for the case of Hölder
and gradient-Hölder functions (Theorems 3, 4). At
the same time, we show that in some cases our BA al-
gorithms adapt to a natural structural property of f ,
namely small NLS dimension (Corollary 1) including
convexity (Theorem 5 and preceding discussion).

Future Work. Compared to the best achievable
rate 1/εd/γ for (c, γ)-Hölder functions, we show that
BA algorithms converge at a faster 1/εd/(1+γ1) rate
if f is (c1, γ1)-gradient-Hölder. This points at an in-
teresting line of research: the study of general Hölder
spaces in which the target function is k times contin-
uously differentiable and the k-th partial derivatives
are (ck, γk)-Hölder, for some k ∈ N∗, ck > 0, and
γk ∈ (0, 1]. We conjecture that a suitable choice of
approximators for our BA algorithms would lead to a
rate-optimal sample complexity of order 1/εd/(k+γk)

for this class of functions, making optimal solutions
for this problem sample-efficient. Another possible
line of research is the design of algorithms that adapt
to the smoothness of f when the latter is unknown,
similarly to global bandit optimization (e.g., Grill
et al. 2015; Bartlett et al. 2019). We leave these
interesting directions open for future work.
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Harro Walk. A Distribution-Free Theory of Non-
parametric Regression. Springer Series in Statis-
tics. Springer-Verlag, New York, 2002.

George Kamenev. Optimal non-adaptive approxima-
tion of convex bodies by polytopes. In Numerical
Geometry, Grid Generation and Scientific Com-
puting, pages 157–172. Springer, 2019.

Andrea Locatelli and Alexandra Carpentier. Adap-
tivity to smoothness in X-armed bandits. In
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