One-Round Communication Efficient Distributed M-Estimation:
Supplementary Materials

A Proof of Main Results

A.1 Proof of Theorem 5.1

First, we denote another ¢5 ball with smaller radius U := {6 : |0 — 0|2 < ,} where §, = min{p, pA_/(2M)}.
Then define some good events:

Eop, = {|VLk(0*)||2 < W}
By, = {711 > M(X;) < M} , and (A1)
1€H

Fa = { (0% - 10)], < 2= ).

Lemma A.1l. Suppose the condition (C5) holds, then
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hold with probability at least 1 — Cymexp(—Cynt?) and 1 — C3 exp(—CyNt?) respectively, where Co,C3 and C,
are three universal positive constants.

and
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Using the Lemma 6 nad 7 in Zhang et al. (2013) and Lemma A.1, we can obtain Lemma A.2 and Lemma A.3.
Lemma A.2. Under event E = ﬂ;nzl Eoi, N E, N Esy, for 8 € Us we have

Amin (Hg(0)) = (1= p)A—. (A2)
And for each local estimator Ek we have
5 2|[VLL(67)I],
— _—= A.
Hek 0 27 (1—=p)A- (A.3)

Lemma A.3. Assume condition (C4) hold, there exists some positive constant Cy such that
" N log 2p\ /2
B (JHu(0%) - 10 F) < oo (KR )

Lemma A.4. Denote the event E = ﬂ;”zl FEor, N Ey, N Eoy, then there exist three positive constants cg, c1 and co

such that
log 2p K/2
P(EC) <m 2e(—cont2p) 4 o = K/2 4 ) () .
n



One-Round Communication Efficient M-Estimation

Proof of Theorem 5.1. Using the fact VLk(ak) =0, we have
VLL(6") = Hy(By) (6" - B))

where ék lies between ék and 6*. It implies that
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Note that under event F, we have
1)

< HHO(ak) —Hy(0%)

-+ Ho(07) — H(07) ], + [H1(07) — A0

<M |6y, — 0|2 + M]||0y — 672 + [ Ho(6%) — HL(67)]l, (A.4)
<2M |65 — 6”2 + [|Ho(87) — Hy(6")]|,

_AM|[VL(67)]l2
T (A=p)A-

where the second inequality follows from the definition of Fj; and the third inequality follows from (A.3) in
Lemma A.2. Combining with (A.2) in Lemma A.2, we have

+ [[Ho(67) — Hx(67)]l,,

HHk('ék)—l (HO@) — Hk(ék)) VLi(0%)

< "Hk(gk)_l (Ho(ak) - Hk(ék)) H2 VL (67)]],

AMIVLL(OT) | [1Ho(8") = Hi(8")ll, |V Li(67)ll2
(1—p)2A2 (1-p)A '

On the other hand, we make use of the fact that: for any matrix A, B € RP*P,
_ _ 12
I(A+B)~" — A7, < A7, 1B,
Now let A = I(6*) and B = Hg(6},) — I(6*) and using Lemma A.2 again, we have
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) * *\ — 2
< max. ‘Ho(ek) ~10")| 1o 73
< max ([|Ho(Br) — Ho(0") | + IEo(67) ~1(6")1],) [1(6") [
2M VL)l . o .
ST A s [H(6) ~ 1(6")],
=o(1).

Then under event E, there exists some positive constant C' such that

AM|VLL(8T)] | [Ho(8") — Hk(e*)||2||VLk(0*)|2>

<
[[wnlly CO<k<m < (1—p)2X3 (1—p)A2

The result follows from Lemma A .4. O



A.2 Proof of Corollary 5.1

Proof. For any ¢ > 0,

ﬁ;E (HVZ(XZ"0*)/\/NH2H{HW(X“H*)/‘/NHQ - 5})
—5 (19,0931 { |vix. 00 VA > <)
< [E|VI(X,07)];) v P (|[vix.0n) VA > 5)]1/2'
Using condition (C5), we can prove for any A € R

E [exp (A VI(X, 6%)]2)] < 2" (A.5)

Then using Markov’s inequality and (A.5), we have

P (HVZ(X,(J*)/\/NH2 > e) < 2exp (;\; - )\5) < 2exp (-J\f) .

Moreover note that
BV 0} = [P (191,093 > 1) a
:4/ P(|VI(X,0%), > t) 5t
0

< 8/ e 1234t = 4T(2) < oo,
0

where I'(x) is Gamma function. Thus
g:]E (HVZ(XZ-ﬁ*)/\/NHz]I {HVZ(XZ-,B*)/\/N‘L > s}) = o(1).
i=1

Then the result follows from Lindeberg—Feller central limit theorem. U

A.3 Proof of Theorem 5.2
Proof. The gradient of logistic regression is VI(X,0) = —Y X /(1 4 exp(Y X 7)), then we have for any A € R

sup E [exp (A[u"VI(X,6%)])] < sup E[exp (A|lu"X|)] < exp(X?).

lufl2=1 lull2=1

It implies that condition (C5) holds. Let p(8) = (1 + exp(—X18)) and using p(0)(1 — p(8)) < 1, we have

sup E {exp </\|u X\/l——o] < exp(\?).

llufl2=1

Let Z = X /p(6)(1 — ) then I(0) = E(ZZ™). Then according to Theorem 6.5 in Wainwright (2019), we can

prove that
max [ H, (6) ~ L(O)], = O (\/f) .

From Proposition D.1 in Chen et al. (2018), we can verify condition (C3) and (C4). Therefore, the ¢ error
bound can be obtained from the proof of Theorem 5.1.

O
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A.4 Proof of Theorem 5.3

Proof. For the ease of the representation, we use 0 to denote 5pen_c Asg. By the optimality of §7 we have
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1 *T - n * 1 - Y * *
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_2(m+1)0 (§ k(ek)>0 o > k(ek)0k> 0" + X071,

k=0

which implies that

s (-o)’ (iﬂk(ek>> (6-0") + 201,

T
1 - 7 a * a * *
<L (Zﬂkwk)(ek —o >> (0-07) + Aulo .

Note that,

> " Hy(6:) (0 — 07)
=0

Hm—i—l
< LZVL (6%)
- m+1k:0 F

From the proof of Theorem 5.1 and the definition of \,,, there exists some sufficiently large C3 such that

(oo}

+ max [0 (Ho(@)) - Hi@0) |, VL6,

o0

A

< n
— 2 .

|’m+1ZHk (6x)(6x — 6%)

oo

Under event E, >, Hy, (61)/(m + 1) is positive definite, combining with (A.6) we have
a )\n a * *
AallOll < =110 = €7[1 + Anl| 671
Then using the fact 6%. = 0, we can obtain ||§ — 68*[|; < 4]|@s — 6%]|1. From (A.6), we also have
a * (12 3An a * a *
(1= p)A-[16 =673 < 71160 = 67|l < 6XnV/5]|6 — 672,

where the first inequality follows from Lemma A.2 and the second inequality follows from |6 —6*||; < 4||§s
Under condition (C5), for any A > 0 there exists some positive constant ¢ such that

1rgjaxp]E[eXp(/\V 1(X,0%))] < exp()\?).

Then using the maximum sub-gaussian inequality, we have

1 T log N 2
- > < /2.
IE”( mHkZ:OVLk(o) ey ~ >pN

A.5 Proof of Theorem 5.4

Proof. We first define the oracle problem:

T

1 T “ S

(A.6)

(A7)

(A.8)

— 051



Let H= 1" Hy(0)/(m + 1) and b= 37" Hy(6;)8%/(m + 1), then by the KKT condition we have
I/‘\Issb\gv — bs —+ /\nzS =0,
~0 ~—1
which implies that 8¢ = Hgg(bs — Anzs). If we can prove there exists zge € RP~* satisfying the zero subgradient
condition
ﬁscsag —bge + A\pzse =0

and ||z||os < 1, then S C S. Substitute 5; to the above equation then we can write zge as

A~

Zge = )\,r_Ll {bs’c — HSCSHSS (bS — )\nzs)}
PO P

— A { {milﬂk(@k) <§k - 0*)]

Let I =1(0"), then note that

~ ~—1 1 ~ ~ " ~ ~—1
~ Hg.sHgg {MHk(Gk) (0k —9 )} }JFHSCSHSSzS.

se S

a1 . ~1 1 ~ _ _
Hg.gHgg = (HSCS . ISCS) (HSS - IS;) +Igeg (Hss - 15;) + (HSCS - ISCS) 151+ TgesIgh.
According to Lemma A.3 we have

~—1
—1
JFiss - 163, =
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Moreover,

HHSCS —Iges

< .\ *
‘2 < max. ‘Hk(ak) 16%)

Then we have

<. /P
2~ \Vn
< 5P

. ~-1 . 1
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~—1 1 ~—1 —1 p
HISCS (Hss - Iss) HOO < s ||, HHSS - IssH2 Ss o

‘ <s B.
2 ™ n

~ o~
Combing the results above, it follows that |[HgesHgglloo S [|IsesIgellco + 5¢/B/v/n. Due to the definition of A,
and (A.8), there exists some sufficiently large positive constant Cy such that

and

Hges — Lses Igel| <s I\IgéHQ Hges — Ises
oo

1 _ 1
|zselloo < == + [IsesIggllon < 7 +a <1
0 CO

1~
with probability tending to 1. Using the fact 85 = Hgg(HO™)s, we can obtain
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A.6 Proof of Theorem 5.5

Proof. 1t suffices to prove that

~ 1 U log N
ColO" — —— o = . A.
(- - (V) a9
Note that
SR = DG Y X
m+1 m+1 ko Y
k=0 1€H

where ék = Zie?—tk XiX;F/n Moreover, using the subgaussian property of X; and ¢; we can easily ob-

tain maxy [Cy — Cll2 = Os(/p/n), maxy | ¥,z Xi€s/nllz = Op(/p/n) and | X7g Xiep, Xici/Nloo =
Op(y/log N/N). Tt follows that

Co <0*Zek>

|‘m+1zaoa_ ZXGZ
1€EHE
NZ Z X€;

k=0i€H

] o) |

ZXGZ

0o 2

B logN p
OIP( N +n>.

Then (A.9) follows from m < /N log N /p. O

B Proof of Auxiliary Lemmas

B.1 Proof of Lemma A.1

Proof. Note that the variational representation ||V Lg(0)|, = sup,cgr-1 |uT VL, (6")|, where SP~! is the sphere
in RP. Let {u1,...,up} be a 1/2-covering with M < 57 vectors. For any u € SP~!, there is some u; such that
u = u; + A with [|Al]s < 1/2. Thus we have

uTVLL(0") = u] VLL(0") + ATVL,(6%),
which indicates that
* * 1 *
[utVLL(07)] < [u) VL(07)| + 5 IVLe(67)]] -

It yields that
* < T * )
IVLL(O7) ] < 2 max. [ VLk(6)

Then we have,

Blexp (T L0°) )] < B fexp (22 max [«FVL4(67)] )
M
<) E [exp (2A|u] VL(67)])] -
Jj=1
Due to the definition of VL (") and condition (C5), we have

s 2)
T * T *
E [exp (2A|u; VL (67) U [exp <n|uj Vi(X;,0 )ﬂ

<exp|—|.
n



Consequently, we have

Blexp (VIO < 57ex (2 ) < o (2 +29). (B.1)

Then it follows that

P (IV20)l > 0oy [2 + ) < Coemp (~Cant?)

for some constants Cs, C3 and Cy. O

B.2 Proof of Lemma A.4

Proof. From the proof of Lemma A.1,

J— 2 _
P(Eg) = P (nmw*m? > “g?”) < 2exp (‘M Lo W)

(1—p)A_d

< 2exp (— 39 pn+2p> < 2exp (—con + 2p).

Then according to our condition (C4) and Markov’s inequality

B ier, M(Xi)"

K/2
nK M '

P(ET,) =P (M > M) < <cn”

Using (B.1) in Lemma A.3, we have
* * (| K
2K (|[H(0") - 16711} )
pENK

_ log 2 K/2 log 2 K/2
< @pF(a) (L) < (1)

(B30 = B (IH0") ~ 10°), > 25 ) <

Therefore, using the union bound we can obtain that

log 2p\ /2
P(EC) <m (26(con+2p) + Cln*K/Q ey (in) .
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