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Abstract

Communication cost and local computation
complexity are two main bottlenecks of the
distributed statistical learning. In this pa-
per, we consider the distributed M-estimation
problem in both regular and sparse case and
propose a novel one-round communication
efficient algorithm. For regular distributed
M-estimator, the asymptotic normality is pro-
vided to conduct statistical inference. For
sparse distributed M-estimator, we only re-
quire solving a quadratic Lasso problem in the
master machine using the same local informa-
tion as the regular distributed M-estimator.
Consequently, the computation complexity
of the local machine is sufficiently reduced
compared with the existing debiased sparse
estimator. Under mild conditions, the theoret-
ical results guarantee that our proposed dis-
tributed estimators achieve (near)optimal sta-
tistical convergence rate. The effectiveness of
our proposed algorithm is verified through ex-
periments across different M-estimation prob-
lems using both synthetic and real benchmark
datasets.

1 Introduction

Datasets with unprecedented size are widely collected in
many contemporary applications, such as social media,
mobile APP, precision medicine. It also brings about
tremendous challenges on computation and storage
for statistical learning and estimation. Consequently,
it is urgent to develop efficient distributed statistical
learning and estimation methodologies. The main bot-
tlenecks of distributed learning are communication cost
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and local computation complexity. The communica-
tion between local machines and the master machine is
limited by the bandwidth and the computation power
of local machines may be much weaker than the master
machine. Therefore, efficient distributed algorithms
should reduce communication rounds and local compu-
tation complexity.

This paper investigates a general M-estimation problem
in the distributed environment. Let (X, ) : RP — R
be the twice differentiable convex loss function and
X € RP? is the random variable from some unknown
probability distribution D. The “true parameter” is
defined as the minimizer of the population risk
* .

0" .= arg Inin Exp[l(X,0)]. (1.1)
In practice, we estimate the true parameter 8 through
empirical risk minimization. Now suppose we obtain
a group of independent samples {X; :¢=1,2,..., N}
from the distribution D, then M-estimator is defined
as the minimizer of the empirical risk, that is

0 :=arg mm—Zl X, 0). (1.2)

Here we assume the dimensionality p can go to infinity
as the sample size grows but p is less than the sample
size.

With the growing dimensionality, the regular M-
estimator (1.2) may suffer performance loss due to
over-fitting. In addition, the model interpretation also
relies on variable selection heavily. Therefore, sparse
M-estimator is widely used in many real applications,
which can be estimated by solving the following penal-
ized empirical risk minimization problem:

~

0 :=arg mln —Zl X,,0)+ Py, (0) (1.3)

where Py, (0) is a penalty function, such as Lasso
penalty in Tishbirani (1996), Smoothing Clipped Abso-
lute Deviation (SCAD) penalty in Fan and Li (2001),
Minimax Concave penalty (MCP) in Zhang (2010).
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In the common distributed setting, the overall sample
is stored in the master machine and m local machines.
Each local machine only has access to communicate
with the master machine. Under this distributed envi-
ronment, we focus on regular and sparse M-estimation
problem with the diverging dimensionality. It is more
challenging for distributed sparse M-estimation prob-
lem since (1.3) can be nonsmooth or nonconvex. There
are mainly two popular distributed sparse estimators:
the average debiased estimator (Lee et al., 2017; Battey
et al., 2018) and multi-round estimator (Jordan et al.,
2019; Chen et al., 2020a). The first estimator only
require one round of communication but the computa-
tion complexity for local machines is huge. The second
estimator require less local computation complexity
but the number of communication rounds is not stable,
which may leads great communication cost. To address
the challenge of both communication cost and local
computation complexity, the main goal of our paper is
twofold:

1. Develop a communication efficient distributed M-
estimation algorithm with one round of commu-
nication. And the local machines only need to
transmit p-vectors to the master machine.

2. The sparse distributed M-estimator only require
O(Np/m) local computation complexity.

1.1 Related Work

Distributed statistical learning has received consider-
able attention in the recent years and many important
topics are covered, including M-estimation (Lin and
Xi, 2011; Zhang et al., 2013; Shamir et al., 2014; Wang
et al., 2017b; Jordan et al., 2019; Fan et al., 2019a),
high-dimensional sparse linear regression and general-
ized linear model (Lee et al., 2017; Battey et al., 2018),
quantile regression (Chen et al., 2019, 2020b; Chen and
Zhou, 2020), principal component analysis (Fan et al.,
2019b; Garber et al., 2017), non-parametric regression
(Zhang et al., 2015; Shang and Cheng, 2017; Han et al.,
2018), support vector machine (Lian and Fan, 2018;
Wang et al., 2019), deep learning (Dean et al., 2012;
Anil et al., 2018; Assran et al., 2019).

The divide-and-conquer strategy is advocated by Mc-
donald et al. (2009), which is simple to program and
only requires a single round of communication. First
each machine obtains a local estimator ) parallelly
by minimizing the average loss function based on the
local samples. Then each local machine sends the
local estimator to the master machine or the server.
At last, the master machine takes average of all local
estimators to form an aggregated estimator. Zhang
et al. (2013) investigated the theoretical properties of

naive average distributed M-estimator for twice differ-
entiable loss function and obtained O(1/v/N + 1/n)
convergence rate of the mean squared error, where N
is the global sample size and n is the local sample size.
Rosenblatt and Nadler (2016) derived the asymptotic
normality of naive average distributed M-estimator
under fixed dimensionality and diverging dimensional-
ity respectively. For penalized M-estimation problem,
plenty of researches (Lee et al., 2017; Battey et al.,
2018) proposed to replace the local sparse penalized
estimator with the debiased estimator introduced in
Van de Geer et al. (2014); Javanmard and Montanari
(2014), then conduct hard thresholding operator on the
average debiased estimator to obtain sparsity. How-
ever, the debiased operation requires to estimate the
inverse of Hessian matrix, and the computation cost is
highly expensive for local machines. To achieve optimal
statistical convergence rate, these divide-and-conquer
estimators require the constraint of the number of local
machines (Zhang et al., 2013; Lee et al., 2017; Battey
et al., 2018).

To avoid the constraint on the number of local machines,
the multi-round distributed estimation algorithms were
developed (Zinkevich et al., 2010; Shamir et al., 2014;
Wang et al., 2017a; Jordan et al., 2019). Shamir et al.
(2014) proposed a distributed approximate Newton
algorithm, where each local machine minimizes a mod-
ified loss function based on the gradient information
from other local machines in each iteration. Jordan
et al. (2019) proposed the Communication-efficient Sur-
rogate Likelihood (CSL) framework, which approxi-
mated the global loss function by replacing the higher-
order derivatives of the global loss function with the
local derivatives then minimized the approximate loss
function in the master machine to obtain the estima-
tor. The corresponding sparse CSL estimator was also
proposed in Jordan et al. (2019).

1.2 Our Contributions

Motivated by the aggregated estimating equation
(AEE) estimator proposed in Lin and Xi (2011), this
paper proposes a novel communication efficient aggre-
gated score equation (CASE) estimator and its penal-
ized sparse version (Pen-CASE). Different from the
aforementioned average debiased estimator, our pro-
posed Pen-CASE estimator does not require estimating
the inverse Hessian matrix or exactly solving the penal-
ized optimization problem (1.3). Both CASE and Pen-
CASE achieve the goals mentioned above. Formally,
our proposed method has the following contributions:

1. Pen-CASE estimator shares the same communi-
cation cost with the debiased estimator in Lee
et al. (2017), while the computation complexity
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of Pen-CASE estimator in each local machine is
O(np), which is sufficiently reduced compared with
O(np? + p3) complexity of the debiased estimator.

2. Our theoretical results show that the statistical
convergence rate of the CASE estimator achieves
optimal order Op(1/p/N) under mild constraint on
the number of local machines. Moreover, the Pen-
CASE estimator achieves near oracle convergence
rate under the sparsity assumption.

Notation

The following notations will be used throughout the
paper. For a vector @ € RP, {1, {5 and ¢, norm are
denoted by |21 = Y0_, 7], [2]2 = (XF_, 23)'/?
and ||z|x~ = max;|z;| respectively. For a matrix
A = (4;,;) € RP*P, gpectral norm is defined by
[Allz = supjg,=1 [AZ|l2, foc norm is defined by
| Ao = max; 330_ [A;|. For a matrix A € R™*"
and a vector * € R™: Agr denotes the subma-
trix (as,¢,;) for S = {s1,...,s.} € {1,...,m} and
T = {t1,...,ty} € {1,...,n}; xs denotes the sub-
vector (z;) for j € S. For two sequences of positive
numbers ¢, and d,, we write ¢, < d, if there exists
some positive constant ¢ such that ¢, < cd,, holds for
sufficiently large n. For a sequence of random variables
Xn, we write X,, = Op(d,,) if for any € > 0 there exists
some positive constant C' such that P(|X,| > Cd,,) < e

2 Distributed M-Estimator

Without loss of generality, we assume all samples {X; :
i=1,2,..., N} are stored in the master machine and m
local machines evenly. Denote the data index set in the
k-th machine by Hy with |Hg| =n for k=10,1,....,m
Then the samples stored in the k-th machine are {X; :
i € Hy}. The local empirical risk function for the k-th
machine is Ly(0) = >y, [(Xi,0)/n. Suppose the
dimensionality p is less than the local sample size n, it
implies that there exists an unique local estimator 6,
satisfying VL (0;) = 0. Our goal is to minimize the
global empirical risk, that is

1
i Li(0).
A PR

Let 0 be the global M-estimator, then the score equa-
tion must satisfy

— Zwk (2.1)

Denote the local Hessian matrix by Hy(0) := V2L ().
Taking Taylor’s expansion to VLg(0) around 0y, we

have

VL.(0) = Hy. () (@ - ak) (2.2)

where 6}, lies between 6 and 6. Then substitute (2.2)
o0 (2.1) we have

m

m;ﬂ ZHk(ék) (5 - ak) =0

k=0

(2.3)

We replace Hy, ('ék) by Hk(gk) since gk is unknown and
closed to @y, which leads the following AEE estimator
proposed in Lin and Xi (2011)

/éAEE = (i Hk(/ék)> in(ék)/ék (24)
k=0

k=0

However, Lin and Xi (2011) required the loss function
(X, 0) is three-times differentiable. Here we general-
ize it to twice differentiable loss functions, which can be
applied in broader distributed M-estimation problems.

To obtain AEE estimator (2.4), the local machines
need to transmit Hy, (5k) and Hk(gk)gk to the master
machine and the communication cost is O(p* + p).
Given the fact the samples in each local machine are
from the same distribution, Ho(Bk) should be closed to
H,(6},). We propose using Hy(6},) to replace Hy(85),
which means that each local machine only needs to
transmit Ok to the master machine, then HO(Ok) can
be computed using Bk and the sample in the master
machine. with the help of the local Hessian replication,
the communication cost is reduced to O(p). We call this
estimator as communication-efficient aggregate score
equation (CASE) estimator, which can be written as

m -1
Bcase = (Z Ho(‘%)) > Hy(6x)65
k=0

k=0

(2.5)

It’s worthwhile noting that the CASE estimator satis-
fies that Ocasg = arg mingerr D,,(0) where

m T
D,(6) = —— { <Z Ho<ek>> o (Z Ho(ék)5k> e}.
k=0

To encourage sparsity, we add Lasso penalty to D, (6),
then we can obtain the penalized CASE estimator
(Pen-CASE) by solving the following quadratic Lasso
problem

Open-cASE = arg Jain Dy (0) + A\ l6]]1, (2.6)
where )\, is the tuning parameter. We provide two
M-estimation examples on linear regression and logistic

regression to illustrate the application of our proposed
CASE estimator and Pen-CASE estimator.
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Example 2.1 (Linear regression). Consider the fol-
lowing linear regression model

Y =XT0* +¢

where 0 € RP s the true parameter to be esti-
mated, X 1is the zero-mean covariate and € is the
zero-mean random mnoise.  For the linear regres-

sion model, the local estimator is given by 0, =
Cicr, XiX )™ e, XiYi. Then the CASE es-
timator is exactly the naive aggregate estimator

~ 1 o
0 = — 0.
CASE m+1kz_0k

And the Pen-CASE estimator is given by
N RPN ~T ~
arg min 56" Cob — 00455C00 + An|0]1
where Co = D ity XX} /n.

Example 2.2 (Logistic regression). Consider the fol-
lowing logistic regression model,

P(Y=1X)=1-P(Y = —1|X) = (1 +exp (fXTO*))_l

where Y € {—1,1} is the label, X is the covariate
with zero mean and 8™ € R? is the true parameter to
be estimated. The loss function is negative likelihood
function

I(X,,0) = log (1 + exp (inXiTO)) .

Let ék be the local estimator from the k-th local machine
then the local Hessian matriz is given by

Ho@:) = Y X.XIpi(6:) (1-p:i(61)

1€Ho

where pi(ak) =(1+ GXP(—X;Fak))_l-

3 Algorithmic Framework

The implementation of our proposed distributed M-
estimation method is stated in Algorithm 1. First, we
compute the local estimator 8y, by minimizing L (80) in
each machine parallelly. Here we use gradient descent
algorithm to obtain 6, which will not bring about
great computation burden to local machines. Then
each local machine transmits 6y to the master machine
and Hy (@) is obtained in the master machine. To
avoid computing the inverse of matrix, we obtain the
CASE estimator by solving a linear system.

In order to thain the local estimator /ék and Hessian
matrix Hg(0), the computation complexities are re-
spectively O(np) and O(np?). For CASE estimator, the

Algorithm 1: One-Round Communication Efficient

Distributed M-Estimation

Input: Data {X,; :i € Hi} for £ =0,1,...,m, the
initial value 0(0), the learning rate n and the
number of iterations T for gradient descent, the
tuning parameter Ap.

Output: Ocase and Open-case-

for k=0,1,...,m do
The k-th local machine: Set 0,(60) = 0(0),

fort=1,..,T do
Update estimator by

0\ = 0" —pvL.e! ).

end
Set @k = 0,(€T) and send 5k to the matser
machine.
end

The master machine: Compute the Hessian
matrices Ho(0y) for kK =0,1,...,m, then obtain
CASE estimator by solving the following linear
system about x

m

(i HO(Ek)> x = Ho(6:)6:.
k=0

k=0

The master machine: Obtain the Pen-CASE
estimator by

Open-cAsE = arg 5161111@1}7 Dn(0) + Anll0]]1- (3.1)

computation complexity of solving the linear system is
O(p?). For Pen-CASE estimator, the quadratic Lasso
problem can be solved efficiently by LARS algorithm
(Efron et al., 2004) or coordinate descent algorithm
and the computation complexity is also O(p®). There-
fore, both CASE estimator and Pen-CASE estimator
require O(Np + np?) total time complexity and O(np)
local time complexity. However, the local computation
complexity of the average debiased estimator in Lee
et al. (2017); Battey et al. (2018) is O(np? + p?).

4 Theoretical Results

Denote the population Hessian matrix by I(8) :=
E(V2I(X,0)). Let the Euclidean ball around 8" with
radius p > 0 be U = {0 € R? : ||§ — 072 < p}.

We impose the following regular conditions to help
establish the theoretical results for our proposed CASE
estimator and Pen-CASE estimator.

(C1) The parameter space ® C RP is compact and
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convex. 0¥ is an interior point in © and the
{o-radius of parameter space R := supgeg ||0 —

9*||2 > 0.

(C2) For any € > 0, there exists some 6 > 0 such that
liminfﬂ”( inf [I(X,0)—1(X,60")] 26) =1.
n—00 16—6%]>>4

The population risk is twice differentiable and the
smallest and largest eigenvalue of I(0™) satisfy
that A_ < Apin(T(0™)) < Amin(I(07)) < A4 for
two positive constants A_ and ;.

The sample risk is twice differentiable and there
exist some positive constant L and integer K > 2
such that for all @ € U

E([[v2ux.6) -16)[, ) < L*.
Moreover for all 0, 0 c U,

Hv%(x, ) - V2(X, o’)H2 < M(X) He _6

2

where E(M¥ (X)) < M for some positive con-
stant M.

The sample gradient evaluated at 0" satisfies the
sub-gaussian property: for any A € R such that

sup E [exp ()\|uTVl(X7 6%)])] < exp ()\2) i

llwll2=1

Condition (C1) and (C2) are very common regular
conditions in M-estimation problem. Condition (C3)
requires the population risk is strongly convex on 6*.
Combining condition (C3) and (C4), the strong con-
vexity of the sample risk function holds locally around
6" with high probability. Condition (C1)-(C4) also
appear in Zhang et al. (2013); Jordan et al. (2019).
Condition (C5) is used to establish the upper bound
for the empirical process in M-estimation.

To begin with, we define the following error term
[Hx(60") — Ho(67)],
(1= p)A-

for k =0,1,...,m. In fact, (4.1) represents the error

_ M|VLL(0")]]2

B
=

(4.1)

brought by the operation that we replace Hy(0y) with
Ho(0k).

4.1 CASE Estimator

The following theorem provides the Bahadur represen-
tation for our proposed CASE estimator. The {5 error
bound and asymptotic normality can be easily obtained
from Theorem 4.1.

Theorem 4.1. Under condition (C1)-(C5), for CASE
estimator (2.5) we have

~ 1 &
* _ *\—1 ) *
0" —Ocasp =1(0") NZZ VI(X;,0") + uy,
k=01€H
(4.2)
where
lualle < € max VL1671, B

with probability at least
log 2\ K72
1—m (26(00n+2p) + Clan/Q o < 0og p) ’
n

for four positive constants C, cg,c1 and cs.

The first term in the right hand side of (4.2) is
empirical process of the Bahadur representation in
the centralized sample case. From Lemma A.l in
the Appendix, we have maxo<i<m [|[VLi(0")|2 =

Op(v/p/n), 1 2%k VL&(67)/(m + 1)|l2 = Op(y/p/N)
and maxo<ig<m ||Hk(0*) - HO(B*)||2 = OP(\/W)

Then Theorem 4.1 also indicates that the convergence
rate of the ¢ estimation error for CASE estimator is

p P
N+n)'

If the number of local machines satisfies m < \/N/p,
the CASE estimator achieves optimal statistical con-
vergence rate.

] o

From Theorem 4.1, we can easily obtain the asymptotic
normality of CASE estimator as following.

Corollary 4.1. Under condition (C1)-(C5), if the
number of machines satisfies m = o(v/N /p), the asymp-
totic normality of CASE estimator holds,

VN (%ASE - 0*) 4 N(0,%)
where S = 1(0%)'E(VI(X, 0°)VI(X,07)")I(6") "

For generalized linear model, the asymptotic covari-
ance matrix ¥ is the inverse of Fisher information
matrix I(6)~!. To conduct statistical inference, such
as hypothesis test and confidence interval, we need
to estimate the asymptotic covariance matrix in the
distributed environment. To prevent transmitting ma-
trices, we provide a communication efficient plug-in
covariance estimator as
n

m+1

s = Ho(Ocase) 'GHo(Bcase) (4.3)
where G = ZZL:O VLk(/éCASE)VLk(aCASE)T. Obvi-
ously, 3 only requires that the local machines send
gradient vector VL (0casg) to the master machine.
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Lemma A.3 in the Appendix indicates that the plug-in
covariance estimator || — 3|2 — 0 with probability
tending to 1. In fact, the spectral norm bound is domi-
nated by ||[Ho(@casg) ™! — I(6%)7t||2. In practice, the
sample size of the matser machine can be much larger
than that of the local machine, which means that we
can obtain more accurate covariance matrix estimation.

The CASE estimator for the linear regression model is
just the naive aggregate estimator, which is investigated
in Zhang et al. (2013). The following theorem provides
the ¢y error bound of CASE estimator for the logistic
regression model.
Theorem 4.2. For the logistic regression model in
Ezample 2.2, assume the covariate X satisfies that
SUD|qy |, =1 Elexp(A|uT X )] < exp(X?) for any X € R.
Moreover, assume )\min(E[XXT]) > Cy and ||0%])2 <
Cs for two positive constants C1 and Cs. Then the
CASE estimator satisfies that

p p

N n) '

||§CASE —0%||2 =Op <

4.2 Pen-CASE Estimator

In this section, we will establish the estimation error
bound and support recovery for the Pen-CASE estima-
tor. Before that, we need to introduce the following
additional conditions for Pen-CASE estimator.

(C6) The support set of 8% is S := {j : || # 0} and
the cardinality of S is s.

(C7) The population Hessian matrix evaluated at 6*
satisfies that

|1(6")5es1(0") 58] . < @

for0<a<l1.

(4.4)

The incoherence condition (C7) is necessary for the
variable selection consistency of Lasso penalized esti-
mator.

Theorem 4.3. Under condition (C1)-(C6) and set

o o]

for some sufficiently large positive constant Cs, then
we have

65

Open- —G*H < 4.
[6ren-cass o7, < T (4.5)

with probabilty at least

1 9 K/2
1-m <2e(60”+2p) + cln*K/2 + ¢ (Oi p) .

+ max |[VLk(8 )IlgBk}

From the proof of Theorem 4.3, we can obtain

12 k0 VLe(07)/(m + 1)llec = Op(y/log N/N). It
yields the /5 estimation error of the Pen-CASE es-
timator

~ . slog N S
H@Pen-CASE*‘9 H =0Op (\/g+p\[> .
2 N n

If the number of local machines satisfies m <
v Nlog N/p, combing with the convergence rate of
maXo<kr<m Bk, we can obtain

~ N slog N

e R (S
In fact, the constraint on the number of local ma-
chines is not rigorous since the dimensionality p is
much smaller than the total sample size N. It’s worth-
while noting that the ¢5 error bound of the Pen-CASE
estimator (4.6) nearly matches the oracle convergence
rate Op(1/s/N) in the centralized sample case.

Denote the support set of the Pen-CASE estimator by
S :={j: |6;] # 0}. The following theorem provides ¢,
estimation error bound for the Pen-CASE estimator.

Theorem 4.4. Under condition (C1)-(C7) and sup-
pose m S +/Nlog N /p, with the same choice for A,
in Theorem 4.3, we have S C S holds with probability
tending to 1. Moreover, the €y, estimation error bound

s given as
log N
. (4.
).

|Bren-cass—6°||_ =0 (|I<o*)§;|oo

According to (4.7), if 0" satisfies that

) _ log N
> * 1 .
rjnelg 07| > Cul[1(0 )Ss|oo\/7 (4.8)

for some sufficiently large positive constant Cy, then
we have S = S with probability tending to 1. It means
that our proposed Pen-CASE estimator can achieve
exact support recovery for general sparse M-estimation
problem in moderately high dimension.

The following theorem provides estimation error bound
for the Pen-CASE estimator in the sparse linear regres-
sion.

Theorem 4.5. For the linear regression model in Ez-
ample 2.1, assume each coordinate of covariate X and
the random noise € are both subgaussian random vari-
ables with parameter 1. Let C := E(XXT), assume
A~ < Amin(C) < Amin(C) < Ay, Suppose the support
set of 0™ is S with sparsity s. If the number of local
machines satisfies m < /Nlog N/p and set

log N
An > Csyf Ofv

for some positive constant C5, we have
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1. ¢y error:

HaPen—CASE - 9*H2 =0Op (

2. s error:

[6rencass—67|| =0 <|CS;|OO\/1°§,N> .

The convergence rates of estimation errors for Pen-
CASE estimator in sparse linear regression model
match the optimal rates in Wainwright (2009).

5 Experiments

In this section, we conduct experiments to show the
effectiveness of the proposed CASE and Pen-CASE
estimator using both synthetic and real datasets.

5.1 Synthetic Data

Regular logistic regression model. In the first
simulation, we compare CASE estimator and AEE es-
timator in the regular logistic regression model using
synthetic data. For the logistic regression model in
Example 2.2, we independently generate the covariate
X ; from the multivariate normal distribution N (0,1,),
where I, is a p dimensional identity matrix. Each entry
of 6" follows i.i.d uniform distribution over the interval
(=1,1). Each observation Y; is generated indepen-
dently from the binomial distribution with parameter
pi = (1 +exp(—X}6%))~!. Here we fix the dimension
p = 20 and the size of training set N = 10,000. We use
{5 estimation error ||@ — 0%||2 and ||@ — Opoo1||2 to eval-
uate different estimators, where épool is the centralized
estimator using the whole training set. The experiment
is repeated 50 times and the averages of results are
demonstrated in Figure 1. From Figure 1(a), we can
see that the (o estimation error of AEE estimator is
lower than CASE estimator because we replace Hy(6},)
with Hy (ék) In addition, the performances of AEE
estimator and CASE estimator are better than the
centralized estimator when the number of machines is
less than 30. The reason is that the dominant term of
error bound in Theorem 4.2 is p/n when the number
of machines is small. Figure 1(b) illustrates the per-
formance loss of each estimator due to the distributed
estimation, which increases as the local sample size
decreases.

Sparse linear regression model. In the second
simulation, we apply Pen-CASE estimator to a sparse
linear regression model using synthetic data. We com-
pare the performance of Pen-CASE estimator with the

L2 error

0.4

0.34

10 20 30 40 50 60 70 80 90 100
The number of machines

(a) 0 — 67|

L2 error

10 20 30 40 50 60 70 80 90 100
The number of machines

(b) 116 — Bpo0i|2

Figure 1: The /5 errors of CASE estimator and AEE
estimator in the regular logistic regression versus the
number of machines (including the master machine).

naive average sparse estimator, the average debiased
estimator (Lee et al., 2017) and penalized CSL esti-
mator (Jordan et al., 2019). For the linear regression
model in Example 2.1, the covariate X; is generated
independently from the multivariate normal distribu-
tion (0, C) where C;; = 0.5V, We set sparsity
s = 5 in our simulation and s nonzero entries of 8*
are generated independently from a uniform distribu-
tion over the interval (—5,5). Then the observation
is generated as Y; = X?O* + €;, where the random
noise ¢; follows i.i.d normal distribution N'(0,0.1). We
fix the sample size of training set as N = 20,000 and
the tuning parameter is selected using an independent
validation set with size 1,000. The {5 estimation error
|@—07||2 and the prediction mean squared error (MSE)
S (Yi—Y;)?/n are used to evaluate the performance
of each method. The prediction MSE is computed in
an independent test set with size 1,000. For penalized
CSL estimator, we compute the two metrics after one
and five communication rounds.

The average {5 estimation error and prediction mean
squared error (MSE) over 50 trails are illustrated in
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Figure 2: The ¢y estimation error and prediction MSE
of each estimator in the sparse linear regression versus
the number of machines (including the master ma-
chine).

Figure 2. It indicates that the Pen-CASE estimator
and the average debiased estimator have the best simi-
lar performance. From Figure 2(a), it can be seen that
the /5 estimation error of the Pen-CASE estimator is
slightly greater than the average debiased estimator
when the number of machines is great than 70. The
reason is that the second term in estimation error of
Pen-CASE estimator is greater than that of the average
debiased estimator when m is large. However, as we
discussed in the section 3, the Pen-CASE estimator
sufficiently reduces the computation complexity of the
local machine compared with the average debiased esti-
mator. Thus the Pen-CASE estimator is more efficient
in practice. Moreover, the performance of the penal-
ized CSL estimator becomes weak and unstable as the
sample size in the master machine decreases.

5.2 Real Data

MNIST Data. In the first experiment, we apply the
CASE estimator to multi-class logistic regression model
using the MNIST (Lecun et al., 1998) dataset. We also

compare our CASE estimator with naive average es-
timator, AEE estimator (Lin and Xi, 2011) and CSL
estimator (Jordan et al., 2019). The total sample size
of the training set and test set are respectively 60,000
and 10,000. In the beginning, we filter out features
with more than 59,000 zeros on the training set to
make sure that the Hessian matrix in each machine
is non-singular, and the number of remaining features
is 467. The training set is randomly divided into 40
machines evenly. We repeat the experiment ten times
and take the average of classification errors to evaluate
the performance of different estimators. The results
are summarized in Table 1, which shows that AEE
estimator has the best performance. The classifica-
tion error of CASE estimator is slightly higher than
AEE estimator due to the Hessian matrix replacement.
Naive average estimator has the similar performance
as the CASE estimator because the two estimator has
the same convergence rate according to Zhang et al.
(2013) and Theorem 4.1. The classification error of
CSL estimator after 10 communication rounds is still
higher than other three estimators.

Table 1: Classification errors and standard deviations
of different estimators in MNIST dataset.

Estimator Naive CASE AEE  5-step CSL  10-step CSL
Error 0.1312 0.1304 0.1244 0.2578 0.2173
SD 0.0002  0.0006 0.0006 0.0253 0.0068

w8a Data. In the second experiment, we use w8a
datset (Platt, 1998) to verify the performance of differ-
ent estimators in sparse logistic regression. The w8a
dataset contains 300 binary features, represents the
presence/absence of different keywords found in web
pages. The goal is to classify whether a web page be-
longs to a certain category or not. The total sample
size of the w8a training set and test set are respec-
tively 49749 and 14951. As for data pre-processing, we
remove features that include more than 49000 zeros
on the training set and the number of remaining fea-
tures is 156. Then we randomly split the training set
into 40 machines evenly. Table 2 reports the average
classification error on the test set of four distributed
sparse estimators over ten replications. It can be seen
that our proposed Pen-CASE estimator has the low-
est classification error among four distributed sparse
estimators.

Table 2: Classification errors and standard deviations
of different estimators in w8a dataset.

Estimator Naive Pen-CASE Debiased 5-step CSL  10-step CSL
Error 0.1082 0.1079 0.2239 0.1791 0.1789
SD 0.0000 0.0003 0.0452 0.0308 0.0307
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