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Abstract

We study class-posterior probability estima-
tion (CPE) for binary responses where one
class has much fewer data than the other. For
example, events such as species co-occurrence
in ecology and wars in political science are of-
ten much rarer than non-events. Logistic re-
gression has been widely used for CPE, while
it tends to underestimate the probability of
rare events. Its main drawback is symme-
try of the logit link—symmetric links can be
misled by small and imbalanced samples be-
cause it is more incentivized to overestimate
the majority class with finite samples. Para-
metric skewed links have been proposed to
overcome this limitation, but their estima-
tion usually results in nonconvex optimiza-
tion unlike the logit link. Such nonconvexity
is knotty not only from the computational
viewpoint but also in terms of the parame-
ter identifiability. In this paper, we provide a
procedure to derive a convex loss for a skewed
link based on the recently proposed Fenchel-
Young losses. The derived losses are always
convex and have a nice property suitable for
class imbalance. The simulation shows the
practicality of the derived losses.

1 Introduction

Modeling and estimating class-posterior probabilities
of binary responses is a fundamental problem in many
fields, where a large gap often exists between the ob-
served numbers of events and nonevents. For instance,
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species co-occurrence in ecology (Jiang et al., 2013)
and dyads of countries at war in political science (King
and Zeng, 2001) are much fewer than nonevents be-
cause of combinatorics. Such rarity also emerges in
market promotion (Wang and Dey, 2010) and infec-
tion in epidemiology (Breslow, 1996). In these fields,
the modeling perspective helps to grasp the underlying
mechanisms, and the class-posterior probability plays
a key role in supporting a political decision and sci-
entific claim. Hence, the class-posterior probability
estimation (CPE) problem with binary responses has
been studied extensively (Buja et al., 2005).

Logistic regression is one of the common CPE ap-
proaches, where parameters of a logit model are es-
timated via maximum likelihood estimation (MLE)
from the generalized linear model perspective (McCul-
lagh and Nelder, 1989)—equivalently, the parameters
are estimated by minimizing the log loss from the ma-
chine learning perspective (Buja et al., 2005). A num-
ber of studies have revealed that logistic regression
would underestimate class-posterior probability of rare
events under imbalanced and limited samples (Czado
and Santner, 1992; King and Zeng, 2001; Wang and
Dey, 2010; Menon et al., 2012). One of the major rea-
sons is that the logit link is essentially symmetric in re-
sponses, while they are often distributed differently—
the link is misspecified there. While several researches
have tackled with Jeffreys’ prior (Firth, 1993), un-
dersampling (Wallace and Dahabreh, 2012), and cost-
sensitive learning (King and Zeng, 2001), these ap-
proaches do not address the misspecification.

The other approaches is to replace the logit link with
a skewed link. This line includes the generalized logit
link (Stukel, 1988), skewed logit link (Chen et al.,
1999), skewed generalized ¢-link (Kim et al., 2008),
generalized extreme value (GEV) link (Wang and Dey,
2010), and symmetric power link (Jiang et al., 2013).
These links entail wide ranges of skewness controlled
by hyperparameters and the misspecification issue is
resolved by model selection. Among them, we mainly
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focus on the GEV link due to its simplicity. Wang
and Dey (2010) applied the GEV link with MLE. This
is equivalent to the combination of the log loss and
GEV link, resulting in nonconvex optimization. Agar-
wal et al. (2014) derived canonical proper losses (Buja
et al., 2005; Reid and Williamson, 2010) with the GEV
link. Yet their loss is still not always convex because
of the bounded support of the GEV distribution.

To overcome the nonconvexity, we utilize Fenchel-
Young losses (Blondel et al., 2020) to derive a convex
loss. Fenchel-Young losses provide a general recipe
for a convex loss given an entropic regularizer of the
prediction function, and have achieved notable success
in structured prediction (Martins and Astudillo, 2016;
Niculae et al., 2018; Nowak-Vila et al., 2020). While
Blondel et al. (2020) derived a loss from an entropic
regularizer, we instantiate Fenchel-Young losses for bi-
nary CPE from skewed link families such as the GEV
link. The derived losses are always convex unlike the
canonical proper loss and have a nice separation mar-
gin property which allows us to penalize predictions
of the rare class more. Our experiments demonstrate
that the proposed loss can provide more accurate class-
posterior probability estimates with small and imbal-
anced samples than the existing methods.

Related work. Imbalanced classification has been
tackled by many approaches such as sampling (Chawla
et al., 2002; Dal Pozzolo et al., 2015), cost-sensitive
learning (Elkan, 2001), modified losses (Lin et al.,
2017; Cao et al., 2019; Cui et al., 2019; Charoen-
phakdee et al., 2020), structural surrogates based on
the F-measure (Joachims, 2005; Eban et al., 2017; Bao
and Sugiyama, 2020), Jaccard (Yu and Blaschko, 2015;
Berman et al., 2018), and Dice index (Milletari et al.,
2016; Li et al., 2020; Nordstrom et al., 2020). Note
that their goal is not CPE but to predict class labels.
CPE has often been applied to the F-measure maxi-
mization (Ye et al., 2012; Koyejo et al., 2014) without
addressing the difficulty of imbalanced CPE.

It was not until recently that CPE has been studied
theoretically. Telgarsky et al. (2015) provides CPE
error bounds for convex risk minimizers, while Mey
and Loog (2021) provides bounds for proper losses.

2 Background: Fenchel-Young Losses
from Entropies

The basics of Fenchel-Young losses are described here.

Notation. The extended real line is denoted by Edéf
R U {£oc}. The domain of a function  : R — R is

denoted by dom(Q) e {n € R|Qn) < co}. We write

the convex dual of by Q*(0) ef SUP, cdom(e2) 01 —

Q(n). We write [z]+ & max{z,0}. The indicator
function of a set C is denoted by 1¢(x), taking 0 if
x € C and oo otherwise. The support of a contin-
uous probability distribution on R with the cumu-

lative distribution function (CDF) F is denoted by

supp(F) € {9 e R| F(0+¢)— F(0—e) > 0Ve > 0}.)

Problem setup. We consider binary supervised
learning with input variable * € X and associated
outcome y € Y = {0,1}. We assume an underlying
distribution P on & x Y from which both training and
test examples are drawn independently and identically.

Denote the class-posterior probability associated with

P by n(x) def P(Y = 1|X = x). Given an i.i.d sample
S = {(xs,9:) 1, "X P our aim is to learn a CPE
model 77 : X — [0, 1] that is as close to 1 as possible.

Regularized prediction. Blondel et al. (2020) pro-
vided a generic framework to construct loss functions
from a prediction regularizer. We describe the defini-
tion in the binary classification case where ) = {0,1}.

In binary classification, our strategy is to first fit a
model g : X — R producing a prediction score § =
g(x). The class y is then predicted: y =1 if # > 0 and
y = 0 if & < 0. This is equivalent® to the prediction
function y(¢) = arg max, ¢y Oy. It is smoothed due to
its non-differentiability by a convex regularizer.

Definition 1 (Regularized prediction function (Blon-
del et al., 2020)). Let ©Q : R — R be a regularizer. The
prediction function regularized by € is defined as

Jo(6) € argmax 1y — O(r). 1)
nedom(£)

For example, when 2 = —Hg + 1oy}, where Hs(n) o

—nlogn — (1 — n)log(1l — n) is the Shannon entropy,

Ya recovers the inverse logit yo(0) = m. When
def

Q = —Hrp + 1 3 with Hp(n) = in?, o is the Eu-
clidean projection yo(¢) = argmin, c(o 1)(n — )2,

Fenchel-Young losses. Given a regularized predic-
tor 7o, we are interested in an appropriate choice of
loss functions. Fenchel-Young losses admit good prop-
erties. First, we introduce Fenchel-Young losses.

Definition 2 (Fenchel-Young loss (Blondel et al.,
2020)). Let Q : R — R be a regularizer, y € dom(£2) be
a target, and 0§ € R(= dom(Q2*)) be a prediction score.

'The support of a probability measure v is the set of
points whose any open neighbors have positive measure.
Here, the CDF is defined as F(0) = v([—o0, 0]).

2We break the tie with arg max,cy 0y = 0 for 6 = 0,
which is not important for subsequent discussion.
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The Fenchel-Young loss £q : dom(2*)xdom(§2) — R>g
generated by € is defined as

lo(6:y) = Q%(6) + Qy) — by. 2)

Fenchel-Young losses possess several nice properties.

Proposition 1 (Blondel et al. (2020)). Fenchel- Young
losses generated by ) have the following properties.

(a) Non-negativity. Lo(0;y) > 0 holds for any 0 €
dom(Q*) =R and y € Y C dom(Q).

(b) Zero loss. If Q is a lower semi-continuous proper
convex function, then ming lo(0;y) = 0, and
Lo(0;y) =0 iff y € 09*(0). If Q is strictly con-
vex, then lo(0;y) = 0 iff y = ya(0) = VQ*(0) =
arg mingcg Lo (6;y).

(c) Convezity. Lo (0;y) is conver in 6.

(d) If Q is strictly convez, Lo (0;y) is differentiable in
0 and Vola(0;y) = ya(0) —y. If Q is strongly
convex, Lq is smooth.

For example, the logistic loss £ (0;y) = —0y + log(1 +
e) is recovered by Q = —Hg+1g 1), while @ = —Hp+
1o,1] recovers the modified Huber loss (Zhang, 2004).

The original Fenchel-Young loss framework that we re-
view in this section constructs a loss function given a
convex regularizer €2, or a (negative) entropy.> Once
we pick an entropy 2, a loss function £g and a regu-
larized prediction function yg are immediately induced
by convex duality (as seen in (2) and (1), resp.). This
perspective is useful to derive loss functions from well-
known entropies such as —Hg and —Hv because we
know the derived losses are endowed with differentia-
bility (induced by —Hg) and output sparsity (induced
by —Ht) (Martins and Astudillo, 2016). However, we
do not know what entropy will induce a loss property
we want, e.g., robustness to class-imbalance.

3 Yet Another Way: Fenchel-Young
Losses from Inverse Link Functions

In this section,* we propose an alternative framework
to derive Fenchel-Young losses from inverse link func-
tions, in order to provide a more intuitive procedure
of loss design than the design of entropic regularizers.

Inverse link functions map prediction scores into prob-
ability estimates, to which we can grant flexible CPE

3In the classical sense, —( is regarded as a (general-
ized) entropy. We occasionally omit the word “negative” to
simply call 2 an entropy when it is clear from the context.

4All proofs missing in this section are deferred to §A of
the supplementary material.

dual
Qn) Q*(6)

| |

Link (Quantile Func.) | inverse (Inverse Link (CDF)]

Entropy Dual Entropy j

Y(n) = F~(n) ya(0) = F(0)

| |

reciprocal ( Probability Density j
—

Canonical Weight

w(n) f(0)

Figure 1: Relationship among entropies, link functions,
the CDF, and canonical weight functions. The weight
function is described in §5. The reciprocal relationship
w(n) - f(6) =1 is known as the Crouzeix (1977) identity.

properties more directly. To make induction viable,
we put regularity conditions on inverse link F'.

Assumption A. Given a non-decreasing function F :
R — [0,1], we assume that 1 € Im(F) for all € (0,1),

and that F is strictly increasing over (8, 07 ) for 0 Lef

inf{6 | F(§) > 0} and O e sup{6 | F(0) < 1}.

Assumption A is required to ensure that the induced
entropy we derive later indeed satisfies convexity. This
assumption is satisfied by usual inverse links such as
the logistic F'(0) = m and the probit @, i.e., the
CDF of the standard normal. In general, the CDF of a
regular distribution supported on a connected interval

satisfies Assumption A.

Lemma 2. Given a CDF F, assume that F' is contin-
uous and supp(F') is a convex set. Then, F satisfies
Assumption A.

Lemma 2 justifies our usage of CDFs as inverse links.
For F' satisfying Assumption A, we define its inverse
F71:[0,1] > Ras

QF 1f77:07
F'n) =40 st.FO)=n ifne(0,1), (3)
gp 1f77:1

Loss and entropy from inverse link. Figure 1
is an important blueprint, which can be derived from
classical convex analysis (Rockafellar, 1970), to con-
nect an inverse link with an entropy. Once we fix an
inverse link F', it is identified with the regularized pre-
dictor 7. Then, an entropy Qp is induced, which
is used to derive the Fenchel-Young loss via (2). As-
sumption A ensures convexity of the induced entropy.

Lemma 3. Under Assumption A, define Qp(n) %ef

fon F~Y(q)dq. Then, Q is strongly convex over (0,1).
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Lemma 3 immediately follows from the fact that F~! is
strictly increasing hence V(F~1) > 0. If Qp is strongly
convex, we know (F(0) =) yo.(0) = VQ5(0) from
Proposition 1. Hence, the entropy 2 and its dual are
well-defined:

n 0
Qp(n) = / F(g)dg, Q(0) = / F(s)ds. (4)

— 00

By substituting the induced entropy and its dual (4)
into (2), we can generate a Fenchel-Young loss from
the inverse link function.

to, 050) = | 0

— 00

F(s)ds —yf + Qp(1). (5)

We drop the subscript F' in Qp if clear. Subsequently,
we scrutinize properties that the loss (5) has.

Bayes risk. We will see the relationship between the
Bayes risk and entropy. Given a Fenchel-Young loss /g
associated with an inverse link F', the conditional risk
of a prediction 0 at the true 7 is denoted by

La(6;m) € Eyylta(6;Y)], (6)

where Ey., means Y ~ Bernoulli(n), and the point-

wise Bayes risk as Lqg(n) et infger L(0;m). Since the
conditional risk of (5) is”

La(0;m) =nla(0;1) + (1 —n)la(6;0)
N—_——

cross-entropy _ EQ (97 77) —9(77) + 779(1)7
—— ~—_————

Bregman divergence entropy=L,(n)

the Bayes risk is Lo(n) = —Q(n) + nQ2(1). The lin-
ear term 7{2(1) in the Bayes risk is a modifier for
skewed entropies, in order to ensure non-negativity of
entropies. This fact will be seen in §4 with an example
of the GEV link. Note that (1) = ©(0) = 0 for the
symmetric inverse link thereby the modifier vanishes.

The Bayes risk is attained if and ouly if 7o(0) = 7
from Proposition 1, meaning that the Fenchel-Young
loss minimizer is a Fisher consistent estimator of the
class-posterior probability (Blondel et al., 2020). gq is
justified as a CPE model in this sense.

Partial separation margin. If a loss entails the
separation margin property (Blondel et al., 2020),
some finite scores achieve the zero-loss. Hence, the loss
will not penalize correct predictions with large enough
margins. Here, we introduce a notion partial separa-
tion margin property useful for the imbalanced case.

We can generalize the formula (KL-divergence) =
(cross-entropy) — (entropy) to general Bregman diver-
gences (Nielsen and Nock, 2010). Eventually, we can
identify the conditional/Bayes risk as (generalized) cross-
entropy/entropy, respectively.

Definition 3 (Partial separation margin (PSM)). A
binary loss £(6;y) (0 € R, y € {0,1}) is said to have
the (negative) partial separation margin if it satisfies

(a) Im >0st. —0 >m = £(6;0) =0, and
(b) ¥m > 0,30 > m and £(6;1) > 0.

The smallest m for (a) is called (negative) margin.

In other words, a loss with PSM always penalizes pre-
dictions for the positive (rare) class more heavily than
the negative (majority) class. Next, we characterize
necessary and sufficient conditions for PSM.

Proposition 4. Let g be a Fenchel-Young loss with a
convex regularizer Q induced from the CDF F by (4).
The following statements are equivalent.

(a) ¥ €10,1), 02 (n) # 0 and 9Q(1) = 0.
() F(R) = [0,1).

(c) Lo has the partial separation margin property.

Proposition 4 (a) claims that a partially sparse entropy
such that it does not have gradients only at the right
end is required for PSM. Since this does not hold for
any symmetric entropies such as —Hg and —Hrp, we
need skewed entropies. To grant PSM to the induced
loss, Proposition 4 (b) supports that a probability dis-
tribution with the support bounded at the left end is
sufficient. An example is the induced entropy from the
GEYV link, which we will see in §4.

We also have a closed form of the negative margin.

Proposition 5. Let {q be a Fenchel-Young loss in-
duced from a link with CDF F. If {q has PSM, then
its negative margin is — inf supp(F).

To sum up this section, we provide a new recipe for
Fenchel-Young losses from inverse links to avoid de-
signing entropies. We will see an example in §4.

4 Fenchel-Young Loss from GEV Link

The GEV distributions have been widely used in
modeling binary responses of rare events (Kotz and
Nadarajah, 2000). It is more advantageous as a link
than the others because of the simplicity (with only
a single shape parameter), flexibility to cover a wide
enough range of skewness, and identifiability (Wang
and Dey, 2010). In this section, we derive a convex bi-
nary CPE loss associated with the GEV distribution
to mitigate the influence of class-imbalance.

The CDF of the GEV distribution with shape parame-

ter { € Ris defined as F¢(6) = exp(—[l—!—f@};l/g). It is
supported on [—1/¢, 00) for £ > 0, (—o0, —1/¢] for & < 0,
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Bayes risk Lo (1) = —Q(n) + nQ(1)

Figure 2: Illustrations of the GEV CDFs and induced entropies. The logistic loss and the corresponding Shannon entropy
are plotted together for comparison. Please note that the Bayes risk is non-negative (right-bottom) while the induced

entropy is not (right-top).

and R for £ = 0. The standard Gumbel distribution is
recovered when & — 0: Fp(0) = exp(—exp(—0)). See
Figure 2 (left-top).

Wang and Dey (2010) applied Bayesian inference to
estimate model parameters and the GEV link param-
eters. Agarwal et al. (2014) derived the canonical
proper (hence convex) loss corresponding to the GEV
link. Both suffer from heavy computation costs be-
cause the former is nonconvex for £ ¢ [—1,0.1) while
the canonical loss provided by the latter is not defined
over the entire R therefore predictions must be clipped.

We derive a Fenchel-Young loss with the GEV link,
called the GEV-Fenchel-Young loss, as a convex bi-
nary CPE loss. First, we derive the entropy 2 and its
dual Q* from the GEV CDF F¢ using (4), which are
shown in Table 1.° Then, we can obtain the GEV-
Fenchel-Young loss via (5). The derived loss is plotted
in Figure 3. Here, Ei(z) and I'(a, ) are the exponential
integral function and the (upper) incomplete gamma
function defined as follows (for z # 0).”

oo —t )
Ei(z) déf—/ ert, T'(a,x) déf/ t*tetdt.

—T

I'(a) e I'(a,0) is the (complete) gamma function.
Since I'(1—¢, — log ) is not finite at n = 1 when & > 1,
Q can have finite values only when £ < 1; that is, the
GEV-Fenchel-Young loss is only defined for £ < 1.

Bayes risk. We investigate the conditional risk min-
imizer of the GEV-Fenchel-Young loss. This brings us
better understanding of how the loss and its minimizer
behaves, leading to intuitive design of the loss.

5Tt is derived in §B.1 of the supplementary material.

"To compute the incomplete gamma function T'(a,z)
for @ < 0, it is convenient to use the recurrent for-
mula I'(e + 1,z) = al'(a,z) + 2% % and I'(0,z) =
— Ei(—z) (Abramowitz and Stegun, 1948).

Since the GEV-Fenchel-Young loss is minimized at
F¢(0) = n, the conditional risk minimizer is 6*(n) =
Fgl(n). The explicit form of the minimizer is given
in Table 1. Note that F¢(0) = /e for any £ € R (see
left-top of Figure 2). The risk minimizer 6*(n) is con-
sistent with respect to sgn(n — 1/e) = sgn(n — 0.368),
instead of the Bayes rule sgn(n — 1/2). This is another
evidence that the GEV-Fenchel-Young loss focuses the
rare class. We may also obtain the loss consistent to
the usual Bayes rule by shifting Fy.

The corresponding Bayes risk is

Lo(n) = — Ei(logn) + nlog(—logn) +yn if £ =0,
FO T L - ©n - T(1 - €, ~logn)) IFEA0,

where v is the Euler’s constant.® The Bayes risk is
plotted in Figure 2 (right-bottom). We see that the
modifier +7$2(1) ensures non-negativity of the Bayes
risk L, (n) > 0, unlike the induced entropy —Q(n).

Partial separation margin. From Proposition 4
(b), it is sufficient to confirm PSM by checking the sup-
port of F¢. Since the GEV distribution is supported
on [—1/¢,00) with 0 < & < 1, we conclude that the
GEV-Fenchel-Young loss has PSM then and penalizes
predictions of the rare class more. Proposition 5 en-
sures that the negative margin is — inf supp(F') = 1/e.

In summary, we derived the Fenchel-Young loss asso-
ciated with the GEV link as a viable example of loss
design from an inverse link provided in §3. The GEV-
Fenchel-Young loss superior in terms of the conditional
risk minimizer and partial separation margin.

8To obtain the expression for £ = 0, we need to know the
value (1), which can be evaluated as Q(1) = —T"(1) = v
by using the L’Hopital’s rule (Apostol, 1991). Note that
the Euler’s constant 7y(~ 0.577) is the negative of the
digamma function at 1 (Abramowitz and Stegun, 1948).
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Table 1: The entropy and its dual of the GEV CDF, and the class-conditional risk minimizer of the GEV-Fenchel-Young
loss. Note that € is defined over the entire [0, 1] only for £ < 1 (see §4).

¢ | o) 2" (9) 6" (n
D(=€,(1+€0)7/%) if 6 < 1, ~1) ifnefo.1),
<0 Lra-¢ —logn) — 8 ) < lnn)5
¢ e (T(1 =4, ~logm) =) {9 +T(-6) +¢71 if 6> —1/c. 1/5 if n=1.
£=0 Ei(logn) — nlog(—logn) —Ei(—e™?) - log logn )
D(=¢ (1 +€0)71%) i 0 <~ —1) ifye(0,1],
0<é<l | 2T —¢ —logn) — - ) < mn)é
‘ E( ( ¢ gm) =) {0+F(_€)+§ ! if 0> —1/c. —1/,5 if n=0.
€6:1) /€= 05 46.0) /€= 05 The pointwise Bayes risk is denoted as L(7n) of
. \ T ochetone || infieio,1) L(7;m). Losses £ are said to be (strictly)
| o L — 7"‘1’(;'/ proper—equivalent to Fisher consistency—if L(7;7) is
e e A T minimized uniquely by 7 = n for all i € [0, 1].
N 4l /e=0 Lo s ’ Although partial losses £(7; 1) and #(7; 0) can be asym-
25 \\ 25 —-rrT / metric unlike the log loss (Scott, 2012), they can be
S~ — characterized by single weight functions.

0.0 — 0.0 t————— |

—4 -2 0 2 ! —4 -2 0 I

(0:1) / £=05 08:0) / £=05

B 7
~ B supp(Fe) -
—

=] gs
0.0 0. -temm——— -
—4 -2 0 2 4 —4 -2 0 2 4

Figure 3: The GEV-Fenchel-Young and GEV-canonical
losses. When £ = 0, both losses match exactly. When
& # 0, the positive (negative, resp.) partial loss differs for
positive (negative, resp.) £. In those cases, the canonical
losses are nonconvex for 6 ¢ supp(F), while the Fenchel-
Young losses smoothly extrapolate with linear lines. It is
also interesting to mention that £(6;1) (¢ = —0.5) and
£(0;0) (£ = 0.5) take values 0 for 0 ¢ supp(F¢), which is
characterized by the separation margin (§3).

5 Relation to Canonical Proper Losses

Canonical proper losses are another CPE loss class.
Agarwal et al. (2014) tried to derive convex GEV losses
via canonical proper losses. Yet they are not always
convex unlike the GEV-Fenchel-Young loss. Since
both are closely related, we scrutinize their difference
to see why canonical proper losses sometimes result in
nonconvex losses, seeking insight for loss design.

Proper loss. We first introduce proper losses (Buja
et al., 2005): ¢(7;y) penalizes a probability estimate
n € [0,1] given a label y € Y. The conditional risk
of prediction i € [0,1] at ground-truth n € [0,1] is
denoted as’

LT m) % By [0 Y)] = 0€(7; 1)+ (1 — n)(7;0). (7)

“Note that the conditional risk of proper losses (7) is
defined in a slightly different way from Fenchel-Young loss
(6) in that they measure closeness of either 7j € [0, 1] (CPE)
or 0 € R (prediction score) to true 7, respectively.

Theorem 6 (Shuford et al. (1966)). Suppose that
L(m;m) is differentiable in 7). Then, £ is proper if and
only if for allm € (0,1),
—Val(M;1) _ Val(;0) -
— = — = w(n 8
o I —u@

for some weight function w : (0,1) — Rxq such that
fl_a w(q)dg < oo for all € > 0.

€

Corollary 7 (Reid and Williamson (2010)). Let ¢ be
a twice differentiable proper loss with a weight function
w defined in (8). Then, for alln € (0,1), its pointwise
Bayes risk L satisfies w(n) = —V2L(n).

Canonical composite loss. Proper losses are usu-
ally used with a link function ¢ : [0,1] — R, which
connects a probability to a real-valued score. Given
a proper loss ¢ and an invertible link 1, a loss on

real-valued scores £y (6;y) %ef 0(p1(0);y) is defined,
called a composite loss. Buja et al. (2005) introduced a
canonical link defined by V¢ = w. Composite proper
losses £,,(0; y) with canonical links Vi = w are always

convex in 0 € Im(¢)) (Reid and Williamson, 2010).

Composite losses £, cannot be defined for 6 ¢ Im(1))

since they assume that 1) is invertible. We compromise

therein by clipping v such that £,(6;y) def £(1;y) for

6 > sup Im(¢)) and €, (6;y) o £(0; y) for 6 < inf Im(¢)).

Relationship to Bregman divergence. Canoni-
cal proper composite losses resemble Fenchel-Young
losses in that they provide a CPE model via 1 ~' and
U, respectively. Here, we compare a canonical proper
composite loss €, (with a loss ¢ and link ), and a
Fenchel-Young loss {q, associated with a CDF F.
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Table 2: Simulation results with two normals. The RMSE
to the true n(x) is reported (lower is better).

n ™ | GEV-FY Log

3,000 0.005 | 2.22 x 1072 3.14 x 1072
3,000  0.001 | 2.09 x 1072 2.48 x 1072
10,000 0.001 | 1.16 x 102 1.39 x 1072

The keystone is the Bregman divergence (Bregman,
1967), defined with a convex generator ¢ as

By(z1]120) & (1) — ¢(20) — Veolz0) (21 — 20).

Both £ and {q,. have relation to the Bregman diver-
gence (Bregman, 1967). Indeed, we see that the point-
wise regret of the proper loss £ is the Bregman diver-
gence L(7;n) — L(n) = B_(n]|n)."Y In contrast, the
pointwise regret of the Fenchel-Young loss g, (6;7) is
an upper bound of B_r,(n]|7). This gap is filled if and
only if for 6 € Im(¢p) = supp(F). If the associated
CDF F has the bounded support, the gap persists for
6 ¢ R\ supp(F). This is the source of nonconvexity of
canonical composite losses. Figure 3 illustrates it with
the GEV link. The detailed discussion is deferred to

§C of the supplementary material.

Comparison of GEV losses. The GEV-canonical
loss £.—1(6;y), the proper composite loss with the link
g

F, 51 and the weight w = V(F, gl), is derived via Theo-
rem 6, as shown in §B.2 of the supplementary material.

Figure 3 shows the GEV-Fenchel-Young loss and GEV-
canonical loss for different values of £&. The GEV-
canonical loss is essentially defined over supp(F¢), and
the loss value outside the domain is clipped, which
induces nonconvexity. On the other hand, the GEV-
Fenchel-Young loss is defined over the entire R and
convex by extrapolating the canonical loss with the
linear line for 6 ¢ supp(F¢). Needless to say, it is
beneficial from the computational perspective to avoid
nonconvexity via such an extrapolation. Despite that
the extrapolation is not unique, the Fenchel-Young loss
provides a systematic way to extrapolate.

6 Experiments

We evaluate CPE with the linear model. The im-
plementation is available at https://github.com/
levelfour/GEV_Fenchel _Young_Loss.

Synthetic dataset. To compare the logistic regres-

sion and GEV-Fenchel-Young loss with different 7 def
P(Y = 1) and sample sizes n, we first use a synthetic

“Due to L(i3;n) = L(7) + L'(7)(n — 1) (Savage, 1971).

dataset with two one-dimensional normals: X|Y =1 ~
N(+1,0.4) and X|Y =0 ~ N (—1,0.4). 3,000 training
data are generated with different 7 and n. Losses are
optimized for 100 epochs with Adam (Kingma and Ba,
2015) and learning rate 1.0 and without regularization.
In this simulation, ¢ is fixed with £ = 0.5 for the GEV
link. Since the true CPE model is known here, the
RMSE is reported.

The quantitative results are shown in Table 2. We
see GEV-Fenchel-Young loss consistently outperforms.
The estimated class-probability curves are shown in
Figure 4. Notably, the bias of the GEV curve under
7 = 0.001 almost vanishes with n = 10,000 while the
logistic curve is still biased. When comparing the left
and middle, it is confirmed that the heavier imbalance
makes both biased, but the GEV curve is less affected.

Benchmark results. We use UCI datasets (Dua
and Graff, 2017) to run benchmarks. Datasets are di-
vided into training and test sets with the ratio 4 to 1
randomly, and we report average results over 10 ran-
dom splits. Since we do not have true class probabil-
ities, Brier score BS (Brier, 1950) and stratified Brier
score sBS (Wallace and Dahabreh, 2012)!!

B3() = > (i)~ [y = 11,
=1
B = g Y (@)~ 1+ 5m 3 (@)

iy =1 iy; =0

are used to evaluate a CPE model 7, where n, is
the numbers of data with y; = y. The stratified
one tends to focus on the minority, while the vanilla
one treats the entire range [0,1] equally. Due to
this, the stratified one is used as the validation score.
The vanilla one is used as the test score because we
want good class probability estimates for the entire
[0,1] even under class-imbalance. We compare the
proposed GEV-Fenchel-Young loss (GEV-FY) with
the following baselines: GEV-canonical loss (GEV-
Can) (Agarwal et al., 2014), GEV-log loss (GEV-
Log) (Wang and Dey, 2010), logistic regression (Log),
Platt’s scaling (Platt) (Platt, 1999), probability cal-
ibration with isotonic regression (Isotonic) (Menon
et al., 2012), balanced logistic regression (Weight),
and undersampling with bagging (Bagging) (Wallace
and Dahabreh, 2012). More details are described in
8D of the supplementary material.

The results of vanilla Brier score are shown in Table 3.

"The choice of the evaluation metric is an arguably
crucial. We used the Brier score since it is commonly
used (King and Zeng, 2001; Wallace and Dahabreh, 2012),
and different from the associated score with the log and
GEYV loss, which is considered to be fair.
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Figure 4: Simulation with two normals: (n,7) = { left: (3,000,0.005) , middle: (3,000, 0.001), right: (10,000, 0.001)}.

Table 3: Benchmark results on UCI datasets in Brier score (lower is better). Bold faces indicate the best and statistically
insignificantly different methods from the best in each row, using one-sided t-test with 95% confidence. = = P(Y = 1).

Dataset n ™ | GEV-FY GEV-Can GEV-Log Log Platt Isotonic  Weight Bagging
car 1728  0.038 | 0.0162 0.0166 0.0154 0.0155 0.0277 0.0138 0.0604  0.0501
ecoli 336 0.107 | 0.0601 0.0567 0.0549 0.2201 0.0743 0.0867 0.0973 0.0801
glass 214 0.079 | 0.0845 0.2468 0.2694 0.0710 0.0711 0.0691 0.2084  0.2382
haberman 306 0.265 | 0.1882 0.2749 0.4129 0.1954 0.1901 0.1863 0.2314 0.2293
nursery 12960 0.025 | 0.0136 0.0137 0.0134 0.0133 0.0131 0.0131 0.0489  0.0493
yeast 1484 0.289 | 0.1630 0.1632 0.1648 0.1656 0.1665 0.1598  0.1903 0.1891
car ecoli Table 4: F-measure optimization results on UCI datasets
0.035 ] 0.09 1 (higher is better). Bold faces are the best and statistically
\L/ 0084 \/ insignificantly different methods from the best in each row,
0.030 ' using one-sided t-test with 95% confidence of 10 runs.
0.071
05 U{O 09 05 050 05 | GEV-FY Log Isotonic
haberman st car 0.6455  0.5511 0.5564
092 o157 ] ecoli 0.6504 0.2475  0.3447
glass 0.1345 0.1591 0.1359
0.211 \ 01850 1 // haberman | 0.3963 0.3600  0.4329
0.1825 1 nursery 0.6037 0.6027 0.5962
05 00 05 05 00 05 yeast 0.5765 0.5615 0.5691
¢ <

Figure 5: Sensitivity to shape parameter £&. The lines
show means of Brier score with standard errors of 50 runs.

Overall, we see that GEV-FY outperforms the other
baselines, or performs at least comparably.

Sensitivity of shape parameter. We simulate the
GEV-Fenchel-Young loss to see sensitivity to the shape
parameter £. From §4, we expect better performance
with positive £ when the positive class is rare. We
ran 50 trials of random splitting of the datasets with
the same setting as the previous benchmarks except
that & is fixed to {—0.8,—0.6,...,0.8}. The results are
shown in Figure 5, from which we confirm that £ > 0
indeed performs better with car and ecoli. The results
with haberman does not seem significantly better, and
yeast seems slightly worse with & > 0. We conjecture
this is because 7 is not extremely small (haberman:
0.265, yeast: 0.289) comparing with the former two
(car: 0.040, ecoli: 0.104). Hence, the PSM is thought
to be useful for heavily-imbalanced data.

F-measure optimization. As an application of
CPE, we simulate F-measure maximization. We use
the plug-in approach (Koyejo et al., 2014): a CPE

model is trained first, then the best threshold is sought
for. We use 70% of training data to fit CPE models
and 30% for the thresholds. Thresholds are picked
from {0.05,0.10,...,0.95}. All the other setting are
the same as the benchmarks. The results are shown in
Table 4. We can see that the proposed method (GEV-
FY) performs the best with all datasets, showing the
importance of better CPE under class-imbalance.

7 Conclusion

We studied binary CPE under class-imbalance. The
existing approaches have adopted skewed links to avoid
the misspecification issue of the logit link, yet the op-
timization was nonconvex. We utilized Fenchel-Young
losses to derive convex losses and confirmed its effec-
tiveness by deriving a loss from the GEV CDF. Techni-
cally, this viewpoint is interesting in that we can design
a convex loss based on an inverse link. This is in stark
contrast to the previous roadmap requiring an entropic
regularizer, which is often not intuitive to design. The
simulation revealed that the GEV-Fenchel-Young loss
is more robust to class-imbalance and suitable for ap-
plications such as F-measure maximization.
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