Gaming Helps! Learning from Strategic Interactions in Natural Dynamics

A Proof of Theorem 4.1

A.1 Preliminaries
A.1.1 Useful concentration

Our proof will require applying the following concentration inequality, derived from Azuma’s inequality:

Lemma A.1. Let Wy,..., W, be random variables in R such that |Wi| < Wipas. Suppose for all t € 7], for all
Wiy eooyWt—1,

E [Wt|Wt_1 = Wt—1y-++y Wl = ’(1)1] = 0.
Then, with at least 1 — ¢,

S Wmam V 27 10g(2/5)

S w
t=1

Proof. This is a reformulated version of Azuma’s inequality. To see this, define

t
Zy=> Wi ¥t
i=1

and initialize Zy = 0. We start by noting that for all ¢ € [7], since

t t—1
Zi =Y Wi=Wi+Y W, =W+ 27,
=1 =1

we have
E[Z|Zi-1,..., Z1) = E[Wy|Zi—1, ..., Z1] + E[Zi—1|Zi-1, - .-, Z1]

=E[We|Zio1,. .., Z1) + Ze-q.

Further, it is easy to see that Z; = z; Vi € [t — 1] if and only if W; = z; — z;_1 Vi € [t — 1], hence
EWiZi—1 =2t-1,..., Z1 =21 =E[WyW; = 2z, —z;_1 Vi€ [t —1]] = 0.

Combining the last two equations implies that

E[Z|Zi-1,- .., Z1) = Zi—1,
and the Z,’s define a martingale. Since for all ¢,

|Zs = Zs 1| = [Wi| < Winae,
we can apply Azuma’s inequality to show that with probability at least 1 — ¢,

|Z, — Zo| > Winazr/27 10g(2/0),

which immediately gives the result. O

A.1.2 Sub-space decomposition and projection

We will also need to divide R? in several sub-spaces, and project our observations to said subspaces.

Sub-space decomposition We focus on the sub-space generated by the non-modified features x;’s and the
sub-space generated by the feature modifications A;’s. We let r be the rank of ¥, and let A\, > ... > A1 > 0 be
the non-zero eigenvalues of X. Further, we let f1,..., f. be the unit eigenvectors (i.e., such that || fi|1 = ... =
|l frll1 = 1) corresponding to eigenvalues A1, ..., A, of ¥. As ¥ is a symmetric matrix, f1,..., f, are orthonormal.
We abuse notations in the proof of Theorem 4.1 and denote ¥ = span(f1,..., f.) when clear from context.

For all k, let ey be the unit vector such that ex(k) = 1 and ex(j) = 0 Vj # k. At time 7, we denote D, =
span (ek)keD, the sub-space of R? spanned by the features in D.,.

Finally, we let
V; =X +D; =span (fi,..., f) +span(er)pep.
be the Minkowski sum of sub-spaces ¥ and D,.
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Projection onto sub-spaces For any vector z, sub-space H of R?, we write z = z(H) + z(H') where z(#)
is the projection of z onto sub-space H, i.e. is uniquely defined as

2(H) =) (z"9)q

qeB

for any orthonormal basis B of H. We also let z(H*) be the projection on the orthogonal complement Ht. In
particular, z(#) is orthogonal to z(H*). Further, we write X, (#) the matrix whose rows are given by Z;(#)"
for all ¢ € [7].

A.2 Main Proof

Characterization of the least-square estimate via first-order conditions First, for any least square
solution S at time 7(E), we write the first order conditions solved by Sg (VT(E)), the projection of Sg on

sub-space V,(g). We abuse notations to let e, (g £ (Et)te[T(E)] the vector of all ;’s up until time 7(E), and
state the result as follows:

Lemma A.2 (First-order conditions projected onto V,(g)). Suppose BE € LSE(7(E)). Then,
= T o - . = T
(Xete) Veim) " Keimy () ) (B (V) = B (V) ) = Koty (Veia) | -

Proof. For simplicity of notations, we drop all 7(F) indices and subscripts in this proof. Remember that

LSE = argmin (X3 - V)" (X8 -7Y).
B

Since B € LSE, it must satisfy the first order conditions given by
2X7 (Xhp - V) =0,
which can be rewritten as o o
X'XBp=X"Y.
Second, we note that for all ¢, z; € span(fi,...,fr) and A; € span ((ek)keD) (by definition of D). This
immediately implies, in particular, that z; = x; + A; € V. In turn, z; (V) = Z; for all ¢, and
X=XW).

As such, the first order condition can be written

Now, we remark that

=XV X V) B V),

where the second-to-last equality follows from the fact that V and lfl are orthogonal, which immediately implies
Ty (V)T Br(V1) =0 for all t. To conclude the proof, we note that Y = X T 8* +¢ = X (V)T B* (V) +¢. Plugging
this in the above equation, we obtain that

XW'XWBeW)=XW)' XV WV +XWV) e
This can be rewritten
(X" XW) (Br )-8 0)) =X W),

which completes the proof. O
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Upper-bounding the right-hand side of the first order conditions We now use concentration to give
an upper bound on a function of the right-hand side of the first order conditions,

. . T -
(Be Vem) = B (Vemy)) - Zoiy (Vo) ery.

Lemma A.3. With probability at least 1 — 6,

A * T — T
(B (Vem) = 8" Vr)) ) Keiy (Vem) " €

< |88 Vo) = 8" Vo) |, - K Var () 10g2475).
where K’ is a constant that only depends on the distribution of costs and the bound o on the noise.

Proof. Pick any k € [d], and define W; = Z;(k)e;. First, we remark that

Bi
< AR <1 prrind
|2 (k)] < |z (k) + |Au(k)| <1+ ke[rcll},a}i(e[l] (k)

In turn, |W;| < K’ where
Bi
K21+ max — |o
keld], ie[l] (k)
Further, note that both x4(k) and &; are independent of the history of play up through time ¢ — 1, hence of
Wi,...,Wi_1, and that &, is further independent of A; (the distribution of A; is a function of the currently

posted B p—1 only, which only depends on the previous time steps). Noting that if A, B, C' are random variables,
we have

E [AB|C = ¢| = Zzb:abPr[A =a,B=0b|C = (|

:ZZabPr[A:a|B:b,C’:c}Pr[B:b|C':c]
a b

:Zb(ZaPr[A:ch:b,C:c]) Pr[B =b|C =
b a

:Zb@[mB:b70=c}Pr[B=b|czc]
b

:IE[IE[A\B,C:C]BW:C},

and applying this with A =¢;, B = A(k), C =W N...NW;_1, we obtain

E [Wt|Wt_1, ey Wl] = E [it(k)st\Wt_l, ceey Wl}
=K [J?t(k‘)&‘t‘wt_l, RN Wl} + E [At(k)6t|Wt_1, . Wl]

=Eln(ke] + E [uz (A k), We s, WA - Ay (B)

s

Wt—la .- '7W1:|

since E, [e¢] = 0 and E. [e¢|x¢(k)] = 0. Hence, we can apply Lemma A.1 and a union bound over all d features
to show that with probability at least 1 — 6,

7(E)
> &(k)ee > —K'/27(E)log(2d/0) Yk € [d].
t=1
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By Cauchy-Schwarz, we have

. T 7(E) R T(E)
(Be ) =5 0)) S me <[pr ) -5 ) [ we
t=1 t=1

2

3 , zd: (Z ft(k)st>2

k=1 t

IN
™
=
=
|
ey
*
=

IN
™
=
=
|
=
*
=

. K'\/2dr(E)log(2d/9).
0

Strong convexity of the mean-squared error in sub-space V(7(E)) We give a lower bound on the
eigenvalues of XX on sub-space V(7(FE)), so as to show that at time 7(E), any least square solution (g
satisfies

A * T T % *
(Be Vem) = B (e(m)) Koty (Vrm) | Koy (V) (B (Vem) = B8 (Vo) )
~ 2
> Q) ||Be (Veey) = 8" (Vo) |-

To do so, we will need the following concentration inequalities:
Lemma A.4. Suppose E [z] = 0. Fiz 7(E) = En for some E € N. With probability at least 1 — §, we have that

(E)

Z 2ol 2 > (/\ 7(E) — 2rd\/7(E)log(6r/9) ) lzl3 Vze€X,

and
T(E) ) B,L 2 B,L 2
; 2TAA 2> (Hll}cn {nﬂ <cz(/€)> }n - <Hzl((1%<x{cz(k)}> 2nlog(6d/5)> 1213 Vz € Do(p
and
7(E)
Z 2T A 2> Qmax{ }d\/ )log(6d/6)||z||3 Vz € RY.
t=1
Proof. Deferred to Appendix A.2.1. O

We will also need the following statement on the norm of the projections of any z € V to D and X:
Lemma A.5. Let

D) = nf (oD + (D)
st |zl = 1.

Then, (D, %) > 0.

Proof. With respect to the Euclidean metric, the objective function is continuous in z (the orthogonal projection
operators are linear hence continuous functions of z and z — ||z||2 also is a continuous function), and its
feasible set is compact (as it is a sphere in a bounded-dimensional space over real values). By the extreme value
theorem, the optimization problem admits an optimal solution, i.e., there exists z* with [|z*||s = 1 such that
AD,E) = |z(D)|l2 + |z*(2)|l2- Now, supposing A(D,¥) < 0, it must necessarily be the case that z(D) = 0,
2(X) = 0. In particular, this means z is orthogonal to both D and X. In turn, z must be orthogonal to every
vector in D + ¥; since z € D + X, this is only possible when z = 0, contradicting ||z||2 = 1. O
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We can now move onto the proof of our lower bound for

(B Vem) = 8° (VT(E>))TXT(E> Vre) " Ky (Vi) (B (Vem) = 8" (Vo) ) -

Corollary A.6. Fiz 7(E) = En for some E € N. With probability at least 1 — 6,

(Be (Vo) — 87 (VT(E>))TXT<E) Ve)) " Koy Vo) (B (Vo) = 6° (Vem))

An 3 ’
> (2 — K /() log(ﬁd/5)) |82 (re) = 8" (Vi) |,

for some constants k', X\ that only depend on o, C, and X, with X > 0.

Proof. Since it is clear from context, we drop all 7(E) subscripts in the notation of this proof. First, we remark
that

XXy = Zszfctf;rz
t
= Z zTastw;rz + Z zTAtA:z +2 Z 2T Az 2y
t t t
We have by Lemma A.5 that for all z€ V=D + X,

12(D)l2 + [[2(X)][2 = A(D, D) ]2

Let A(X) £ minpc(g A(D,X). Since there are finitely many subsets D of [d] (and corresponding sub-spaces D)
and since for all such subsets, A(D, X) > 0, we have that A\(X) > 0. Further,

12(D)ll2 + [[2(X)][2 = AZ) | 2]l2-

A(E A(Z

Therefore, it must be the case that either ||z(D)l]s >
the corresponding two cases:

Iz|l2 or [|z(£)]l2 > Iz||2- We divide our proof into

)\(E

1. The first case is when [|z(2)]]2 > |z|l2- Then, note that since z' A;A[ z > 0 always, we have

Z zTgfti";rz > Z sztx:z +2 Z 2T Az
t t
= Zz(Z xtxt —l—QZZTAtz Ty,
t

where the last equality follows from the fact that z; € ¥ and 2z = (%) + 2(X+). By Lemma A.4, we get
that for some constant C; that depends only on C,

Z zTi“ta’:th

> (A\r(B) - 2rdy/7(E) 10g(61/9) ) |12(2)} — Crdy/7(E) 1og(64/9)|2 3
> <)\( Q)AT'T(E) — AZ)rd+/7(E)log(6r/d) — Crd/T(E) log(6d/5)> ||z||§
> (A(ZZ)ATT(E) — A(D)d\/7(E) 10g(6d/8) — Crdy/7(E) log(6d/6)) 1211

(The second step assumes A\.7(E) — 2rd\/7(E)log(6r/0) > 0. When this is negative, the bound trivially
holds as Y, z ' 2,2, z > 0.)
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2. The second case arises when ||z(D)||2 > @HZHQ Note that

Z szti:z > Z ZTAtA:Z +2 Z 2Nz,
t t

:ZZ( TAtAT +2Z TAtZ T,
t

as Ay € D and z = 2(D) + 2(D+). By Lemma A.4, it follows that for some constants Co, C3 that only
depend on C,

ZZTCEt:f:Z

> | nmin i i ’ _

- | ct(k)

> <)\(E)n min {Wi
2 ik

. (A@)m{
2 ik

) i \2
Noting that by definition A, > 0 and min; {771 (cfzk)) } > 0, and picking the worse of the two above bounds

C nlog(Gd/é)) 12(D) |5 — Csdy/7(E) log(6d/6)] 2|3

B\’ A,
((k) 2
( >2})\(E

| Cs VT(E)log(6d/d) — Csdr/T(E) log(6d/5)> ll2]13.

Vnlog(6d/d) — Csdr/7(E) 10g(6d/6)> ||z||§

?

)
c'(k)

on >, 2" Z#, z concludes the proof with
A(E) B\’
A= Tmin (Ar,mlkn{w (c’(k)) }) > 0.

We can now prove Theorem 4.1. By Lemma A.2, we have that

- TS . - T
(Xetm) Veim) " Kty () ) (B (V) = B (V) ) = Koty (Veiy) |
which immediately yields

(B (Vemy) - 8 (VT<E>))T (Xete) Vo) " Koty Vo)) (B (Vo) = 8" (Vo) )

* T T
= (Be Vrm) = B (V) X (V) ey

) T
by performing matrix multiplication with (6 B (VT( E)) - p* (VT( E))> on both sides on the first-order conditions.
Further, by Lemma A.3, Corollary A.6, and a union bound, we get that with probability at least 1 — ¢,

(Be (Vo) - 8 (VT<E>)>TXT<E) Vem) " Koty Vo) (B (Vem) = 8° (Vem)

An 3 ’
> (2 — W \/7(B) 1og(12d/6)> |82 (V) = 8" (Vo) .

and

* TS T
(e ( — 8 Vem)) Koy Vo) '€
<

HﬂE( r(E)) B* (VT(E>)H2'K’ dr(E)log(4d/s).
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Combining the two above inequalities with the first-order conditions yields

dr(E)log(4d/d)
v wd2\/7(E)log(12d/5)

HBE V() — B (VT(E))H2 <

For
1,92
n> 4’1‘1 7(E) log(12d/3),
the bound becomes
5 . 4K'\/dr(F)log(4d/d)
Be (Vr(p)) — B (VﬁEQHQS ™ .

The proof concludes by letting K £ 4K’ k £ 4k’ and noting that since D.(gy C V-(g) by construction, the
statement holds true over D, (g (projecting onto a subspace cannot increase the £2-norm).

A.2.1 Proof of Lemma A.4

For the first statement, note that for all k£ # j < r,

E[fk Tty f]} fl;r [xtxt]f'—)‘fk: f]a

as f; is (by definition) an eigenvector of ¥ = E [,z | for eigenvalue A;. Note that the fTa:tact fe = (met)(fk Zt)
are random variables that are independent across t. Further, by Cauchy Schwarz,

|7z (ff 20| < I fall2ll fll2llwe 3 = llzell3 < d.

Therefore, we can apply Hoeffding with a union bound over the 72 choices of (f, f;) to show that with probability
at least 1 — ¢,

(E)

Sl mal fi = NT(E) ] 1| < dy/27(E)log(2r2/d).

t=1

Note now that for all z € X, we can write z = >, _,; (szk) fx, and as such

T(E) r

S 2tmalz— > T RGETHNTE S

t=1 k,j=1
T(E) T r

=D ET G I mal = Y T R)ET RNTE)
t=1 k,j=1 k,j=1

= Z (ZTflc Tfy (Z fk Ty f] j (E)fljfj>
k,j=1

< dv/27(E)log(2r2/8") Z 127 fill2 T £

k,j=1
< rd\/27(E)log(2r2/d")| 2|3,

where the last step follows from the fact that by Cauchy-Schwarz,

DTl < 212 Z (27 fi)? = V|22
k=1

k=1
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Hence, for z € ¥, remembering f,| f; = 0 when k # j and f,| fx = 1, and noting [|z[|3 = Y _, (2 fx)?, we get
that

(E)

STl == 3 T R)ET HATEN f; - rdy/2r(B) log(@r?]8)|2|3

t=1 k,j=1

=Y M (B) (2" fx)? = rdy/2r(E)log(2r?/8")| 2|3
k=1

> A7(E)Y (27 fi)? = rdy/27(E) log(2r2/6") | 1213

k=1

= (\(B) = 20dy/7(E)10g(2r/5)) 12113

For the second statement, we remind the reader that the costs of modification are such that |At(k)2‘ <

; 2
(Inaxm- {%}) , and that within any epoch ¢, the A;’s are independent of each other. We can therefore

apply Hoeffding’s inequality and a union bound (over & € D gy C [d]) to show that with probability at least
1—¢', for any k € D, (g, there exists an epoch ¢(k) < E (pick any ¢ in which & is modified) such that

> ef AAer > nE [Ay(k)?] - <ma {j;})g 2nlog(d/d")

tep(k) "

oo~ (55) | - (e {65)) e

The last inequality holds noting that k& can be modified in period ¢(k) only if there exists a cost type ¢ on the
support of C such that k is a best response to By)—1; in turn, k is modified with probability 7' by amount

A(k) = B?/c'(k), leading to
i 2
E [A(k)?] > o' (jk;)) .

Since A¢(k)A¢(j) = 0 when k # j as a single direction is modified at a time, note that for all z € D (g), we have

Z 2T AA] 2

t<7(E)
Z ZAt 2z ekesz
t<r(E

—Z Z A(k)? (2" ep)?
k=1t<7(FE)

Z Z A(k) (2 ek)

keDT(E) tep(k)

- ke;@) (nieﬁ?ém {Wi (CEZ]))Q} - (T?X{ﬁ;})Q 2n10g(d/5’)> (2T ex)?
= <ni€[rlﬁg[d] {W" (sz;))z} - <H§%X{f(;;)})2 2n10g(d/5/)> Z (2T ex)?.

keD.(p)

For 2 € Dy(g), Ypep... (2 ex)? = ||z]|3, and the second inequality immediately holds.

T(E)

Finally, let us prove the last inequality. Take (k,j) € [d]?, and let us write W; = e} ;A e;. First, note that
x; and A, are independent: in epoch ¢, the distribution of A, is a function of S4_1 (and C) only, which only
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depends on the realizations of z, €, A in previous time steps. Further, x; is independent of the history of features
and modifications up until time ¢ — 1 included. Hence, it must be the case that
E[WiWi—1,...,W1] =E [E [e] 2| Ay, W1, ..., Wi] A ej|Wi—y, ..., W]
=E [E [ef 2] A e|Wi—q, ..., W]
=E[epae] - E[A] e;|Wioy,..., W]
=0,

where the last equality follows from the fact that E [z;] = 0. Further,

. B
] ] = b R1AG)] < { 5}

We can therefore apply Lemma A.1 and a union bound over all (k,j) € [d]? to show that with probability at
least 1 — ¢/,
(E)

Z en A/ ej| < max{ } V27 (E) log(2d2 /).
t=1
In particular, we get that for all z € RY,
ZsztAth = ZZ(zTek)(zTej)ekatAtTej
teE k,j teE
§Z|z erl|z el ZekxtA e;
teE
2
27(E) log(2d2 /&' T
< max {C }\/T og( d/5)<zk:|2 ekI)
< Qdm?cx{C } V7(E)log(2d/8")| 2|13,

where the last step follows from the fact that by Cauchy-Schwarz,

(Zierw) = (Swl) <o 5w =iz
k k k

k

We conclude the proof with a union bound over all three inequalities, taking ¢’ = 34.

B Proof of Theorem 5.2

We drop the 7(E) subscripts when clear from context. We first note that BE is a least-square solution.

Claim B.1. R
B € LSE(T(E)).

Proof. This follows immediately from noting that
. NT . _ T _
(XBp-7) (XBe—-¥)=(X8e-7) (X85 -7),
as X v = X(U) v = 0 by definition of U, and since v € U+. O

Second, we show that BE has large norm:
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Claim B.2. .
|82, = o

Proof. First, we note that necessarily, g € U,(g). Suppose not, then we can write

Be = Be (Ur(r)) + Be (UTL(E)) ;

with Bg (UTL( E)) # 0. By the same argument as in Claim B.1, g (U (g)) is a least-square solution. Using

orthogonality of U, gy and Z/{TJ-(E) and the fact that

05 (Ui

> 0, we have
2

18512 = 185 e I+ |85 (i )|, > 1185 @) -

This contradicts S being a minimum norm least-square solution. Hence, it must be the case that 8g € U (g).

Since v € MTL(E), we have that Sg and v are orthogonal with ||v||2 = 1, implying
2 |17 _ 2 2y02 2
B, = 18612 + ool = o2,

This concludes the proof.

We argue that such a solution places a large amount of weight on currently unexplored features:

Lemma B.3. At time 7(E), suppose rank (Uy(g)) < [d]. Suppose n > "TdQ\/T(E) log(12d/6"). Take any o with

a>ry (\/ﬂ Kdy Ti(f(éld/&)) :

where v is a constant that depends only on C. With probability at least 1 — &', there exists i € [l] and a feature

k ¢ DT(E) with
a0

, Vj € Dy(py.

Proof. Since B € LSE(7(F)), it must be by Theorem 4.1 that with probability at least 1 — ¢,

S (Bet) - )’ < KVITE g4

An
keD

_ K\/dTlog(4d/5)

- An

First, since z = />, cp 2(k)? defines a norm (in fact, the £2-norm in RPN, it must be the case that

SOk - 2 (k)2 > 32k - [ (k2

keD keD keD

In turn, plugging this in Equation (4), we obtain

\/Z Bz < |30 g (e 4 B/ Tlo8ld/0)

An
keD keD
. K+/dT log(4d/é")
< ") + VI8

V/dT log(4d/5")
S\/g—FK dTiog(4d/5)'
n
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By the triangle inequality and the lemma’s assumption, we also have that

¢ZﬁﬂW+¢Z&MVﬂ%&2w

keD k¢ D

Combining the last two equations, we obtain
K+/dT log(4d/d") 5
Vd + - + IC;JBE(k)?,Z a

which implies that for a > <\/& + %5(4’1/5/)

. K+/dT log(4d/d’)
IN" Br(k)2>a—Vd-
I%j; n

/
e vi K dTleg(z;d/a)

it 4 ST

) , we have:

Second, note that Equation (4) implies immediately that for any j € Dy,

.| K\/dTlog(4d]d)
Be(i) - 8| < e,

and in turn,

[0 < 18°)1 + K\/W;SW 1 KT log(1d])

An

[ Bek)® = Vd (y = 1) max Fr(j).
k¢D

Hence, there must exist feature k & D with

Therefore,

Be(k)| = (v — 1) max B ().

Picking ~ such that for some i € [I],

yields the result immediately. O

The proof of Theorem 5.2 follows directly from Lemma B.3 and a union bound over the first d epochs. With
probability at least 1 — d¢’, for every epoch E € [d], there is a feature k ¢ D, gy such that for some i € [I],

- > —
c'(k) c'(4)
This implies that there exists k € D.(g41) but & ¢ D, (g). Applying this d times, we have that if 7" > dn,
necessarily Dy = [d]. We can then apply Theorem 4.1 to then show that with probability at least 1 — ¢’

< K/dT log(4d/d")

2= An

Vj e DT(E)

HBT/n - p*

Taking a union bound over the two above events and § = 2dd’, we get the theorem statement with probability
at least 1 —¢' (d+1) >1—94.



