A Proof of Theorem 4.1

A.1 Preliminaries

A.1.1 Useful concentration

Our proof will require applying the following concentration inequality, derived from Azuma's inequality:

Lemma A.1. Let W_1, \ldots, W_{τ} be random variables in \mathbb{R} such that $|W_t| \leq W_{max}$. Suppose for all $t \in [\tau]$, for all w_1, \ldots, w_{t-1} ,

$$\mathbb{E}\left[W_t|W_{t-1} = w_{t-1}, \dots, W_1 = w_1\right] = 0.$$

Then, with at least $1 - \delta$,

$$\left| \sum_{t=1}^{\tau} W_t \right| \le W_{max} \sqrt{2\tau \log(2/\delta)}.$$

Proof. This is a reformulated version of Azuma's inequality. To see this, define

$$Z_t = \sum_{i=1}^t W_i \ \forall t,$$

and initialize $Z_0 = 0$. We start by noting that for all $t \in [\tau]$, since

$$Z_t = \sum_{i=1}^{t} W_i = W_t + \sum_{i=1}^{t-1} W_i = W_t + Z_{t-1},$$

we have

$$\mathbb{E}[Z_t|Z_{t-1},\ldots,Z_1] = \mathbb{E}[W_t|Z_{t-1},\ldots,Z_1] + \mathbb{E}[Z_{t-1}|Z_{t-1},\ldots,Z_1]$$
$$= \mathbb{E}[W_t|Z_{t-1},\ldots,Z_1] + Z_{t-1}.$$

Further, it is easy to see that $Z_i = z_i \ \forall i \in [t-1]$ if and only if $W_i = z_i - z_{i-1} \ \forall i \in [t-1]$, hence

$$\mathbb{E}\left[W_t | Z_{t-1} = z_{t-1}, \dots, Z_1 = z_1\right] = \mathbb{E}\left[W_t | W_i = z_i - z_{i-1} \ \forall i \in [t-1]\right] = 0.$$

Combining the last two equations implies that

$$\mathbb{E}[Z_t|Z_{t-1},\ldots,Z_1] = Z_{t-1},$$

and the Z_t 's define a martingale. Since for all t,

$$|Z_t - Z_{t-1}| = |W_t| \le W_{max}$$

we can apply Azuma's inequality to show that with probability at least $1 - \delta$,

$$|Z_{\tau} - Z_0| \geq W_{max} \sqrt{2\tau \log(2/\delta)},$$

which immediately gives the result.

A.1.2 Sub-space decomposition and projection

We will also need to divide \mathbb{R}^d in several sub-spaces, and project our observations to said subspaces.

Sub-space decomposition We focus on the sub-space generated by the non-modified features x_t 's and the sub-space generated by the feature modifications Δ_t 's. We let r be the rank of Σ , and let $\lambda_r \geq \ldots \geq \lambda_1 > 0$ be the non-zero eigenvalues of Σ . Further, we let f_1, \ldots, f_r be the unit eigenvectors (i.e., such that $||f_1||_1 = \ldots = ||f_r||_1 = 1$) corresponding to eigenvalues $\lambda_1, \ldots, \lambda_r$ of Σ . As Σ is a symmetric matrix, f_1, \ldots, f_r are orthonormal. We abuse notations in the proof of Theorem 4.1 and denote $\Sigma = \operatorname{span}(f_1, \ldots, f_r)$ when clear from context.

For all k, let e_k be the unit vector such that $e_k(k) = 1$ and $e_k(j) = 0 \ \forall j \neq k$. At time τ , we denote $\mathcal{D}_{\tau} = \operatorname{span}(e_k)_{k \in \mathcal{D}_{\tau}}$ the sub-space of \mathbb{R}^d spanned by the features in \mathcal{D}_{τ} .

Finally, we let

$$\mathcal{V}_{\tau} = \Sigma + \mathcal{D}_{\tau} = \operatorname{span}(f_1, \dots, f_r) + \operatorname{span}(e_k)_{k \in D_{\tau}}$$

be the Minkowski sum of sub-spaces Σ and \mathcal{D}_{τ} .

Projection onto sub-spaces For any vector z, sub-space \mathcal{H} of \mathbb{R}^d , we write $z = z(\mathcal{H}) + z(\mathcal{H}^{\perp})$ where $z(\mathcal{H})$ is the projection of z onto sub-space \mathcal{H} , i.e. is uniquely defined as

$$z(\mathcal{H}) = \sum_{q \in B} (z^{\top} q) q$$

for any orthonormal basis B of \mathcal{H} . We also let $z(\mathcal{H}^{\perp})$ be the projection on the orthogonal complement \mathcal{H}^{\perp} . In particular, $z(\mathcal{H})$ is orthogonal to $z(\mathcal{H}^{\perp})$. Further, we write $\bar{X}_{\tau}(\mathcal{H})$ the matrix whose rows are given by $\bar{x}_{t}(\mathcal{H})^{\top}$ for all $t \in [\tau]$.

A.2 Main Proof

Characterization of the least-square estimate via first-order conditions First, for any least square solution $\hat{\beta}_E$ at time $\tau(E)$, we write the first order conditions solved by $\hat{\beta}_E\left(\mathcal{V}_{\tau(E)}\right)$, the projection of $\hat{\beta}_E$ on sub-space $\mathcal{V}_{\tau(E)}$. We abuse notations to let $\varepsilon_{\tau(E)} \triangleq (\varepsilon_t)_{t \in [\tau(E)]}$ the vector of all ε_t 's up until time $\tau(E)$, and state the result as follows:

Lemma A.2 (First-order conditions projected onto $\mathcal{V}_{\tau(E)}$). Suppose $\hat{\beta}_E \in LSE(\tau(E))$. Then,

$$\left(\bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right)^{\top}\bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right)\right)\left(\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right)-\beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right)=\bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right)^{\top}\varepsilon_{\tau(E)}.$$

Proof. For simplicity of notations, we drop all $\tau(E)$ indices and subscripts in this proof. Remember that

$$LSE = \underset{\beta}{\operatorname{argmin}} \left(\bar{X}\beta - \bar{Y} \right)^{\top} \left(\bar{X}\beta - \bar{Y} \right).$$

Since $\hat{\beta}_E \in LSE$, it must satisfy the first order conditions given by

$$2\bar{X}^{\top} \left(\bar{X} \hat{\beta}_E - \bar{Y} \right) = 0,$$

which can be rewritten as

$$\bar{X}^{\top} \bar{X} \hat{\beta}_E = \bar{X}^{\top} \bar{Y}.$$

Second, we note that for all t, $x_t \in \text{span}(f_1, \dots, f_r)$ and $\Delta_t \in \text{span}\left((e_k)_{k \in D}\right)$ (by definition of D). This immediately implies, in particular, that $\bar{x}_t = x_t + \Delta_t \in \mathcal{V}$. In turn, $\bar{x}_t(\mathcal{V}) = \bar{x}_t$ for all t, and

$$\bar{X} = \bar{X}(\mathcal{V})$$
.

As such, the first order condition can be written

$$\bar{X}(\mathcal{V})^{\top} \bar{X}(\mathcal{V}) \hat{\beta}_{E} = \bar{X}(\mathcal{V})^{\top} \bar{Y}.$$

Now, we remark that

$$\begin{split} \bar{X}\left(\mathcal{V}\right)^{\top} \bar{X}\left(\mathcal{V}\right) \hat{\beta}_{E} &= \sum_{t \in S} \bar{x}_{t}\left(\mathcal{V}\right) \bar{x}_{t}\left(\mathcal{V}\right)^{\top} \hat{\beta}_{E} \\ &= \sum_{t \in S} \bar{x}_{t}\left(\mathcal{V}\right) \bar{x}_{t}\left(\mathcal{V}\right)^{\top} \hat{\beta}_{E}\left(\mathcal{V}\right) + \sum_{t \in S} \bar{x}_{t}\left(\mathcal{V}\right) \bar{x}_{t}\left(\mathcal{V}\right)^{\top} \hat{\beta}_{E}\left(\mathcal{V}^{\perp}\right) \\ &= \sum_{t \in S} \bar{x}_{t}\left(\mathcal{V}\right) \bar{x}_{t}\left(\mathcal{V}\right)^{\top} \hat{\beta}_{E}\left(\mathcal{V}\right) \\ &= \bar{X}\left(\mathcal{V}\right)^{\top} \bar{X}\left(\mathcal{V}\right) \hat{\beta}_{E}\left(\mathcal{V}\right), \end{split}$$

where the second-to-last equality follows from the fact that \mathcal{V} and \mathcal{V}^{\perp} are orthogonal, which immediately implies $\bar{x}_t(\mathcal{V})^{\top} \hat{\beta}_E(\mathcal{V}^{\perp}) = 0$ for all t. To conclude the proof, we note that $\bar{Y} = \bar{X}^{\top} \beta^* + \varepsilon = \bar{X}(\mathcal{V})^{\top} \beta^*(\mathcal{V}) + \varepsilon$. Plugging this in the above equation, we obtain that

$$\bar{X}(\mathcal{V})^{\top} \bar{X}(\mathcal{V}) \hat{\beta}_{E}(\mathcal{V}) = \bar{X}(\mathcal{V})^{\top} \bar{X}(\mathcal{V})^{\top} \beta^{*}(\mathcal{V}) + \bar{X}(\mathcal{V})^{\top} \varepsilon.$$

This can be rewritten

$$\left(\bar{X}\left(\mathcal{V}\right)^{\top}\bar{X}\left(\mathcal{V}\right)\right)\left(\hat{\beta}_{E}\left(\mathcal{V}\right)-\beta^{*}\left(\mathcal{V}\right)\right)=\bar{X}\left(\mathcal{V}\right)^{\top}\varepsilon,$$

which completes the proof.

Upper-bounding the right-hand side of the first order conditions We now use concentration to give an upper bound on a function of the right-hand side of the first order conditions,

$$\left(\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right) - \beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right)^{\top} \bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right)^{\top} \varepsilon_{\tau(E)}.$$

Lemma A.3. With probability at least $1 - \delta$,

$$\left(\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right) - \beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right)^{\top} \bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right)^{\top} \varepsilon
\leq \left\|\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right) - \beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right\|_{2} \cdot K' \sqrt{d\tau(E) \log(2d/\delta)}.$$

where K' is a constant that only depends on the distribution of costs and the bound σ on the noise.

Proof. Pick any $k \in [d]$, and define $W_t = \bar{x}_t(k)\varepsilon_t$. First, we remark that

$$|\bar{x}_t(k)| \le |x_t(k)| + |\Delta_t(k)| \le 1 + \max_{k \in [d], \ i \in [l]} \frac{B^i}{c^i(k)}$$

In turn, $|W_t| \leq K'$ where

$$K' \triangleq \left(1 + \max_{k \in [d], i \in [l]} \frac{B^i}{c^i(k)}\right) \sigma.$$

Further, note that both $x_t(k)$ and ε_t are independent of the history of play up through time t-1, hence of W_1, \ldots, W_{t-1} , and that ε_t is further independent of Δ_t (the distribution of Δ_t is a function of the currently posted $\hat{\beta}_{E-1}$ only, which only depends on the previous time steps). Noting that if A, B, C are random variables, we have

$$\begin{split} \underset{A,B}{\mathbb{E}}\left[AB|C=c\right] &= \sum_{a} \sum_{b} ab \Pr\left[A=a,B=b|C=c\right] \\ &= \sum_{a} \sum_{b} ab \Pr\left[A=a|B=b,C=c\right] \Pr\left[B=b|C=c\right] \\ &= \sum_{b} b \left(\sum_{a} a \Pr\left[A=a|B=b,C=c\right]\right) \Pr\left[B=b|C=c\right] \\ &= \sum_{b} b \underset{A}{\mathbb{E}}\left[A|B=b,C=c\right] \Pr\left[B=b|C=c\right] \\ &= \underset{B}{\mathbb{E}}\left[\underset{A}{\mathbb{E}}\left[A|B,C=c\right]B|C=c\right], \end{split}$$

and applying this with $A = \varepsilon_t$, $B = \Delta_t(k)$, $C = W_1 \cap \ldots \cap W_{t-1}$, we obtain

$$\begin{split} \mathbb{E}\left[W_{t}|W_{t-1},\ldots,W_{1}\right] &= \mathbb{E}\left[\bar{x}_{t}(k)\varepsilon_{t}|W_{t-1},\ldots,W_{1}\right] \\ &= \mathbb{E}\left[x_{t}(k)\varepsilon_{t}|W_{t-1},\ldots,W_{1}\right] + \mathbb{E}\left[\Delta_{t}(k)\varepsilon_{t}|W_{t-1},\ldots,W_{1}\right] \\ &= \mathbb{E}\left[x_{t}(k)\varepsilon_{t}\right] + \mathbb{E}\left[\mathbb{E}\left[\varepsilon_{t}|\Delta_{t}(k),W_{t-1},\ldots,W_{1}\right] \cdot \Delta_{t}(k)\middle|W_{t-1},\ldots,W_{1}\right] \\ &= \mathbb{E}\left[x_{t}(k) \cdot \mathbb{E}\left[\varepsilon_{t}|x_{t}(k)\right]\right] + \mathbb{E}\left[\Delta_{t}(k) \cdot \mathbb{E}\left[\varepsilon_{t}\right|\middle|W_{t-1},\ldots,W_{1}\right] \\ &= 0, \end{split}$$

since $\mathbb{E}_{\varepsilon_t}[\varepsilon_t] = 0$ and $\mathbb{E}_{\varepsilon}[\varepsilon_t|x_t(k)] = 0$. Hence, we can apply Lemma A.1 and a union bound over all d features to show that with probability at least $1 - \delta$,

$$\sum_{t=1}^{\tau(E)} \bar{x}_t(k) \varepsilon_t \geq -K' \sqrt{2\tau(E) \log(2d/\delta)} \ \, \forall k \in [d].$$

By Cauchy-Schwarz, we have

$$\left(\hat{\beta}_{E}\left(\mathcal{V}\right) - \beta^{*}\left(\mathcal{V}\right)\right)^{\top} \sum_{t=1}^{\tau(E)} \bar{x}_{t} \varepsilon_{t} \leq \left\|\hat{\beta}_{E}\left(\mathcal{V}\right) - \beta^{*}\left(\mathcal{V}\right)\right\|_{2} \cdot \left\|\sum_{t=1}^{\tau(E)} \bar{x}_{t} \varepsilon_{t}\right\|_{2}$$

$$\leq \left\|\hat{\beta}_{E}\left(\mathcal{V}\right) - \beta^{*}\left(\mathcal{V}\right)\right\|_{2} \sqrt{\sum_{k=1}^{d} \left(\sum_{t} \bar{x}_{t}(k) \varepsilon_{t}\right)^{2}}$$

$$\leq \left\|\hat{\beta}_{E}\left(\mathcal{V}\right) - \beta^{*}\left(\mathcal{V}\right)\right\|_{2} \cdot K' \sqrt{2d\tau(E) \log(2d/\delta)}.$$

Strong convexity of the mean-squared error in sub-space $\mathcal{V}(\tau(E))$ We give a lower bound on the eigenvalues of $\bar{X}^{\top}\bar{X}$ on sub-space $\mathcal{V}(\tau(E))$, so as to show that at time $\tau(E)$, any least square solution $\hat{\beta}_E$ satisfies

$$\left(\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right) - \beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right)^{\top} \bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right)^{\top} \bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right) \left(\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right) - \beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right) \\
\geq \Omega(n) \left\|\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right) - \beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right\|_{2}^{2}.$$

To do so, we will need the following concentration inequalities:

Lemma A.4. Suppose $\mathbb{E}[x_t] = 0$. Fix $\tau(E) = En$ for some $E \in \mathbb{N}$. With probability at least $1 - \delta$, we have that

$$\sum_{t=1}^{\tau(E)} z^{\top} x_t x_t^{\top} z \ge \left(\lambda_r \tau(E) - 2r d \sqrt{\tau(E) \log(6r/\delta)} \right) \|z\|_2^2 \quad \forall z \in \Sigma,$$

and

$$\sum_{t=1}^{\tau(E)} z^{\top} \Delta_t \Delta_t^{\top} z \ge \left(\min_{i,k} \left\{ \pi^i \left(\frac{B^i}{c^i(k)} \right)^2 \right\} n - \left(\max_{i,k} \left\{ \frac{B^i}{c^i(k)} \right\} \right)^2 \sqrt{2n \log(6d/\delta)} \right) \|z\|_2^2 \quad \forall z \in \mathcal{D}_{\tau(E)}$$

and

$$\sum_{t=1}^{\tau(E)} z^\top x_t \Delta_t^\top z \ge -2 \max_{i,k} \left\{ \frac{B^i}{c^i(k)} \right\} d\sqrt{\tau(E) \log(6d/\delta)} \|z\|_2^2 \ \forall z \in \mathbb{R}^d.$$

Proof. Deferred to Appendix A.2.1.

We will also need the following statement on the norm of the projections of any $z \in \mathcal{V}$ to \mathcal{D} and Σ :

Lemma A.5. Let

$$\lambda(\mathcal{D}, \Sigma) = \inf_{z \in \mathcal{D} + \Sigma} \|z(\mathcal{D})\|_2 + \|z(\Sigma)\|_2$$

s.t. $\|z\|_2 = 1$.

Then, $\lambda(\mathcal{D}, \Sigma) > 0$.

Proof. With respect to the Euclidean metric, the objective function is continuous in z (the orthogonal projection operators are linear hence continuous functions of z and $z \to \|z\|_2$ also is a continuous function), and its feasible set is compact (as it is a sphere in a bounded-dimensional space over real values). By the extreme value theorem, the optimization problem admits an optimal solution, i.e., there exists z^* with $\|z^*\|_2 = 1$ such that $\lambda(\mathcal{D}, \Sigma) = \|z^*(\mathcal{D})\|_2 + \|z^*(\Sigma)\|_2$. Now, supposing $\lambda(\mathcal{D}, \Sigma) \leq 0$, it must necessarily be the case that $z(\mathcal{D}) = 0$, $z(\Sigma) = 0$. In particular, this means z is orthogonal to both \mathcal{D} and Σ . In turn, z must be orthogonal to every vector in $\mathcal{D} + \Sigma$; since $z \in \mathcal{D} + \Sigma$, this is only possible when z = 0, contradicting $\|z\|_2 = 1$.

We can now move onto the proof of our lower bound for

$$\left(\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right) - \beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right)^{\top} \bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right)^{\top} \bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right) \left(\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right) - \beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right).$$

Corollary A.6. Fix $\tau(E) = En$ for some $E \in \mathbb{N}$. With probability at least $1 - \delta$,

$$\left(\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right) - \beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right)^{\top} \bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right)^{\top} \bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right) \left(\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right) - \beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right) \\
\geq \left(\frac{\lambda n}{2} - \kappa' d^{2} \sqrt{\tau(E) \log(6d/\delta)}\right) \left\|\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right) - \beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right\|_{2}^{2},$$

for some constants κ' , λ that only depend on σ , C, and Σ , with $\lambda > 0$.

Proof. Since it is clear from context, we drop all $\tau(E)$ subscripts in the notation of this proof. First, we remark that

$$z^{\top} \bar{X}^{\top} \bar{X} z = \sum_{t} z^{\top} \bar{x}_{t} \bar{x}_{t}^{\top} z$$
$$= \sum_{t} z^{\top} x_{t} x_{t}^{\top} z + \sum_{t} z^{\top} \Delta_{t} \Delta_{t}^{\top} z + 2 \sum_{t} z^{\top} \Delta_{t} z^{\top} x_{t}.$$

We have by Lemma A.5 that for all $z \in \mathcal{V} = \mathcal{D} + \Sigma$,

$$||z(\mathcal{D})||_2 + ||z(\Sigma)||_2 \ge \lambda(\mathcal{D}, \Sigma)||z||_2.$$

Let $\lambda(\Sigma) \triangleq \min_{D \subset [d]} \lambda(\mathcal{D}, \Sigma)$. Since there are finitely many subsets D of [d] (and corresponding sub-spaces \mathcal{D}) and since for all such subsets, $\lambda(\mathcal{D}, \Sigma) > 0$, we have that $\lambda(\Sigma) > 0$. Further,

$$||z(\mathcal{D})||_2 + ||z(\Sigma)||_2 > \lambda(\Sigma)||z||_2$$
.

Therefore, it must be the case that either $||z(\mathcal{D})||_2 \ge \frac{\lambda(\Sigma)}{2}||z||_2$ or $||z(\Sigma)||_2 \ge \frac{\lambda(\Sigma)}{2}||z||_2$. We divide our proof into the corresponding two cases:

1. The first case is when $||z(\Sigma)||_2 \ge \frac{\lambda(\Sigma)}{2}||z||_2$. Then, note that since $z^\top \Delta_t \Delta_t^\top z \ge 0$ always, we have

$$\sum_{t} z^{\top} \bar{x}_{t} \bar{x}_{t}^{\top} z \geq \sum_{t} z^{\top} x_{t} x_{t}^{\top} z + 2 \sum_{t} z^{\top} \Delta_{t} z^{\top} x_{t}$$
$$= \sum_{t} z(\Sigma)^{\top} x_{t} x_{t}^{\top} z(\Sigma) + 2 \sum_{t} z^{\top} \Delta_{t} z^{\top} x_{t},$$

where the last equality follows from the fact that $x_t \in \Sigma$ and $z = z(\Sigma) + z(\Sigma^{\perp})$. By Lemma A.4, we get that for some constant C_1 that depends only on C,

$$\begin{split} & \sum_{t} z^{\top} \bar{x}_{t} \bar{x}_{t}^{\top} z \\ & \geq \left(\lambda_{r} \tau(E) - 2r d \sqrt{\tau(E) \log(6r/\delta)} \right) \|z(\Sigma)\|_{2}^{2} - C_{1} d \sqrt{\tau(E) \log(6d/\delta)} \|z\|_{2}^{2} \\ & \geq \left(\frac{\lambda(\Sigma) \lambda_{r}}{2} \tau(E) - \lambda(\Sigma) r d \sqrt{\tau(E) \log(6r/\delta)} - C_{1} d \sqrt{\tau(E) \log(6d/\delta)} \right) \|z\|_{2}^{2} \\ & \geq \left(\frac{\lambda(\Sigma) \lambda_{r}}{2} \tau(E) - \lambda(\Sigma) d^{2} \sqrt{\tau(E) \log(6d/\delta)} - C_{1} d \sqrt{\tau(E) \log(6d/\delta)} \right) \|z\|_{2}^{2}. \end{split}$$

(The second step assumes $\lambda_r \tau(E) - 2rd\sqrt{\tau(E)\log(6r/\delta)} \ge 0$. When this is negative, the bound trivially holds as $\sum_t z^\top \bar{x}_t \bar{x}_t^\top z \ge 0$.)

2. The second case arises when $||z(\mathcal{D})||_2 \ge \frac{\lambda(\Sigma)}{2} ||z||_2$. Note that

$$\sum_{t} z^{\top} \bar{x}_{t} \bar{x}_{t}^{\top} z \geq \sum_{t} z^{\top} \Delta_{t} \Delta_{t}^{\top} z + 2 \sum_{t} z^{\top} \Delta_{t} z^{\top} x_{t}$$
$$= \sum_{t} z(\mathcal{D})^{\top} \Delta_{t} \Delta_{t}^{\top} z(\mathcal{D}) + 2 \sum_{t} z^{\top} \Delta_{t} z^{\top} x_{t},$$

as $\Delta_t \in \mathcal{D}$ and $z = z(\mathcal{D}) + z(\mathcal{D}^{\perp})$. By Lemma A.4, it follows that for some constants C_2 , C_3 that only depend on \mathcal{C} ,

$$\begin{split} &\sum_{t} z^{\top} \bar{x}_{t} \bar{x}_{t}^{\top} z \\ &\geq \left(n \min_{i,k} \left\{ \pi^{i} \left(\frac{B^{i}}{c^{i}(k)} \right)^{2} \right\} - C_{2} \sqrt{n \log(6d/\delta)} \right) \|z(\mathcal{D})\|_{2}^{2} - C_{3} d \sqrt{\tau(E) \log(6d/\delta)} \|z\|_{2}^{2} \\ &\geq \left(\frac{\lambda(\Sigma)n}{2} \min_{i,k} \left\{ \pi^{i} \left(\frac{B^{i}}{c^{i}(k)} \right)^{2} \right\} - \frac{\lambda(\Sigma)C_{2}}{2} \sqrt{n \log(6d/\delta)} - C_{3} d \sqrt{\tau(E) \log(6d/\delta)} \right) \|z\|_{2}^{2} \\ &\geq \left(\frac{\lambda(\Sigma)n}{2} \min_{i,k} \left\{ \pi^{i} \left(\frac{B^{i}}{c^{i}(k)} \right)^{2} \right\} - \frac{\lambda(\Sigma)C_{2}}{2} \sqrt{\tau(E) \log(6d/\delta)} - C_{3} d \sqrt{\tau(E) \log(6d/\delta)} \right) \|z\|_{2}^{2}. \end{split}$$

Noting that by definition $\lambda_r > 0$ and $\min_{i,k} \left\{ \pi^i \left(\frac{B^i}{c^i(k)} \right)^2 \right\} > 0$, and picking the worse of the two above bounds on $\sum_t z^\top \bar{x}_t \bar{x}_t^\top z$ concludes the proof with

$$\lambda = \frac{\lambda(\Sigma)}{2} \min \left(\lambda_r, \min_{i,k} \left\{ \pi^i \left(\frac{B^i}{c^i(k)} \right)^2 \right\} \right) > 0.$$

We can now prove Theorem 4.1. By Lemma A.2, we have that

$$\left(\bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right)^{\top}\bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right)\right)\left(\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right)-\beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right)=\bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right)^{\top}\varepsilon_{\tau(E)},$$

which immediately yields

$$\left(\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right) - \beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right)^{\top} \left(\bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right)^{\top} \bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right)\right) \left(\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right) - \beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right) \\
= \left(\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right) - \beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right)^{\top} \bar{X}\left(\mathcal{V}_{\tau(E)}\right)^{\top} \varepsilon_{\tau(E)}$$

by performing matrix multiplication with $\left(\hat{\beta}_E\left(\mathcal{V}_{\tau(E)}\right) - \beta^*\left(\mathcal{V}_{\tau(E)}\right)\right)^{\top}$ on both sides on the first-order conditions. Further, by Lemma A.3, Corollary A.6, and a union bound, we get that with probability at least $1 - \delta$,

$$\left(\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right) - \beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right)^{\top} \bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right)^{\top} \bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right) \left(\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right) - \beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right) \\
\geq \left(\frac{\lambda n}{2} - \kappa' d^{2} \sqrt{\tau(E) \log(12d/\delta)}\right) \left\|\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right) - \beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right\|_{2}^{2},$$

and

$$\left(\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right) - \beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right)^{\top} \bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right)^{\top} \varepsilon$$

$$\leq \left\|\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right) - \beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right\|_{2} \cdot K' \sqrt{d\tau(E) \log(4d/\delta)}.$$

Combining the two above inequalities with the first-order conditions yields

$$\left\|\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right) - \beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right\|_{2} \leq \frac{K'\sqrt{d\tau(E)\log(4d/\delta)}}{\frac{\lambda n}{2} - \kappa'd^{2}\sqrt{\tau(E)\log(12d/\delta)}}.$$

For

$$n \ge \frac{4\kappa' d^2}{\lambda} \sqrt{\tau(E) \log(12d/\delta)},$$

the bound becomes

$$\left\| \hat{\beta}_E \left(\mathcal{V}_{\tau(E)} \right) - \beta^* \left(\mathcal{V}_{\tau(E)} \right) \right\|_2 \le \frac{4K' \sqrt{d\tau(E) \log(4d/\delta)}}{\lambda n}.$$

The proof concludes by letting $K \triangleq 4K'$, $\kappa \triangleq 4\kappa'$ and noting that since $\mathcal{D}_{\tau(E)} \subset \mathcal{V}_{\tau(E)}$ by construction, the statement holds true over $\mathcal{D}_{\tau(E)}$ (projecting onto a subspace cannot increase the ℓ 2-norm).

A.2.1 Proof of Lemma A.4

For the first statement, note that for all $k \neq j \leq r$,

$$\mathbb{E}\left[f_k^\top x_t x_t^\top f_j\right] = f_k^\top \mathbb{E}\left[x_t x_t^\top\right] f_j = \lambda_j f_k^\top f_j,$$

as f_j is (by definition) an eigenvector of $\Sigma = \mathbb{E}\left[x_t x_t^{\top}\right]$ for eigenvalue λ_j . Note that the $f_j^{\top} x_t x_t^{\top} f_k = (f_j^{\top} x_t)(f_k^{\top} x_t)$ are random variables that are independent across t. Further, by Cauchy-Schwarz,

$$|(f_k^\top x_t)(f_j^\top x_t)| \le ||f_k||_2 ||f_j||_2 ||x_t||_2^2 = ||x_t||_2^2 \le d.$$

Therefore, we can apply Hoeffding with a union bound over the r^2 choices of (f_k, f_j) to show that with probability at least $1 - \delta'$,

$$\left| \sum_{t=1}^{\tau(E)} f_k^\top x_t x_t^\top f_j - \lambda_j \tau(E) f_k^\top f_j \right| \le d\sqrt{2\tau(E) \log(2r^2/\delta')}.$$

Note now that for all $z \in \Sigma$, we can write $z = \sum_{k=1}^{r} (z^{\top} f_k) f_k$, and as such

$$\begin{split} &\left|\sum_{t=1}^{\tau(E)} z^{\top} x_t x_t^{\top} z - \sum_{k,j=1}^{r} (z^{\top} f_k) (z^{\top} f_j) \lambda_j \tau(E) f_k^{\top} f_j \right| \\ &= \left|\sum_{t=1}^{\tau(E)} \sum_{k,j=1}^{r} (z^{\top} f_k) (z^{\top} f_j) f_k^{\top} x_t x_t^{\top} f_j - \sum_{k,j=1}^{r} (z^{\top} f_k) (z^{\top} f_j) \lambda_j \tau(E) f_k^{\top} f_j \right| \\ &= \left|\sum_{k,j=1}^{r} (z^{\top} f_k) (z^{\top} f_j) \left(\sum_{t} f_k^{\top} x_t x_t^{\top} f_j - \lambda_j \tau(E) f_k^{\top} f_j \right) \right| \\ &\leq d \sqrt{2\tau(E) \log(2r^2/\delta')} \sum_{k,j=1}^{r} |z^{\top} f_k| |z^{\top} f_j| \\ &\leq r d \sqrt{2\tau(E) \log(2r^2/\delta')} \|z\|_2^2, \end{split}$$

where the last step follows from the fact that by Cauchy-Schwarz,

$$\sum_{k=1}^{r} |z^{\top} f_k| \le \sqrt{\sum_{k=1}^{r} 1^2} \sqrt{\sum_{k=1}^{r} (z^{\top} f_k)^2} = \sqrt{r} ||z||_2.$$

Hence, for $z \in \Sigma$, remembering $f_k^{\top} f_j = 0$ when $k \neq j$ and $f_k^{\top} f_k = 1$, and noting $||z||_2^2 = \sum_{k=1}^r (z^{\top} f_k)^2$, we get that

$$\begin{split} \sum_{t=1}^{\tau(E)} z^{\top} x_t x_t^{\top} z &\geq \sum_{k,j=1}^{r} (z^{\top} f_k) (z^{\top} f_j) \lambda_j \tau(E) f_k^{\top} f_j - r d \sqrt{2\tau(E) \log(2r^2/\delta')} \|z\|_2^2 \\ &= \sum_{k=1}^{r} \lambda_k \tau(E) (z^{\top} f_k)^2 - r d \sqrt{2\tau(E) \log(2r^2/\delta')} \|z\|_2^2 \\ &\geq \lambda_r \tau(E) \sum_{k=1}^{r} (z^{\top} f_k)^2 - r d \sqrt{2\tau(E) \log(2r^2/\delta')} \|z\|_2^2 \\ &= \left(\lambda_r \tau(E) - 2r d \sqrt{\tau(E) \log(2r/\delta')}\right) \|z\|_2^2. \end{split}$$

For the second statement, we remind the reader that the costs of modification are such that $|\Delta_t(k)^2| \leq \left(\max_{i,j}\left\{\frac{B^i}{c^i(j)}\right\}\right)^2$, and that within any epoch ϕ , the Δ_t 's are independent of each other. We can therefore apply Hoeffding's inequality and a union bound (over $k \in D_{\tau(E)} \subset [d]$) to show that with probability at least $1 - \delta'$, for any $k \in D_{\tau(E)}$, there exists an epoch $\phi(k) \leq E$ (pick any ϕ in which k is modified) such that

$$\sum_{t \in \phi(k)} e_k^{\top} \Delta_t \Delta_t^{\top} e_k \ge n \, \mathbb{E} \left[\Delta_t(k)^2 \right] - \left(\max_{i,j} \left\{ \frac{B^i}{c^i(j)} \right\} \right)^2 \sqrt{2n \log(d/\delta')}$$

$$\ge n \min_{i \in [l], j \in [d]} \left\{ \pi^i \left(\frac{B^i}{c^i(j)} \right)^2 \right\} - \left(\max_{i,j} \left\{ \frac{B^i}{c^i(j)} \right\} \right)^2 \sqrt{2n \log(d/\delta')}.$$

The last inequality holds noting that k can be modified in period $\phi(k)$ only if there exists a cost type i on the support of \mathcal{C} such that k is a best response to $\hat{\beta}_{\phi(k)-1}$; in turn, k is modified with probability π^i by amount $\Delta(k) = B^i/c^i(k)$, leading to

$$\mathbb{E}\left[\Delta_t(k)^2\right] \ge \pi^i \left(\frac{B^i}{c^i(k)}\right)^2.$$

Since $\Delta_t(k)\Delta_t(j)=0$ when $k\neq j$ as a single direction is modified at a time, note that for all $z\in\mathcal{D}_{\tau(E)}$, we have

$$\begin{split} &\sum_{t \leq \tau(E)} z^\top \Delta_t \Delta_t^\top z \\ &= \sum_{t \leq \tau(E)} \sum_{k=1}^d \Delta_t(k)^2 z^\top e_k e_k^\top z \\ &= \sum_{k=1}^d \sum_{t \leq \tau(E)} \Delta_t(k)^2 (z^\top e_k)^2 \\ &\geq \sum_{k \in D_{\tau(E)}} \sum_{t \in \phi(k)} \Delta_t(k)^2 (z^\top e_k)^2 \\ &\geq \sum_{k \in D_{\tau(E)}} \left(n \min_{i \in [l], j \in [d]} \left\{ \pi^i \left(\frac{B^i}{c^i(j)} \right)^2 \right\} - \left(\max_{i, j} \left\{ \frac{B^i}{c^i(j)} \right\} \right)^2 \sqrt{2n \log(d/\delta')} \right) (z^\top e_k)^2 \\ &= \left(n \min_{i \in [l], j \in [d]} \left\{ \pi^i \left(\frac{B^i}{c^i(j)} \right)^2 \right\} - \left(\max_{i, j} \left\{ \frac{B^i}{c^i(j)} \right\} \right)^2 \sqrt{2n \log(d/\delta')} \right) \sum_{k \in D_{\tau(E)}} (z^\top e_k)^2. \end{split}$$

For $z \in \mathcal{D}_{\tau(E)}$, $\sum_{k \in D_{\tau(E)}} (z^{\top} e_k)^2 = ||z||_2^2$, and the second inequality immediately holds.

Finally, let us prove the last inequality. Take $(k,j) \in [d]^2$, and let us write $W_t = e_k^\top x_t \Delta_t^\top e_j$. First, note that x_t and Δ_t are independent: in epoch ϕ , the distribution of Δ_t is a function of $\hat{\beta}_{\phi-1}$ (and \mathcal{C}) only, which only

depends on the realizations of x, ε , Δ in previous time steps. Further, x_t is independent of the history of features and modifications up until time t-1 included. Hence, it must be the case that

$$\mathbb{E}\left[W_{t}|W_{t-1},\ldots,W_{1}\right] = \mathbb{E}\left[\mathbb{E}\left[e_{k}^{\top}x_{t}\middle|\Delta_{t},W_{t-1},\ldots,W_{1}\right]\Delta_{t}^{\top}e_{j}\middle|W_{t-1},\ldots,W_{1}\right]$$

$$= \mathbb{E}\left[\mathbb{E}\left[e_{k}^{\top}x_{t}\right]\Delta_{t}^{\top}e_{j}\middle|W_{t-1},\ldots,W_{1}\right]$$

$$= \mathbb{E}\left[e_{k}^{\top}x_{t}\right] \cdot \mathbb{E}\left[\Delta_{t}^{\top}e_{j}\middle|W_{t-1},\ldots,W_{1}\right]$$

$$= 0,$$

where the last equality follows from the fact that $\mathbb{E}[x_t] = 0$. Further,

$$\left| e_k^\top x_t \Delta_t^\top e_j \right| = |x_t(k)| |\Delta_t(j)| \le \max_{i,k} \left\{ \frac{B^i}{c^i(k)} \right\}.$$

We can therefore apply Lemma A.1 and a union bound over all $(k,j) \in [d]^2$ to show that with probability at least $1 - \delta'$,

$$\left| \sum_{t=1}^{\tau(E)} e_k^\top x_t \Delta_t^\top e_j \right| \le \max_{i,k} \left\{ \frac{B^i}{c^i(k)} \right\} \sqrt{2\tau(E) \log(2d^2/\delta')}.$$

In particular, we get that for all $z \in \mathbb{R}^d$,

$$\left| \sum_{t \in E} z^{\top} x_t \Delta_t^{\top} z \right| = \left| \sum_{k,j} \sum_{t \in E} (z^{\top} e_k) (z^{\top} e_j) e_k^{\top} x_t \Delta_t^{\top} e_j \right|$$

$$\leq \sum_{k,j} |z^{\top} e_k| |z^{\top} e_j| \left| \sum_{t \in E} e_k^{\top} x_t \Delta_t^{\top} e_j \right|$$

$$\leq \max_{i,k} \left\{ \frac{B^i}{c^i(k)} \right\} \sqrt{2\tau(E) \log(2d^2/\delta')} \left(\sum_k |z^{\top} e_k| \right)^2$$

$$\leq 2d \max_{i,k} \left\{ \frac{B^i}{c^i(k)} \right\} \sqrt{\tau(E) \log(2d/\delta')} ||z||_2^2,$$

where the last step follows from the fact that by Cauchy-Schwarz,

$$\left(\sum_{k} |z^{\top} e_{k}|\right)^{2} = \left(\sum_{k} |z(k)|\right)^{2} \le \sum_{k} 1^{2} \cdot \sum_{k} |z(k)|^{2} = d \cdot ||z||_{2}^{2}.$$

We conclude the proof with a union bound over all three inequalities, taking $\delta' = 3\delta$.

B Proof of Theorem 5.2

We drop the $\tau(E)$ subscripts when clear from context. We first note that $\hat{\beta}_E$ is a least-square solution. Claim B.1.

$$\hat{\beta}_E \in LSE(\tau(E)).$$

Proof. This follows immediately from noting that

$$\left(\bar{X}\hat{\beta}_{E} - \bar{Y}\right)^{\top} \left(\bar{X}\hat{\beta}_{E} - \bar{Y}\right) = \left(\bar{X}\beta_{E} - \bar{Y}\right)^{\top} \left(\bar{X}\beta_{E} - \bar{Y}\right),\,$$

as $\bar{X}^\top v = \bar{X}(\mathcal{U})^\top v = 0$ by definition of \mathcal{U} , and since $v \in \mathcal{U}^\perp$.

Second, we show that $\hat{\beta}_E$ has large norm:

Claim B.2.

$$\|\hat{\beta}_E\|_2 \ge \alpha.$$

Proof. First, we note that necessarily, $\beta_E \in \mathcal{U}_{\tau(E)}$. Suppose not, then we can write

$$\beta_E = \beta_E \left(\mathcal{U}_{\tau(E)} \right) + \beta_E \left(\mathcal{U}_{\tau(E)}^{\perp} \right),$$

with $\beta_E\left(\mathcal{U}_{\tau(E)}^{\perp}\right)\neq 0$. By the same argument as in Claim B.1, $\beta_E\left(\mathcal{U}_{\tau(E)}\right)$ is a least-square solution. Using orthogonality of $\mathcal{U}_{\tau(E)}$ and $\mathcal{U}_{\tau(E)}^{\perp}$ and the fact that $\left\|\beta_E\left(\mathcal{U}_{\tau(E)}^{\perp}\right)\right\|_2>0$, we have

$$\|\beta_E\|^2 = \|\beta_E (\mathcal{U}_{\tau(E)})\|_2^2 + \|\beta_E (\mathcal{U}_{\tau(E)}^{\perp})\|_2^2 > \|\beta_E (\mathcal{U}_{\tau(E)})\|_2^2.$$

This contradicts β_E being a minimum norm least-square solution. Hence, it must be the case that $\beta_E \in \mathcal{U}_{\tau(E)}$. Since $v \in \mathcal{U}_{\tau(E)}^{\perp}$, we have that β_E and v are orthogonal with $||v||_2 = 1$, implying

$$\|\hat{\beta}_E\|_2^2 = \|\beta_E\|_2^2 + \alpha^2 \|v\|_2^2 \ge \alpha^2.$$

This concludes the proof.

We argue that such a solution places a large amount of weight on currently unexplored features:

Lemma B.3. At time $\tau(E)$, suppose $rank\left(\mathcal{U}_{\tau(E)}\right) \leq [d]$. Suppose $n \geq \frac{\kappa d^2}{\lambda} \sqrt{\tau(E) \log(12d/\delta')}$. Take any α with

$$\alpha \geq \gamma \left(\sqrt{d} + \frac{K d \sqrt{T \log(4d/\delta')}}{\lambda n} \right),$$

where γ is a constant that depends only on \mathcal{C} . With probability at least $1-\delta'$, there exists $i \in [l]$ and a feature $k \notin D_{\tau(E)}$ with

$$\frac{\left|\hat{\beta}_E(k)\right|}{c^i(k)} > \frac{\left|\hat{\beta}_E(j)\right|}{c^i(j)}, \ \forall j \in D_{\tau(E)}.$$

Proof. Since $\hat{\beta}_E \in LSE(\tau(E))$, it must be by Theorem 4.1 that with probability at least $1 - \delta'$,

$$\sqrt{\sum_{k \in D} \left(\hat{\beta}_{E}(k) - \beta^{*}(k)\right)^{2}} \leq \frac{K\sqrt{d\tau(E)\log(4d/\delta')}}{\lambda n} \leq \frac{K\sqrt{dT\log(4d/\delta')}}{\lambda n}.$$
(4)

First, since $z \to \sqrt{\sum_{k \in D} z(k)^2}$ defines a norm (in fact, the ℓ 2-norm in $\mathbb{R}^{|D|}$), it must be the case that

$$\sqrt{\sum_{k \in D} (z(k) - z'(k))^2} \ge \sqrt{\sum_{k \in D} z(k)^2} - \sqrt{\sum_{k \in D} z'(k)^2}.$$

In turn, plugging this in Equation (4), we obtain

$$\sqrt{\sum_{k \in D} \hat{\beta}_E(k)^2} \le \sqrt{\sum_{k \in D} \beta^*(k)^2} + \frac{K\sqrt{dT \log(4d/\delta')}}{\lambda n}$$

$$\le \|\beta^*\|_2 + \frac{K\sqrt{dT \log(4d/\delta')}}{\lambda n}$$

$$\le \sqrt{d} + \frac{K\sqrt{dT \log(4d/\delta')}}{\lambda n}.$$

By the triangle inequality and the lemma's assumption, we also have that

$$\sqrt{\sum_{k \in D} \hat{\beta}_E(k)^2} + \sqrt{\sum_{k \notin D} \hat{\beta}_E(k)^2} \ge ||\hat{\beta}_E||_2 \ge \alpha.$$

Combining the last two equations, we obtain

$$\sqrt{d} + \frac{K\sqrt{dT\log(4d/\delta')}}{\lambda n} + \sqrt{\sum_{k \notin D} \hat{\beta}_E(k)^2}, \ge \alpha$$

which implies that for $\alpha \geq \gamma \left(\sqrt{d} + \frac{Kd\sqrt{T\log(4d/\delta')}}{\lambda n} \right)$, we have:

$$\sqrt{\sum_{k \notin D} \hat{\beta}_E(k)^2} \ge \alpha - \sqrt{d} - \frac{K\sqrt{dT \log(4d/\delta')}}{\lambda n}$$

$$\ge \alpha - \sqrt{d} - \frac{K\sqrt{dT \log(4d/\delta')}}{\lambda n}$$

$$\ge \sqrt{d} (\gamma - 1) \left(1 + \frac{K\sqrt{dT \log(4d/\delta')}}{\lambda n} \right).$$

Second, note that Equation (4) implies immediately that for any $j \in D_T$,

$$\left|\hat{\beta}_E(j) - \beta^*(j)\right| \le \frac{K\sqrt{dT\log(4d/\delta')}}{\lambda n}$$

and in turn,

$$\left|\hat{\beta}_E(j)\right| \le |\beta^*(j)| + \frac{K\sqrt{dT\log(4d/\delta')}}{\lambda n} \le 1 + \frac{K\sqrt{dT\log(4d/\delta')}}{\lambda n}.$$

Therefore,

$$\sqrt{\sum_{k \notin D} \hat{\beta}_E(k)^2} \ge \sqrt{d} \left(\gamma - 1 \right) \max_{j \in D} \hat{\beta}_E(j).$$

Hence, there must exist feature $k \notin D$ with

$$\left|\hat{\beta}_E(k)\right| \ge (\gamma - 1) \max_{i \in D} \hat{\beta}_E(i).$$

Picking γ such that for some $i \in [l]$,

$$\gamma - 1 \ge \max_{j \in D} \frac{c^i(k)}{c^i(j)}$$

yields the result immediately.

The proof of Theorem 5.2 follows directly from Lemma B.3 and a union bound over the first d epochs. With probability at least $1 - d\delta'$, for every epoch $E \in [d]$, there is a feature $k \notin D_{\tau(E)}$ such that for some $i \in [l]$,

$$\frac{\left|\hat{\beta}_{E}(k)\right|}{c^{i}(k)} > \frac{\left|\hat{\beta}_{E}(j)\right|}{c^{i}(j)} \ \forall j \in D_{\tau(E)}.$$

This implies that there exists $k \in D_{\tau(E+1)}$ but $k \notin D_{\tau(E)}$. Applying this d times, we have that if $T \ge dn$, necessarily $D_T = [d]$. We can then apply Theorem 4.1 to then show that with probability at least $1 - \delta'$

$$\left\|\hat{\beta}_{T/n} - \beta^*\right\|_2 \le \frac{K\sqrt{dT\log(4d/\delta')}}{\lambda n}.$$

Taking a union bound over the two above events and $\delta = 2d\delta'$, we get the theorem statement with probability at least $1 - \delta' (d+1) \ge 1 - \delta$.