A Proof of Theorem 4.1

A. 1 Preliminaries

A.1.1 Useful concentration

Our proof will require applying the following concentration inequality, derived from Azuma's inequality:
Lemma A.1. Let W_{1}, \ldots, W_{τ} be random variables in \mathbb{R} such that $\left|W_{t}\right| \leq W_{\max }$. Suppose for all $t \in[\tau]$, for all w_{1}, \ldots, w_{t-1},

$$
\mathbb{E}\left[W_{t} \mid W_{t-1}=w_{t-1}, \ldots, W_{1}=w_{1}\right]=0
$$

Then, with at least $1-\delta$,

$$
\left|\sum_{t=1}^{\tau} W_{t}\right| \leq W_{\max } \sqrt{2 \tau \log (2 / \delta)}
$$

Proof. This is a reformulated version of Azuma's inequality. To see this, define

$$
Z_{t}=\sum_{i=1}^{t} W_{i} \quad \forall t
$$

and initialize $Z_{0}=0$. We start by noting that for all $t \in[\tau]$, since

$$
Z_{t}=\sum_{i=1}^{t} W_{i}=W_{t}+\sum_{i=1}^{t-1} W_{i}=W_{t}+Z_{t-1}
$$

we have

$$
\begin{aligned}
\mathbb{E}\left[Z_{t} \mid Z_{t-1}, \ldots, Z_{1}\right] & =\mathbb{E}\left[W_{t} \mid Z_{t-1}, \ldots, Z_{1}\right]+\mathbb{E}\left[Z_{t-1} \mid Z_{t-1}, \ldots, Z_{1}\right] \\
& =\mathbb{E}\left[W_{t} \mid Z_{t-1}, \ldots, Z_{1}\right]+Z_{t-1}
\end{aligned}
$$

Further, it is easy to see that $Z_{i}=z_{i} \forall i \in[t-1]$ if and only if $W_{i}=z_{i}-z_{i-1} \forall i \in[t-1]$, hence

$$
\mathbb{E}\left[W_{t} \mid Z_{t-1}=z_{t-1}, \ldots, Z_{1}=z_{1}\right]=\mathbb{E}\left[W_{t} \mid W_{i}=z_{i}-z_{i-1} \forall i \in[t-1]\right]=0
$$

Combining the last two equations implies that

$$
\mathbb{E}\left[Z_{t} \mid Z_{t-1}, \ldots, Z_{1}\right]=Z_{t-1}
$$

and the Z_{t} 's define a martingale. Since for all t,

$$
\left|Z_{t}-Z_{t-1}\right|=\left|W_{t}\right| \leq W_{\max }
$$

we can apply Azuma's inequality to show that with probability at least $1-\delta$,

$$
\left|Z_{\tau}-Z_{0}\right| \geq W_{\max } \sqrt{2 \tau \log (2 / \delta)}
$$

which immediately gives the result.

A.1.2 Sub-space decomposition and projection

We will also need to divide \mathbb{R}^{d} in several sub-spaces, and project our observations to said subspaces.
Sub-space decomposition We focus on the sub-space generated by the non-modified features x_{t} 's and the sub-space generated by the feature modifications Δ_{t} 's. We let r be the rank of Σ, and let $\lambda_{r} \geq \ldots \geq \lambda_{1}>0$ be the non-zero eigenvalues of Σ. Further, we let f_{1}, \ldots, f_{r} be the unit eigenvectors (i.e., such that $\left\|f_{1}\right\|_{1}=\ldots=$ $\left\|f_{r}\right\|_{1}=1$) corresponding to eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$ of Σ. As Σ is a symmetric matrix, f_{1}, \ldots, f_{r} are orthonormal. We abuse notations in the proof of Theorem 4.1 and denote $\Sigma=\operatorname{span}\left(f_{1}, \ldots, f_{r}\right)$ when clear from context.

For all k, let e_{k} be the unit vector such that $e_{k}(k)=1$ and $e_{k}(j)=0 \forall j \neq k$. At time τ, we denote $\mathcal{D}_{\tau}=$ $\operatorname{span}\left(e_{k}\right)_{k \in D_{\tau}}$ the sub-space of \mathbb{R}^{d} spanned by the features in D_{τ}.
Finally, we let

$$
\mathcal{V}_{\tau}=\Sigma+\mathcal{D}_{\tau}=\operatorname{span}\left(f_{1}, \ldots, f_{r}\right)+\operatorname{span}\left(e_{k}\right)_{k \in D_{\tau}}
$$

be the Minkowski sum of sub-spaces Σ and \mathcal{D}_{τ}.

Projection onto sub-spaces For any vector z, sub-space \mathcal{H} of \mathbb{R}^{d}, we write $z=z(\mathcal{H})+z\left(\mathcal{H}^{\perp}\right)$ where $z(\mathcal{H})$ is the projection of z onto sub-space \mathcal{H}, i.e. is uniquely defined as

$$
z(\mathcal{H})=\sum_{q \in B}\left(z^{\top} q\right) q
$$

for any orthonormal basis B of \mathcal{H}. We also let $z\left(\mathcal{H}^{\perp}\right)$ be the projection on the orthogonal complement \mathcal{H}^{\perp}. In particular, $z(\mathcal{H})$ is orthogonal to $z\left(\mathcal{H}^{\perp}\right)$. Further, we write $\bar{X}_{\tau}(\mathcal{H})$ the matrix whose rows are given by $\bar{x}_{t}(\mathcal{H})^{\top}$ for all $t \in[\tau]$.

A. 2 Main Proof

Characterization of the least-square estimate via first-order conditions First, for any least square solution $\hat{\beta}_{E}$ at time $\tau(E)$, we write the first order conditions solved by $\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right)$, the projection of $\hat{\beta}_{E}$ on sub-space $\mathcal{V}_{\tau(E)}$. We abuse notations to let $\varepsilon_{\tau(E)} \triangleq\left(\varepsilon_{t}\right)_{t \in[\tau(E)]}$ the vector of all ε_{t} 's up until time $\tau(E)$, and state the result as follows:
Lemma A. 2 (First-order conditions projected onto $\left.\mathcal{V}_{\tau(E)}\right)$. Suppose $\hat{\beta}_{E} \in L S E(\tau(E))$. Then,

$$
\left(\bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right)^{\top} \bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right)\right)\left(\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right)-\beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right)=\bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right)^{\top} \varepsilon_{\tau(E)}
$$

Proof. For simplicity of notations, we drop all $\tau(E)$ indices and subscripts in this proof. Remember that

$$
L S E=\underset{\beta}{\operatorname{argmin}}(\bar{X} \beta-\bar{Y})^{\top}(\bar{X} \beta-\bar{Y}) .
$$

Since $\hat{\beta}_{E} \in L S E$, it must satisfy the first order conditions given by

$$
2 \bar{X}^{\top}\left(\bar{X} \hat{\beta}_{E}-\bar{Y}\right)=0
$$

which can be rewritten as

$$
\bar{X}^{\top} \bar{X} \hat{\beta}_{E}=\bar{X}^{\top} \bar{Y}
$$

Second, we note that for all $t, x_{t} \in \operatorname{span}\left(f_{1}, \ldots, f_{r}\right)$ and $\Delta_{t} \in \operatorname{span}\left(\left(e_{k}\right)_{k \in D}\right)$ (by definition of D). This immediately implies, in particular, that $\bar{x}_{t}=x_{t}+\Delta_{t} \in \mathcal{V}$. In turn, $\bar{x}_{t}(\mathcal{V})=\bar{x}_{t}$ for all t, and

$$
\bar{X}=\bar{X}(\mathcal{V})
$$

As such, the first order condition can be written

$$
\bar{X}(\mathcal{V})^{\top} \bar{X}(\mathcal{V}) \hat{\beta}_{E}=\bar{X}(\mathcal{V})^{\top} \bar{Y}
$$

Now, we remark that

$$
\begin{aligned}
\bar{X}(\mathcal{V})^{\top} \bar{X}(\mathcal{V}) \hat{\beta}_{E} & =\sum_{t \in S} \bar{x}_{t}(\mathcal{V}) \bar{x}_{t}(\mathcal{V})^{\top} \hat{\beta}_{E} \\
& =\sum_{t \in S} \bar{x}_{t}(\mathcal{V}) \bar{x}_{t}(\mathcal{V})^{\top} \hat{\beta}_{E}(\mathcal{V})+\sum_{t \in S} \bar{x}_{t}(\mathcal{V}) \bar{x}_{t}(\mathcal{V})^{\top} \hat{\beta}_{E}\left(\mathcal{V}^{\perp}\right) \\
& =\sum_{t \in S} \bar{x}_{t}(\mathcal{V}) \bar{x}_{t}(\mathcal{V})^{\top} \hat{\beta}_{E}(\mathcal{V}) \\
& =\bar{X}(\mathcal{V})^{\top} \bar{X}(\mathcal{V}) \hat{\beta}_{E}(\mathcal{V})
\end{aligned}
$$

where the second-to-last equality follows from the fact that \mathcal{V} and \mathcal{V}^{\perp} are orthogonal, which immediately implies $\bar{x}_{t}(\mathcal{V})^{\top} \hat{\beta}_{E}\left(\mathcal{V}^{\perp}\right)=0$ for all t. To conclude the proof, we note that $\bar{Y}=\bar{X}^{\top} \beta^{*}+\varepsilon=\bar{X}(\mathcal{V})^{\top} \beta^{*}(\mathcal{V})+\varepsilon$. Plugging this in the above equation, we obtain that

$$
\bar{X}(\mathcal{V})^{\top} \bar{X}(\mathcal{V}) \hat{\beta}_{E}(\mathcal{V})=\bar{X}(\mathcal{V})^{\top} \bar{X}(\mathcal{V})^{\top} \beta^{*}(\mathcal{V})+\bar{X}(\mathcal{V})^{\top} \varepsilon
$$

This can be rewritten

$$
\left(\bar{X}(\mathcal{V})^{\top} \bar{X}(\mathcal{V})\right)\left(\hat{\beta}_{E}(\mathcal{V})-\beta^{*}(\mathcal{V})\right)=\bar{X}(\mathcal{V})^{\top} \varepsilon
$$

which completes the proof.

Upper-bounding the right-hand side of the first order conditions We now use concentration to give an upper bound on a function of the right-hand side of the first order conditions,

$$
\left(\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right)-\beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right)^{\top} \bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right)^{\top} \varepsilon_{\tau(E)}
$$

Lemma A.3. With probability at least $1-\delta$,

$$
\begin{aligned}
& \left(\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right)-\beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right)^{\top} \bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right)^{\top} \varepsilon \\
& \leq\left\|\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right)-\beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right\|_{2} \cdot K^{\prime} \sqrt{d \tau(E) \log (2 d / \delta)}
\end{aligned}
$$

where K^{\prime} is a constant that only depends on the distribution of costs and the bound σ on the noise.

Proof. Pick any $k \in[d]$, and define $W_{t}=\bar{x}_{t}(k) \varepsilon_{t}$. First, we remark that

$$
\left|\bar{x}_{t}(k)\right| \leq\left|x_{t}(k)\right|+\left|\Delta_{t}(k)\right| \leq 1+\max _{k \in[d], i \in[l]} \frac{B^{i}}{c^{i}(k)}
$$

In turn, $\left|W_{t}\right| \leq K^{\prime}$ where

$$
K^{\prime} \triangleq\left(1+\max _{k \in[d], i \in[l]} \frac{B^{i}}{c^{i}(k)}\right) \sigma
$$

Further, note that both $x_{t}(k)$ and ε_{t} are independent of the history of play up through time $t-1$, hence of W_{1}, \ldots, W_{t-1}, and that ε_{t} is further independent of Δ_{t} (the distribution of Δ_{t} is a function of the currently posted $\hat{\beta}_{E-1}$ only, which only depends on the previous time steps). Noting that if A, B, C are random variables, we have

$$
\begin{aligned}
\underset{A, B}{\mathbb{E}}[A B \mid C=c] & =\sum_{a} \sum_{b} a b \operatorname{Pr}[A=a, B=b \mid C=c] \\
& =\sum_{a} \sum_{b} a b \operatorname{Pr}[A=a \mid B=b, C=c] \operatorname{Pr}[B=b \mid C=c] \\
& =\sum_{b} b\left(\sum_{a} a \operatorname{Pr}[A=a \mid B=b, C=c]\right) \operatorname{Pr}[B=b \mid C=c] \\
& =\sum_{b} b \underset{A}{\mathbb{E}}[A \mid B=b, C=c] \operatorname{Pr}[B=b \mid C=c] \\
& =\underset{B}{\mathbb{E}}[\underset{A}{\mathbb{E}}[A \mid B, C=c] B \mid C=c]
\end{aligned}
$$

and applying this with $A=\varepsilon_{t}, B=\Delta_{t}(k), C=W_{1} \cap \ldots \cap W_{t-1}$, we obtain

$$
\begin{aligned}
\mathbb{E}\left[W_{t} \mid W_{t-1}, \ldots, W_{1}\right] & =\mathbb{E}\left[\bar{x}_{t}(k) \varepsilon_{t} \mid W_{t-1}, \ldots, W_{1}\right] \\
& =\mathbb{E}\left[x_{t}(k) \varepsilon_{t} \mid W_{t-1}, \ldots, W_{1}\right]+\mathbb{E}\left[\Delta_{t}(k) \varepsilon_{t} \mid W_{t-1}, \ldots, W_{1}\right] \\
& =\mathbb{E}\left[x_{t}(k) \varepsilon_{t}\right]+\underset{\Delta_{t}}{\mathbb{E}}\left[\underset{\varepsilon_{t}}{\mathbb{E}}\left[\varepsilon_{t} \mid \Delta_{t}(k), W_{t-1}, \ldots, W_{1}\right] \cdot \Delta_{t}(k) \mid W_{t-1}, \ldots, W_{1}\right] \\
& =\underset{x_{t}}{\mathbb{E}}\left[x_{t}(k) \cdot \underset{\varepsilon}{\mathbb{E}}\left[\varepsilon_{t} \mid x_{t}(k)\right]\right]+\underset{\Delta_{t}}{\mathbb{E}}\left[\Delta_{t}(k) \cdot \underset{\varepsilon_{t}}{\mathbb{E}}\left[\varepsilon_{t}\right] \mid W_{t-1}, \ldots, W_{1}\right] \\
& =0
\end{aligned}
$$

since $\mathbb{E}_{\varepsilon_{t}}\left[\varepsilon_{t}\right]=0$ and $\mathbb{E}_{\varepsilon}\left[\varepsilon_{t} \mid x_{t}(k)\right]=0$. Hence, we can apply Lemma A. 1 and a union bound over all d features to show that with probability at least $1-\delta$,

$$
\sum_{t=1}^{\tau(E)} \bar{x}_{t}(k) \varepsilon_{t} \geq-K^{\prime} \sqrt{2 \tau(E) \log (2 d / \delta)} \quad \forall k \in[d]
$$

By Cauchy-Schwarz, we have

$$
\begin{aligned}
\left(\hat{\beta}_{E}(\mathcal{V})-\beta^{*}(\mathcal{V})\right)^{\top} \sum_{t=1}^{\tau(E)} \bar{x}_{t} \varepsilon_{t} & \leq\left\|\hat{\beta}_{E}(\mathcal{V})-\beta^{*}(\mathcal{V})\right\|_{2} \cdot\left\|\sum_{t=1}^{\tau(E)} \bar{x}_{t} \varepsilon_{t}\right\|_{2} \\
& \leq\left\|\hat{\beta}_{E}(\mathcal{V})-\beta^{*}(\mathcal{V})\right\|_{2} \sqrt{\sum_{k=1}^{d}\left(\sum_{t} \bar{x}_{t}(k) \varepsilon_{t}\right)^{2}} \\
& \leq\left\|\hat{\beta}_{E}(\mathcal{V})-\beta^{*}(\mathcal{V})\right\|_{2} \cdot K^{\prime} \sqrt{2 d \tau(E) \log (2 d / \delta)}
\end{aligned}
$$

Strong convexity of the mean-squared error in sub-space $\mathcal{V}(\tau(E))$ We give a lower bound on the eigenvalues of $\bar{X}^{\top} \bar{X}$ on sub-space $\mathcal{V}(\tau(E))$, so as to show that at time $\tau(E)$, any least square solution $\hat{\beta}_{E}$ satisfies

$$
\begin{array}{r}
\left(\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right)-\beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right)^{\top} \bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right)^{\top} \bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right)\left(\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right)-\beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right) \\
\geq \Omega(n)\left\|\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right)-\beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right\|_{2}^{2}
\end{array}
$$

To do so, we will need the following concentration inequalities:
Lemma A.4. Suppose $\mathbb{E}\left[x_{t}\right]=0$. Fix $\tau(E)=$ En for some $E \in \mathbb{N}$. With probability at least $1-\delta$, we have that

$$
\sum_{t=1}^{\tau(E)} z^{\top} x_{t} x_{t}^{\top} z \geq\left(\lambda_{r} \tau(E)-2 r d \sqrt{\tau(E) \log (6 r / \delta)}\right)\|z\|_{2}^{2} \quad \forall z \in \Sigma
$$

and

$$
\sum_{t=1}^{\tau(E)} z^{\top} \Delta_{t} \Delta_{t}^{\top} z \geq\left(\min _{i, k}\left\{\pi^{i}\left(\frac{B^{i}}{c^{i}(k)}\right)^{2}\right\} n-\left(\max _{i, k}\left\{\frac{B^{i}}{c^{i}(k)}\right\}\right)^{2} \sqrt{2 n \log (6 d / \delta)}\right)\|z\|_{2}^{2} \quad \forall z \in \mathcal{D}_{\tau(E)}
$$

and

$$
\sum_{t=1}^{\tau(E)} z^{\top} x_{t} \Delta_{t}^{\top} z \geq-2 \max _{i, k}\left\{\frac{B^{i}}{c^{i}(k)}\right\} d \sqrt{\tau(E) \log (6 d / \delta)}\|z\|_{2}^{2} \quad \forall z \in \mathbb{R}^{d}
$$

Proof. Deferred to Appendix A.2.1.
We will also need the following statement on the norm of the projections of any $z \in \mathcal{V}$ to \mathcal{D} and Σ :
Lemma A.5. Let

$$
\begin{gathered}
\lambda(\mathcal{D}, \Sigma)=\inf _{z \in \mathcal{D}+\Sigma}\|z(\mathcal{D})\|_{2}+\|z(\Sigma)\|_{2} \\
\text { s.t. }\|z\|_{2}=1
\end{gathered}
$$

Then, $\lambda(\mathcal{D}, \Sigma)>0$.
Proof. With respect to the Euclidean metric, the objective function is continuous in z (the orthogonal projection operators are linear hence continuous functions of z and $z \rightarrow\|z\|_{2}$ also is a continuous function), and its feasible set is compact (as it is a sphere in a bounded-dimensional space over real values). By the extreme value theorem, the optimization problem admits an optimal solution, i.e., there exists z^{*} with $\left\|z^{*}\right\|_{2}=1$ such that $\lambda(\mathcal{D}, \Sigma)=\left\|z^{*}(\mathcal{D})\right\|_{2}+\left\|z^{*}(\Sigma)\right\|_{2}$. Now, supposing $\lambda(\mathcal{D}, \Sigma) \leq 0$, it must necessarily be the case that $z(\mathcal{D})=0$, $z(\Sigma)=0$. In particular, this means z is orthogonal to both \mathcal{D} and Σ. In turn, z must be orthogonal to every vector in $\mathcal{D}+\Sigma$; since $z \in \mathcal{D}+\Sigma$, this is only possible when $z=0$, contradicting $\|z\|_{2}=1$.

We can now move onto the proof of our lower bound for

$$
\left(\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right)-\beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right)^{\top} \bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right)^{\top} \bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right)\left(\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right)-\beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right)
$$

Corollary A.6. Fix $\tau(E)=$ En for some $E \in \mathbb{N}$. With probability at least $1-\delta$,

$$
\begin{aligned}
& \left(\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right)-\beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right)^{\top} \bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right)^{\top} \bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right)\left(\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right)-\beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right) \\
& \geq\left(\frac{\lambda n}{2}-\kappa^{\prime} d^{2} \sqrt{\tau(E) \log (6 d / \delta)}\right)\left\|\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right)-\beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right\|_{2}^{2}
\end{aligned}
$$

for some constants κ^{\prime}, λ that only depend on σ, \mathcal{C}, and Σ, with $\lambda>0$.

Proof. Since it is clear from context, we drop all $\tau(E)$ subscripts in the notation of this proof. First, we remark that

$$
\begin{aligned}
z^{\top} \bar{X}^{\top} \bar{X} z & =\sum_{t} z^{\top} \bar{x}_{t} \bar{x}_{t}^{\top} z \\
& =\sum_{t} z^{\top} x_{t} x_{t}^{\top} z+\sum_{t} z^{\top} \Delta_{t} \Delta_{t}^{\top} z+2 \sum_{t} z^{\top} \Delta_{t} z^{\top} x_{t} .
\end{aligned}
$$

We have by Lemma A. 5 that for all $z \in \mathcal{V}=\mathcal{D}+\Sigma$,

$$
\|z(\mathcal{D})\|_{2}+\|z(\Sigma)\|_{2} \geq \lambda(\mathcal{D}, \Sigma)\|z\|_{2}
$$

Let $\lambda(\Sigma) \triangleq \min _{D \subset[d]} \lambda(\mathcal{D}, \Sigma)$. Since there are finitely many subsets D of $[d]$ (and corresponding sub-spaces \mathcal{D}) and since for all such subsets, $\lambda(\mathcal{D}, \Sigma)>0$, we have that $\lambda(\Sigma)>0$. Further,

$$
\|z(\mathcal{D})\|_{2}+\|z(\Sigma)\|_{2} \geq \lambda(\Sigma)\|z\|_{2}
$$

Therefore, it must be the case that either $\|z(\mathcal{D})\|_{2} \geq \frac{\lambda(\Sigma)}{2}\|z\|_{2}$ or $\|z(\Sigma)\|_{2} \geq \frac{\lambda(\Sigma)}{2}\|z\|_{2}$. We divide our proof into the corresponding two cases:

1. The first case is when $\|z(\Sigma)\|_{2} \geq \frac{\lambda(\Sigma)}{2}\|z\|_{2}$. Then, note that since $z^{\top} \Delta_{t} \Delta_{t}^{\top} z \geq 0$ always, we have

$$
\begin{aligned}
\sum_{t} z^{\top} \bar{x}_{t} \bar{x}_{t}^{\top} z & \geq \sum_{t} z^{\top} x_{t} x_{t}^{\top} z+2 \sum_{t} z^{\top} \Delta_{t} z^{\top} x_{t} \\
& =\sum_{t} z(\Sigma)^{\top} x_{t} x_{t}^{\top} z(\Sigma)+2 \sum_{t} z^{\top} \Delta_{t} z^{\top} x_{t}
\end{aligned}
$$

where the last equality follows from the fact that $x_{t} \in \Sigma$ and $z=z(\Sigma)+z\left(\Sigma^{\perp}\right)$. By Lemma A.4, we get that for some constant C_{1} that depends only on \mathcal{C},

$$
\begin{aligned}
& \sum_{t} z^{\top} \bar{x}_{t} \bar{x}_{t}^{\top} z \\
& \geq\left(\lambda_{r} \tau(E)-2 r d \sqrt{\tau(E) \log (6 r / \delta)}\right)\|z(\Sigma)\|_{2}^{2}-C_{1} d \sqrt{\tau(E) \log (6 d / \delta)}\|z\|_{2}^{2} \\
& \geq\left(\frac{\lambda(\Sigma) \lambda_{r}}{2} \tau(E)-\lambda(\Sigma) r d \sqrt{\tau(E) \log (6 r / \delta)}-C_{1} d \sqrt{\tau(E) \log (6 d / \delta)}\right)\|z\|_{2}^{2} \\
& \geq\left(\frac{\lambda(\Sigma) \lambda_{r}}{2} \tau(E)-\lambda(\Sigma) d^{2} \sqrt{\tau(E) \log (6 d / \delta)}-C_{1} d \sqrt{\tau(E) \log (6 d / \delta)}\right)\|z\|_{2}^{2}
\end{aligned}
$$

(The second step assumes $\lambda_{r} \tau(E)-2 r d \sqrt{\tau(E) \log (6 r / \delta)} \geq 0$. When this is negative, the bound trivially holds as $\sum_{t} z^{\top} \bar{x}_{t} \bar{x}_{t}^{\top} z \geq 0$.)
2. The second case arises when $\|z(\mathcal{D})\|_{2} \geq \frac{\lambda(\Sigma)}{2}\|z\|_{2}$. Note that

$$
\begin{aligned}
\sum_{t} z^{\top} \bar{x}_{t} \bar{x}_{t}^{\top} z & \geq \sum_{t} z^{\top} \Delta_{t} \Delta_{t}^{\top} z+2 \sum_{t} z^{\top} \Delta_{t} z^{\top} x_{t} \\
& =\sum_{t} z(\mathcal{D})^{\top} \Delta_{t} \Delta_{t}^{\top} z(\mathcal{D})+2 \sum_{t} z^{\top} \Delta_{t} z^{\top} x_{t}
\end{aligned}
$$

as $\Delta_{t} \in \mathcal{D}$ and $z=z(\mathcal{D})+z\left(\mathcal{D}^{\perp}\right)$. By Lemma A.4, it follows that for some constants C_{2}, C_{3} that only depend on \mathcal{C},

$$
\begin{aligned}
& \sum_{t} z^{\top} \bar{x}_{t} \bar{x}_{t}^{\top} z \\
& \geq\left(n \min _{i, k}\left\{\pi^{i}\left(\frac{B^{i}}{c^{i}(k)}\right)^{2}\right\}-C_{2} \sqrt{n \log (6 d / \delta)}\right)\|z(\mathcal{D})\|_{2}^{2}-C_{3} d \sqrt{\tau(E) \log (6 d / \delta)}\|z\|_{2}^{2} \\
& \geq\left(\frac{\lambda(\Sigma) n}{2} \min _{i, k}\left\{\pi^{i}\left(\frac{B^{i}}{c^{i}(k)}\right)^{2}\right\}-\frac{\lambda(\Sigma) C_{2}}{2} \sqrt{n \log (6 d / \delta)}-C_{3} d \sqrt{\tau(E) \log (6 d / \delta)}\right)\|z\|_{2}^{2} \\
& \geq\left(\frac{\lambda(\Sigma) n}{2} \min _{i, k}\left\{\pi^{i}\left(\frac{B^{i}}{c^{i}(k)}\right)^{2}\right\}-\frac{\lambda(\Sigma) C_{2}}{2} \sqrt{\tau(E) \log (6 d / \delta)}-C_{3} d \sqrt{\tau(E) \log (6 d / \delta)}\right)\|z\|_{2}^{2}
\end{aligned}
$$

Noting that by definition $\lambda_{r}>0$ and $\min _{i, k}\left\{\pi^{i}\left(\frac{B^{i}}{c^{i}(k)}\right)^{2}\right\}>0$, and picking the worse of the two above bounds on $\sum_{t} z^{\top} \bar{x}_{t} \bar{x}_{t}^{\top} z$ concludes the proof with

$$
\lambda=\frac{\lambda(\Sigma)}{2} \min \left(\lambda_{r}, \min _{i, k}\left\{\pi^{i}\left(\frac{B^{i}}{c^{i}(k)}\right)^{2}\right\}\right)>0
$$

We can now prove Theorem 4.1. By Lemma A.2, we have that

$$
\left(\bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right)^{\top} \bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right)\right)\left(\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right)-\beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right)=\bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right)^{\top} \varepsilon_{\tau(E)}
$$

which immediately yields

$$
\begin{aligned}
& \left(\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right)-\beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right)^{\top}\left(\bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right)^{\top} \bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right)\right)\left(\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right)-\beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right) \\
& =\left(\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right)-\beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right)^{\top} \bar{X}\left(\mathcal{V}_{\tau(E)}\right)^{\top} \varepsilon_{\tau(E)}
\end{aligned}
$$

by performing matrix multiplication with $\left(\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right)-\beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right)^{\top}$ on both sides on the first-order conditions. Further, by Lemma A.3, Corollary A.6, and a union bound, we get that with probability at least $1-\delta$,

$$
\begin{aligned}
& \left(\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right)-\beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right)^{\top} \bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right)^{\top} \bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right)\left(\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right)-\beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right) \\
& \geq\left(\frac{\lambda n}{2}-\kappa^{\prime} d^{2} \sqrt{\tau(E) \log (12 d / \delta)}\right)\left\|\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right)-\beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right\|_{2}^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right)-\beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right)^{\top} \bar{X}_{\tau(E)}\left(\mathcal{V}_{\tau(E)}\right)^{\top} \varepsilon \\
& \leq\left\|\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right)-\beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right\|_{2} \cdot K^{\prime} \sqrt{d \tau(E) \log (4 d / \delta)}
\end{aligned}
$$

Combining the two above inequalities with the first-order conditions yields

$$
\left\|\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right)-\beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right\|_{2} \leq \frac{K^{\prime} \sqrt{d \tau(E) \log (4 d / \delta)}}{\frac{\lambda n}{2}-\kappa^{\prime} d^{2} \sqrt{\tau(E) \log (12 d / \delta)}}
$$

For

$$
n \geq \frac{4 \kappa^{\prime} d^{2}}{\lambda} \sqrt{\tau(E) \log (12 d / \delta)}
$$

the bound becomes

$$
\left\|\hat{\beta}_{E}\left(\mathcal{V}_{\tau(E)}\right)-\beta^{*}\left(\mathcal{V}_{\tau(E)}\right)\right\|_{2} \leq \frac{4 K^{\prime} \sqrt{d \tau(E) \log (4 d / \delta)}}{\lambda n}
$$

The proof concludes by letting $K \triangleq 4 K^{\prime}, \kappa \triangleq 4 \kappa^{\prime}$ and noting that since $\mathcal{D}_{\tau(E)} \subset \mathcal{V}_{\tau(E)}$ by construction, the statement holds true over $\mathcal{D}_{\tau(E)}$ (projecting onto a subspace cannot increase the $\ell 2$-norm).

A.2.1 Proof of Lemma A. 4

For the first statement, note that for all $k \neq j \leq r$,

$$
\mathbb{E}\left[f_{k}^{\top} x_{t} x_{t}^{\top} f_{j}\right]=f_{k}^{\top} \mathbb{E}\left[x_{t} x_{t}^{\top}\right] f_{j}=\lambda_{j} f_{k}^{\top} f_{j}
$$

as f_{j} is (by definition) an eigenvector of $\Sigma=\mathbb{E}\left[x_{t} x_{t}^{\top}\right]$ for eigenvalue λ_{j}. Note that the $f_{j}^{\top} x_{t} x_{t}^{\top} f_{k}=\left(f_{j}^{\top} x_{t}\right)\left(f_{k}^{\top} x_{t}\right)$ are random variables that are independent across t. Further, by Cauchy-Schwarz,

$$
\left|\left(f_{k}^{\top} x_{t}\right)\left(f_{j}^{\top} x_{t}\right)\right| \leq\left\|f_{k}\right\|_{2}\left\|f_{j}\right\|_{2}\left\|x_{t}\right\|_{2}^{2}=\left\|x_{t}\right\|_{2}^{2} \leq d
$$

Therefore, we can apply Hoeffding with a union bound over the r^{2} choices of $\left(f_{k}, f_{j}\right)$ to show that with probability at least $1-\delta^{\prime}$,

$$
\left|\sum_{t=1}^{\tau(E)} f_{k}^{\top} x_{t} x_{t}^{\top} f_{j}-\lambda_{j} \tau(E) f_{k}^{\top} f_{j}\right| \leq d \sqrt{2 \tau(E) \log \left(2 r^{2} / \delta^{\prime}\right)}
$$

Note now that for all $z \in \Sigma$, we can write $z=\sum_{k=1}^{r}\left(z^{\top} f_{k}\right) f_{k}$, and as such

$$
\begin{aligned}
& \left|\sum_{t=1}^{\tau(E)} z^{\top} x_{t} x_{t}^{\top} z-\sum_{k, j=1}^{r}\left(z^{\top} f_{k}\right)\left(z^{\top} f_{j}\right) \lambda_{j} \tau(E) f_{k}^{\top} f_{j}\right| \\
& =\left|\sum_{t=1}^{\tau(E)} \sum_{k, j=1}^{r}\left(z^{\top} f_{k}\right)\left(z^{\top} f_{j}\right) f_{k}^{\top} x_{t} x_{t}^{\top} f_{j}-\sum_{k, j=1}^{r}\left(z^{\top} f_{k}\right)\left(z^{\top} f_{j}\right) \lambda_{j} \tau(E) f_{k}^{\top} f_{j}\right| \\
& =\left|\sum_{k, j=1}^{r}\left(z^{\top} f_{k}\right)\left(z^{\top} f_{j}\right)\left(\sum_{t} f_{k}^{\top} x_{t} x_{t}^{\top} f_{j}-\lambda_{j} \tau(E) f_{k}^{\top} f_{j}\right)\right| \\
& \leq d \sqrt{2 \tau(E) \log \left(2 r^{2} / \delta^{\prime}\right)} \sum_{k, j=1}^{r}\left|z^{\top} f_{k} \| z^{\top} f_{j}\right| \\
& \leq r d \sqrt{2 \tau(E) \log \left(2 r^{2} / \delta^{\prime}\right)}\|z\|_{2}^{2}
\end{aligned}
$$

where the last step follows from the fact that by Cauchy-Schwarz,

$$
\sum_{k=1}^{r}\left|z^{\top} f_{k}\right| \leq \sqrt{\sum_{k=1}^{r} 1^{2}} \sqrt{\sum_{k=1}^{r}\left(z^{\top} f_{k}\right)^{2}}=\sqrt{r}\|z\|_{2}
$$

Hence, for $z \in \Sigma$, remembering $f_{k}^{\top} f_{j}=0$ when $k \neq j$ and $f_{k}^{\top} f_{k}=1$, and noting $\|z\|_{2}^{2}=\sum_{k=1}^{r}\left(z^{\top} f_{k}\right)^{2}$, we get that

$$
\begin{aligned}
\sum_{t=1}^{\tau(E)} z^{\top} x_{t} x_{t}^{\top} z & \geq \sum_{k, j=1}^{r}\left(z^{\top} f_{k}\right)\left(z^{\top} f_{j}\right) \lambda_{j} \tau(E) f_{k}^{\top} f_{j}-r d \sqrt{2 \tau(E) \log \left(2 r^{2} / \delta^{\prime}\right)}\|z\|_{2}^{2} \\
& =\sum_{k=1}^{r} \lambda_{k} \tau(E)\left(z^{\top} f_{k}\right)^{2}-r d \sqrt{2 \tau(E) \log \left(2 r^{2} / \delta^{\prime}\right)}\|z\|_{2}^{2} \\
& \geq \lambda_{r} \tau(E) \sum_{k=1}^{r}\left(z^{\top} f_{k}\right)^{2}-r d \sqrt{2 \tau(E) \log \left(2 r^{2} / \delta^{\prime}\right)}\|z\|_{2}^{2} \\
& =\left(\lambda_{r} \tau(E)-2 r d \sqrt{\tau(E) \log \left(2 r / \delta^{\prime}\right)}\right)\|z\|_{2}^{2}
\end{aligned}
$$

For the second statement, we remind the reader that the costs of modification are such that $\left|\Delta_{t}(k)^{2}\right| \leq$ $\left(\max _{i, j}\left\{\frac{B^{i}}{c^{i}(j)}\right\}\right)^{2}$, and that within any epoch ϕ, the Δ_{t} 's are independent of each other. We can therefore apply Hoeffding's inequality and a union bound (over $k \in D_{\tau(E)} \subset[d]$) to show that with probability at least $1-\delta^{\prime}$, for any $k \in D_{\tau(E)}$, there exists an epoch $\phi(k) \leq E$ (pick any ϕ in which k is modified) such that

$$
\begin{aligned}
\sum_{t \in \phi(k)} e_{k}^{\top} \Delta_{t} \Delta_{t}^{\top} e_{k} & \geq n \mathbb{E}\left[\Delta_{t}(k)^{2}\right]-\left(\max _{i, j}\left\{\frac{B^{i}}{c^{i}(j)}\right\}\right)^{2} \sqrt{2 n \log \left(d / \delta^{\prime}\right)} \\
& \geq n \min _{i \in[l], j \in[d]}\left\{\pi^{i}\left(\frac{B^{i}}{c^{i}(j)}\right)^{2}\right\}-\left(\max _{i, j}\left\{\frac{B^{i}}{c^{i}(j)}\right\}\right)^{2} \sqrt{2 n \log \left(d / \delta^{\prime}\right)}
\end{aligned}
$$

The last inequality holds noting that k can be modified in period $\phi(k)$ only if there exists a cost type i on the support of \mathcal{C} such that k is a best response to $\hat{\beta}_{\phi(k)-1}$; in turn, k is modified with probability π^{i} by amount $\Delta(k)=B^{i} / c^{i}(k)$, leading to

$$
\mathbb{E}\left[\Delta_{t}(k)^{2}\right] \geq \pi^{i}\left(\frac{B^{i}}{c^{i}(k)}\right)^{2}
$$

Since $\Delta_{t}(k) \Delta_{t}(j)=0$ when $k \neq j$ as a single direction is modified at a time, note that for all $z \in \mathcal{D}_{\tau(E)}$, we have

$$
\begin{aligned}
& \sum_{t \leq \tau(E)} z^{\top} \Delta_{t} \Delta_{t}^{\top} z \\
& =\sum_{t \leq \tau(E)} \sum_{k=1}^{d} \Delta_{t}(k)^{2} z^{\top} e_{k} e_{k}^{\top} z \\
& =\sum_{k=1}^{d} \sum_{t \leq \tau(E)} \Delta_{t}(k)^{2}\left(z^{\top} e_{k}\right)^{2} \\
& \geq \sum_{k \in D_{\tau(E)}} \sum_{t \in \phi(k)} \Delta_{t}(k)^{2}\left(z^{\top} e_{k}\right)^{2} \\
& \geq \sum_{k \in D_{\tau(E)}}\left(n \min _{i \in[l], j \in[d]}\left\{\pi^{i}\left(\frac{B^{i}}{c^{i}(j)}\right)^{2}\right\}-\left(\max _{i, j}\left\{\frac{B^{i}}{c^{i}(j)}\right\}\right)^{2} \sqrt{2 n \log \left(d / \delta^{\prime}\right)}\right)\left(z^{\top} e_{k}\right)^{2} \\
& =\left(n \min _{i \in[l], j \in[d]}\left\{\pi^{i}\left(\frac{B^{i}}{c^{i}(j)}\right)^{2}\right\}-\left(\max _{i, j}\left\{\frac{B^{i}}{c^{i}(j)}\right\}\right)^{2} \sqrt{2 n \log \left(d / \delta^{\prime}\right)}\right) \sum_{k \in D_{\tau(E)}}\left(z^{\top} e_{k}\right)^{2} .
\end{aligned}
$$

For $z \in \mathcal{D}_{\tau(E)}, \sum_{k \in D_{\tau(E)}}\left(z^{\top} e_{k}\right)^{2}=\|z\|_{2}^{2}$, and the second inequality immediately holds.
Finally, let us prove the last inequality. Take $(k, j) \in[d]^{2}$, and let us write $W_{t}=e_{k}^{\top} x_{t} \Delta_{t}^{\top} e_{j}$. First, note that x_{t} and Δ_{t} are independent: in epoch ϕ, the distribution of Δ_{t} is a function of $\hat{\beta}_{\phi-1}$ (and \mathcal{C}) only, which only
depends on the realizations of x, ε, Δ in previous time steps. Further, x_{t} is independent of the history of features and modifications up until time $t-1$ included. Hence, it must be the case that

$$
\begin{aligned}
\mathbb{E}\left[W_{t} \mid W_{t-1}, \ldots, W_{1}\right] & =\mathbb{E}\left[\mathbb{E}\left[e_{k}^{\top} x_{t} \mid \Delta_{t}, W_{t-1}, \ldots, W_{1}\right] \Delta_{t}^{\top} e_{j} \mid W_{t-1}, \ldots, W_{1}\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[e_{k}^{\top} x_{t}\right] \Delta_{t}^{\top} e_{j} \mid W_{t-1}, \ldots, W_{1}\right] \\
& =\mathbb{E}\left[e_{k}^{\top} x_{t}\right] \cdot \mathbb{E}\left[\Delta_{t}^{\top} e_{j} \mid W_{t-1}, \ldots, W_{1}\right] \\
& =0
\end{aligned}
$$

where the last equality follows from the fact that $\mathbb{E}\left[x_{t}\right]=0$. Further,

$$
\left|e_{k}^{\top} x_{t} \Delta_{t}^{\top} e_{j}\right|=\left|x_{t}(k) \| \Delta_{t}(j)\right| \leq \max _{i, k}\left\{\frac{B^{i}}{c^{i}(k)}\right\}
$$

We can therefore apply Lemma A. 1 and a union bound over all $(k, j) \in[d]^{2}$ to show that with probability at least $1-\delta^{\prime}$,

$$
\left|\sum_{t=1}^{\tau(E)} e_{k}^{\top} x_{t} \Delta_{t}^{\top} e_{j}\right| \leq \max _{i, k}\left\{\frac{B^{i}}{c^{i}(k)}\right\} \sqrt{2 \tau(E) \log \left(2 d^{2} / \delta^{\prime}\right)}
$$

In particular, we get that for all $z \in \mathbb{R}^{d}$,

$$
\begin{aligned}
\left|\sum_{t \in E} z^{\top} x_{t} \Delta_{t}^{\top} z\right| & =\left|\sum_{k, j} \sum_{t \in E}\left(z^{\top} e_{k}\right)\left(z^{\top} e_{j}\right) e_{k}^{\top} x_{t} \Delta_{t}^{\top} e_{j}\right| \\
& \leq \sum_{k, j}\left|z^{\top} e_{k} \| z^{\top} e_{j}\right|\left|\sum_{t \in E} e_{k}^{\top} x_{t} \Delta_{t}^{\top} e_{j}\right| \\
& \leq \max _{i, k}\left\{\frac{B^{i}}{c^{i}(k)}\right\} \sqrt{2 \tau(E) \log \left(2 d^{2} / \delta^{\prime}\right)}\left(\sum_{k}\left|z^{\top} e_{k}\right|\right)^{2} \\
& \leq 2 d \max _{i, k}\left\{\frac{B^{i}}{c^{i}(k)}\right\} \sqrt{\tau(E) \log \left(2 d / \delta^{\prime}\right)}\|z\|_{2}^{2}
\end{aligned}
$$

where the last step follows from the fact that by Cauchy-Schwarz,

$$
\left(\sum_{k}\left|z^{\top} e_{k}\right|\right)^{2}=\left(\sum_{k}|z(k)|\right)^{2} \leq \sum_{k} 1^{2} \cdot \sum_{k} z(k)^{2}=d \cdot\|z\|_{2}^{2}
$$

We conclude the proof with a union bound over all three inequalities, taking $\delta^{\prime}=3 \delta$.

B Proof of Theorem 5.2

We drop the $\tau(E)$ subscripts when clear from context. We first note that $\hat{\beta}_{E}$ is a least-square solution.

Claim B.1.

$$
\hat{\beta}_{E} \in L S E(\tau(E))
$$

Proof. This follows immediately from noting that

$$
\left(\bar{X} \hat{\beta}_{E}-\bar{Y}\right)^{\top}\left(\bar{X} \hat{\beta}_{E}-\bar{Y}\right)=\left(\bar{X} \beta_{E}-\bar{Y}\right)^{\top}\left(\bar{X} \beta_{E}-\bar{Y}\right)
$$

as $\bar{X}^{\top} v=\bar{X}(\mathcal{U})^{\top} v=0$ by definition of \mathcal{U}, and since $v \in \mathcal{U}^{\perp}$.
Second, we show that $\hat{\beta}_{E}$ has large norm:

Claim B.2.

$$
\left\|\hat{\beta}_{E}\right\|_{2} \geq \alpha
$$

Proof. First, we note that necessarily, $\beta_{E} \in \mathcal{U}_{\tau(E)}$. Suppose not, then we can write

$$
\beta_{E}=\beta_{E}\left(\mathcal{U}_{\tau(E)}\right)+\beta_{E}\left(\mathcal{U}_{\tau(E)}^{\perp}\right),
$$

with $\beta_{E}\left(\mathcal{U}_{\tau(E)}^{\perp}\right) \neq 0$. By the same argument as in Claim B.1, $\beta_{E}\left(\mathcal{U}_{\tau(E)}\right)$ is a least-square solution. Using orthogonality of $\mathcal{U}_{\tau(E)}$ and $\mathcal{U}_{\tau(E)}^{\perp}$ and the fact that $\left\|\beta_{E}\left(\mathcal{U}_{\tau(E)}^{\perp}\right)\right\|_{2}>0$, we have

$$
\left\|\beta_{E}\right\|^{2}=\left\|\beta_{E}\left(\mathcal{U}_{\tau(E)}\right)\right\|_{2}^{2}+\left\|\beta_{E}\left(\mathcal{U}_{\tau(E)}^{\perp}\right)\right\|_{2}^{2}>\left\|\beta_{E}\left(\mathcal{U}_{\tau(E)}\right)\right\|_{2}^{2}
$$

This contradicts β_{E} being a minimum norm least-square solution. Hence, it must be the case that $\beta_{E} \in \mathcal{U}_{\tau(E)}$. Since $v \in \mathcal{U}_{\tau(E)}^{\perp}$, we have that β_{E} and v are orthogonal with $\|v\|_{2}=1$, implying

$$
\left\|\hat{\beta}_{E}\right\|_{2}^{2}=\left\|\beta_{E}\right\|_{2}^{2}+\alpha^{2}\|v\|_{2}^{2} \geq \alpha^{2} .
$$

This concludes the proof.
We argue that such a solution places a large amount of weight on currently unexplored features:
Lemma B.3. At time $\tau(E)$, suppose $\operatorname{rank}\left(\mathcal{U}_{\tau(E)}\right) \leq[d]$. Suppose $n \geq \frac{\kappa d^{2}}{\lambda} \sqrt{\tau(E) \log \left(12 d / \delta^{\prime}\right)}$. Take any α with

$$
\alpha \geq \gamma\left(\sqrt{d}+\frac{K d \sqrt{T \log \left(4 d / \delta^{\prime}\right)}}{\lambda n}\right)
$$

where γ is a constant that depends only on \mathcal{C}. With probability at least $1-\delta^{\prime}$, there exists $i \in[l]$ and a feature $k \notin D_{\tau(E)}$ with

$$
\frac{\left|\hat{\beta}_{E}(k)\right|}{c^{i}(k)}>\frac{\left|\hat{\beta}_{E}(j)\right|}{c^{i}(j)}, \forall j \in D_{\tau(E)} .
$$

Proof. Since $\hat{\beta}_{E} \in \operatorname{LSE}(\tau(E))$, it must be by Theorem 4.1 that with probability at least $1-\delta^{\prime}$,

$$
\begin{align*}
\sqrt{\sum_{k \in D}\left(\hat{\beta}_{E}(k)-\beta^{*}(k)\right)^{2}} & \leq \frac{K \sqrt{d \tau(E) \log \left(4 d / \delta^{\prime}\right)}}{\lambda n} \tag{4}\\
& \leq \frac{K \sqrt{d T \log \left(4 d / \delta^{\prime}\right)}}{\lambda n}
\end{align*}
$$

First, since $z \rightarrow \sqrt{\sum_{k \in D} z(k)^{2}}$ defines a norm (in fact, the $\ell 2$-norm in $\mathbb{R}^{|D|}$), it must be the case that

$$
\sqrt{\sum_{k \in D}\left(z(k)-z^{\prime}(k)\right)^{2}} \geq \sqrt{\sum_{k \in D} z(k)^{2}}-\sqrt{\sum_{k \in D} z^{\prime}(k)^{2}} .
$$

In turn, plugging this in Equation (4), we obtain

$$
\begin{aligned}
\sqrt{\sum_{k \in D} \hat{\beta}_{E}(k)^{2}} & \leq \sqrt{\sum_{k \in D} \beta^{*}(k)^{2}}+\frac{K \sqrt{d T \log \left(4 d / \delta^{\prime}\right)}}{\lambda n} \\
& \leq\left\|\beta^{*}\right\|_{2}+\frac{K \sqrt{d T \log \left(4 d / \delta^{\prime}\right)}}{\lambda n} \\
& \leq \sqrt{d}+\frac{K \sqrt{d T \log \left(4 d / \delta^{\prime}\right)}}{\lambda n}
\end{aligned}
$$

By the triangle inequality and the lemma's assumption, we also have that

$$
\sqrt{\sum_{k \in D} \hat{\beta}_{E}(k)^{2}}+\sqrt{\sum_{k \notin D} \hat{\beta}_{E}(k)^{2}} \geq\left\|\hat{\beta}_{E}\right\|_{2} \geq \alpha
$$

Combining the last two equations, we obtain

$$
\sqrt{d}+\frac{K \sqrt{d T \log \left(4 d / \delta^{\prime}\right)}}{\lambda n}+\sqrt{\sum_{k \notin D} \hat{\beta}_{E}(k)^{2}}, \geq \alpha
$$

which implies that for $\alpha \geq \gamma\left(\sqrt{d}+\frac{K d \sqrt{T \log \left(4 d / \delta^{\prime}\right)}}{\lambda n}\right)$, we have:

$$
\begin{aligned}
\sqrt{\sum_{k \notin D} \hat{\beta}_{E}(k)^{2}} & \geq \alpha-\sqrt{d}-\frac{K \sqrt{d T \log \left(4 d / \delta^{\prime}\right)}}{\lambda n} \\
& \geq \alpha-\sqrt{d}-\frac{K \sqrt{d T \log \left(4 d / \delta^{\prime}\right)}}{\lambda n} \\
& \geq \sqrt{d}(\gamma-1)\left(1+\frac{K \sqrt{d T \log \left(4 d / \delta^{\prime}\right)}}{\lambda n}\right)
\end{aligned}
$$

Second, note that Equation (4) implies immediately that for any $j \in D_{T}$,

$$
\left|\hat{\beta}_{E}(j)-\beta^{*}(j)\right| \leq \frac{K \sqrt{d T \log \left(4 d / \delta^{\prime}\right)}}{\lambda n}
$$

and in turn,

$$
\left|\hat{\beta}_{E}(j)\right| \leq\left|\beta^{*}(j)\right|+\frac{K \sqrt{d T \log \left(4 d / \delta^{\prime}\right)}}{\lambda n} \leq 1+\frac{K \sqrt{d T \log \left(4 d / \delta^{\prime}\right)}}{\lambda n}
$$

Therefore,

$$
\sqrt{\sum_{k \notin D} \hat{\beta}_{E}(k)^{2}} \geq \sqrt{d}(\gamma-1) \max _{j \in D} \hat{\beta}_{E}(j)
$$

Hence, there must exist feature $k \notin D$ with

$$
\left|\hat{\beta}_{E}(k)\right| \geq(\gamma-1) \max _{j \in D} \hat{\beta}_{E}(j)
$$

Picking γ such that for some $i \in[l]$,

$$
\gamma-1 \geq \max _{j \in D} \frac{c^{i}(k)}{c^{i}(j)}
$$

yields the result immediately.
The proof of Theorem 5.2 follows directly from Lemma B. 3 and a union bound over the first d epochs. With probability at least $1-d \delta^{\prime}$, for every epoch $E \in[d]$, there is a feature $k \notin D_{\tau(E)}$ such that for some $i \in[l]$,

$$
\frac{\left|\hat{\beta}_{E}(k)\right|}{c^{i}(k)}>\frac{\left|\hat{\beta}_{E}(j)\right|}{c^{i}(j)} \forall j \in D_{\tau(E)}
$$

This implies that there exists $k \in D_{\tau(E+1)}$ but $k \notin D_{\tau(E)}$. Applying this d times, we have that if $T \geq d n$, necessarily $D_{T}=[d]$. We can then apply Theorem 4.1 to then show that with probability at least $1-\delta^{\prime}$

$$
\left\|\hat{\beta}_{T / n}-\beta^{*}\right\|_{2} \leq \frac{K \sqrt{d T \log \left(4 d / \delta^{\prime}\right)}}{\lambda n}
$$

Taking a union bound over the two above events and $\delta=2 d \delta^{\prime}$, we get the theorem statement with probability at least $1-\delta^{\prime}(d+1) \geq 1-\delta$.

