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A Proof of Theorem 4.1

A.1 Preliminaries

A.1.1 Useful concentration

Our proof will require applying the following concentration inequality, derived from Azuma’s inequality:

Lemma A.1. Let W1, . . . ,Wτ be random variables in R such that |Wt| ≤Wmax. Suppose for all t ∈ [τ ], for all
w1, . . . , wt−1,

E [Wt|Wt−1 = wt−1, . . . ,W1 = w1] = 0.

Then, with at least 1− δ, ∣∣∣∣∣
τ∑
t=1

Wt

∣∣∣∣∣ ≤Wmax

√
2τ log(2/δ).

Proof. This is a reformulated version of Azuma’s inequality. To see this, define

Zt =

t∑
i=1

Wi ∀t,

and initialize Z0 = 0. We start by noting that for all t ∈ [τ ], since

Zt =

t∑
i=1

Wi = Wt +

t−1∑
i=1

Wi = Wt + Zt−1,

we have

E [Zt|Zt−1, . . . , Z1] = E [Wt|Zt−1, . . . , Z1] + E [Zt−1|Zt−1, . . . , Z1]

= E [Wt|Zt−1, . . . , Z1] + Zt−1.

Further, it is easy to see that Zi = zi ∀i ∈ [t− 1] if and only if Wi = zi − zi−1 ∀i ∈ [t− 1], hence

E [Wt|Zt−1 = zt−1, . . . , Z1 = z1] = E [Wt|Wi = zi − zi−1 ∀i ∈ [t− 1]] = 0.

Combining the last two equations implies that

E [Zt|Zt−1, . . . , Z1] = Zt−1,

and the Zt’s define a martingale. Since for all t,

|Zt − Zt−1| = |Wt| ≤Wmax,

we can apply Azuma’s inequality to show that with probability at least 1− δ,

|Zτ − Z0| ≥Wmax

√
2τ log(2/δ),

which immediately gives the result.

A.1.2 Sub-space decomposition and projection

We will also need to divide Rd in several sub-spaces, and project our observations to said subspaces.

Sub-space decomposition We focus on the sub-space generated by the non-modified features xt’s and the
sub-space generated by the feature modifications ∆t’s. We let r be the rank of Σ, and let λr ≥ . . . ≥ λ1 > 0 be
the non-zero eigenvalues of Σ. Further, we let f1, . . . , fr be the unit eigenvectors (i.e., such that ‖f1‖1 = . . . =
‖fr‖1 = 1) corresponding to eigenvalues λ1, . . . , λr of Σ. As Σ is a symmetric matrix, f1, . . . , fr are orthonormal.
We abuse notations in the proof of Theorem 4.1 and denote Σ = span(f1, . . . , fr) when clear from context.

For all k, let ek be the unit vector such that ek(k) = 1 and ek(j) = 0 ∀j 6= k. At time τ , we denote Dτ =
span (ek)k∈Dτ the sub-space of Rd spanned by the features in Dτ .

Finally, we let
Vτ = Σ +Dτ = span (f1, . . . , fr) + span (ek)k∈Dτ

be the Minkowski sum of sub-spaces Σ and Dτ .
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Projection onto sub-spaces For any vector z, sub-space H of Rd, we write z = z(H) + z(H⊥) where z(H)
is the projection of z onto sub-space H, i.e. is uniquely defined as

z(H) =
∑
q∈B

(z>q)q

for any orthonormal basis B of H. We also let z(H⊥) be the projection on the orthogonal complement H⊥. In
particular, z(H) is orthogonal to z(H⊥). Further, we write X̄τ (H) the matrix whose rows are given by x̄t(H)>

for all t ∈ [τ ].

A.2 Main Proof

Characterization of the least-square estimate via first-order conditions First, for any least square
solution β̂E at time τ(E), we write the first order conditions solved by β̂E

(
Vτ(E)

)
, the projection of β̂E on

sub-space Vτ(E). We abuse notations to let ετ(E) , (εt)t∈[τ(E)] the vector of all εt’s up until time τ(E), and
state the result as follows:

Lemma A.2 (First-order conditions projected onto Vτ(E)). Suppose β̂E ∈ LSE(τ(E)). Then,(
X̄τ(E)

(
Vτ(E)

)>
X̄τ(E)

(
Vτ(E)

))(
β̂E
(
Vτ(E)

)
− β∗

(
Vτ(E)

))
= X̄τ(E)

(
Vτ(E)

)>
ετ(E).

Proof. For simplicity of notations, we drop all τ(E) indices and subscripts in this proof. Remember that

LSE = argmin
β

(
X̄β − Ȳ

)> (
X̄β − Ȳ

)
.

Since β̂E ∈ LSE, it must satisfy the first order conditions given by

2X̄>
(
X̄β̂E − Ȳ

)
= 0,

which can be rewritten as
X̄>X̄β̂E = X̄>Ȳ .

Second, we note that for all t, xt ∈ span(f1, . . . , fr) and ∆t ∈ span
(
(ek)k∈D

)
(by definition of D). This

immediately implies, in particular, that x̄t = xt + ∆t ∈ V. In turn, x̄t (V) = x̄t for all t, and

X̄ = X̄ (V) .

As such, the first order condition can be written

X̄ (V)
>
X̄ (V) β̂E = X̄ (V)

>
Ȳ .

Now, we remark that

X̄ (V)
>
X̄ (V) β̂E =

∑
t∈S

x̄t (V) x̄t (V)
>
β̂E

=
∑
t∈S

x̄t (V) x̄t (V)
>
β̂E (V) +

∑
t∈S

x̄t (V) x̄t (V)
>
β̂E(V⊥)

=
∑
t∈S

x̄t (V) x̄t (V)
>
β̂E (V)

= X̄ (V)
>
X̄ (V) β̂E (V) ,

where the second-to-last equality follows from the fact that V and V⊥ are orthogonal, which immediately implies
x̄t (V)

>
β̂E(V⊥) = 0 for all t. To conclude the proof, we note that Ȳ = X̄>β∗+ ε = X̄ (V)

>
β∗ (V) + ε. Plugging

this in the above equation, we obtain that

X̄ (V)
>
X̄ (V) β̂E (V) = X̄ (V)

>
X̄ (V)

>
β∗ (V) + X̄ (V)

>
ε.

This can be rewritten (
X̄ (V)

>
X̄ (V)

)(
β̂E (V)− β∗ (V)

)
= X̄ (V)

>
ε,

which completes the proof.
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Upper-bounding the right-hand side of the first order conditions We now use concentration to give
an upper bound on a function of the right-hand side of the first order conditions,(

β̂E
(
Vτ(E)

)
− β∗

(
Vτ(E)

))>
X̄τ(E)

(
Vτ(E)

)>
ετ(E).

Lemma A.3. With probability at least 1− δ,(
β̂E
(
Vτ(E)

)
− β∗

(
Vτ(E)

))>
X̄τ(E)

(
Vτ(E)

)>
ε

≤
∥∥∥β̂E (Vτ(E)

)
− β∗

(
Vτ(E)

)∥∥∥
2
·K ′

√
dτ(E) log(2d/δ).

where K ′ is a constant that only depends on the distribution of costs and the bound σ on the noise.

Proof. Pick any k ∈ [d], and define Wt = x̄t(k)εt. First, we remark that

|x̄t(k)| ≤ |xt(k)|+ |∆t(k)| ≤ 1 + max
k∈[d], i∈[l]

Bi

ci(k)
.

In turn, |Wt| ≤ K ′ where

K ′ ,

(
1 + max

k∈[d], i∈[l]

Bi

ci(k)

)
σ.

Further, note that both xt(k) and εt are independent of the history of play up through time t − 1, hence of
W1, . . . ,Wt−1, and that εt is further independent of ∆t (the distribution of ∆t is a function of the currently

posted β̂E−1 only, which only depends on the previous time steps). Noting that if A,B,C are random variables,
we have

E
A,B

[AB|C = c] =
∑
a

∑
b

abPr [A = a,B = b|C = c]

=
∑
a

∑
b

abPr [A = a|B = b, C = c] Pr [B = b|C = c]

=
∑
b

b

(∑
a

aPr [A = a|B = b, C = c]

)
Pr [B = b|C = c]

=
∑
b

bE
A

[A|B = b, C = c] Pr [B = b|C = c]

= E
B

[
E
A

[A|B,C = c]B|C = c
]
,

and applying this with A = εt, B = ∆t(k), C = W1 ∩ . . . ∩Wt−1, we obtain

E [Wt|Wt−1, . . . ,W1] = E [x̄t(k)εt|Wt−1, . . . ,W1]

= E [xt(k)εt|Wt−1, . . . ,W1] + E [∆t(k)εt|Wt−1, . . . ,W1]

= E [xt(k)εt] + E
∆t

[
E
εt

[εt|∆t(k),Wt−1, . . . ,W1] ·∆t(k)

∣∣∣∣Wt−1, . . . ,W1

]
= E
xt

[
xt(k) · E

ε
[εt|xt(k)]

]
+ E

∆t

[
∆t(k) · E

εt
[εt]

∣∣∣∣Wt−1, . . . ,W1

]
= 0,

since Eεt [εt] = 0 and Eε [εt|xt(k)] = 0. Hence, we can apply Lemma A.1 and a union bound over all d features
to show that with probability at least 1− δ,

τ(E)∑
t=1

x̄t(k)εt ≥ −K ′
√

2τ(E) log(2d/δ) ∀k ∈ [d].
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By Cauchy-Schwarz, we have

(
β̂E (V)− β∗ (V)

)> τ(E)∑
t=1

x̄tεt ≤
∥∥∥β̂E (V)− β∗ (V)

∥∥∥
2
·

∥∥∥∥∥∥
τ(E)∑
t=1

x̄tεt

∥∥∥∥∥∥
2

≤
∥∥∥β̂E (V)− β∗ (V)

∥∥∥
2

√√√√ d∑
k=1

(∑
t

x̄t(k)εt

)2

≤
∥∥∥β̂E (V)− β∗ (V)

∥∥∥
2
·K ′

√
2dτ(E) log(2d/δ).

Strong convexity of the mean-squared error in sub-space V(τ(E)) We give a lower bound on the

eigenvalues of X̄>X̄ on sub-space V(τ(E)), so as to show that at time τ(E), any least square solution β̂E
satisfies (

β̂E
(
Vτ(E)

)
− β∗

(
Vτ(E)

))>
X̄τ(E)

(
Vτ(E)

)>
X̄τ(E)

(
Vτ(E)

) (
β̂E
(
Vτ(E)

)
− β∗

(
Vτ(E)

))
≥ Ω(n)

∥∥∥β̂E (Vτ(E)

)
− β∗

(
Vτ(E)

)∥∥∥2

2
.

To do so, we will need the following concentration inequalities:

Lemma A.4. Suppose E [xt] = 0. Fix τ(E) = En for some E ∈ N. With probability at least 1− δ, we have that

τ(E)∑
t=1

z>xtx
>
t z ≥

(
λrτ(E)− 2rd

√
τ(E) log(6r/δ)

)
‖z‖22 ∀z ∈ Σ,

and

τ(E)∑
t=1

z>∆t∆
>
t z ≥

(
min
i,k

{
πi
(

Bi

ci(k)

)2
}
n−

(
max
i,k

{
Bi

ci(k)

})2√
2n log(6d/δ)

)
‖z‖22 ∀z ∈ Dτ(E)

and

τ(E)∑
t=1

z>xt∆
>
t z ≥ −2 max

i,k

{
Bi

ci(k)

}
d
√
τ(E) log(6d/δ)‖z‖22 ∀z ∈ Rd.

Proof. Deferred to Appendix A.2.1.

We will also need the following statement on the norm of the projections of any z ∈ V to D and Σ:

Lemma A.5. Let

λ(D,Σ) = inf
z∈D+Σ

‖z(D)‖2 + ‖z(Σ)‖2

s.t. ‖z‖2 = 1.

Then, λ(D,Σ) > 0.

Proof. With respect to the Euclidean metric, the objective function is continuous in z (the orthogonal projection
operators are linear hence continuous functions of z and z → ‖z‖2 also is a continuous function), and its
feasible set is compact (as it is a sphere in a bounded-dimensional space over real values). By the extreme value
theorem, the optimization problem admits an optimal solution, i.e., there exists z∗ with ‖z∗‖2 = 1 such that
λ(D,Σ) = ‖z∗(D)‖2 + ‖z∗(Σ)‖2. Now, supposing λ(D,Σ) ≤ 0, it must necessarily be the case that z(D) = 0,
z(Σ) = 0. In particular, this means z is orthogonal to both D and Σ. In turn, z must be orthogonal to every
vector in D + Σ; since z ∈ D + Σ, this is only possible when z = 0, contradicting ‖z‖2 = 1.
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We can now move onto the proof of our lower bound for(
β̂E
(
Vτ(E)

)
− β∗

(
Vτ(E)

))>
X̄τ(E)

(
Vτ(E)

)>
X̄τ(E)

(
Vτ(E)

) (
β̂E
(
Vτ(E)

)
− β∗

(
Vτ(E)

))
.

Corollary A.6. Fix τ(E) = En for some E ∈ N. With probability at least 1− δ,(
β̂E
(
Vτ(E)

)
− β∗

(
Vτ(E)

))>
X̄τ(E)

(
Vτ(E)

)>
X̄τ(E)

(
Vτ(E)

) (
β̂E
(
Vτ(E)

)
− β∗

(
Vτ(E)

))
≥
(
λn

2
− κ′d2

√
τ(E) log(6d/δ)

)∥∥∥β̂E (Vτ(E)

)
− β∗

(
Vτ(E)

)∥∥∥2

2
,

for some constants κ′, λ that only depend on σ, C, and Σ, with λ > 0.

Proof. Since it is clear from context, we drop all τ(E) subscripts in the notation of this proof. First, we remark
that

z>X̄>X̄z =
∑
t

z>x̄tx̄
>
t z

=
∑
t

z>xtx
>
t z +

∑
t

z>∆t∆
>
t z + 2

∑
t

z>∆tz
>xt.

We have by Lemma A.5 that for all z ∈ V = D + Σ,

‖z(D)‖2 + ‖z(Σ)‖2 ≥ λ(D,Σ)‖z‖2.

Let λ(Σ) , minD⊂[d] λ(D,Σ). Since there are finitely many subsets D of [d] (and corresponding sub-spaces D)
and since for all such subsets, λ(D,Σ) > 0, we have that λ(Σ) > 0. Further,

‖z(D)‖2 + ‖z(Σ)‖2 ≥ λ(Σ)‖z‖2.

Therefore, it must be the case that either ‖z(D)‖2 ≥ λ(Σ)
2 ‖z‖2 or ‖z(Σ)‖2 ≥ λ(Σ)

2 ‖z‖2. We divide our proof into
the corresponding two cases:

1. The first case is when ‖z(Σ)‖2 ≥ λ(Σ)
2 ‖z‖2. Then, note that since z>∆t∆

>
t z ≥ 0 always, we have∑

t

z>x̄tx̄
>
t z ≥

∑
t

z>xtx
>
t z + 2

∑
t

z>∆tz
>xt

=
∑
t

z(Σ)>xtx
>
t z(Σ) + 2

∑
t

z>∆tz
>xt,

where the last equality follows from the fact that xt ∈ Σ and z = z(Σ) + z(Σ⊥). By Lemma A.4, we get
that for some constant C1 that depends only on C,∑

t

z>x̄tx̄
>
t z

≥
(
λrτ(E)− 2rd

√
τ(E) log(6r/δ)

)
‖z(Σ)‖22 − C1d

√
τ(E) log(6d/δ)‖z‖22

≥
(
λ(Σ)λr

2
τ(E)− λ(Σ)rd

√
τ(E) log(6r/δ)− C1d

√
τ(E) log(6d/δ)

)
‖z‖22

≥
(
λ(Σ)λr

2
τ(E)− λ(Σ)d2

√
τ(E) log(6d/δ)− C1d

√
τ(E) log(6d/δ)

)
‖z‖22.

(The second step assumes λrτ(E) − 2rd
√
τ(E) log(6r/δ) ≥ 0. When this is negative, the bound trivially

holds as
∑
t z
>x̄tx̄

>
t z ≥ 0.)



Yahav Bechavod, Katrina Ligett, Zhiwei Steven Wu, Juba Ziani

2. The second case arises when ‖z(D)‖2 ≥ λ(Σ)
2 ‖z‖2. Note that∑

t

z>x̄tx̄
>
t z ≥

∑
t

z>∆t∆
>
t z + 2

∑
t

z>∆tz
>xt

=
∑
t

z(D)>∆t∆
>
t z(D) + 2

∑
t

z>∆tz
>xt,

as ∆t ∈ D and z = z(D) + z(D⊥). By Lemma A.4, it follows that for some constants C2, C3 that only
depend on C,∑

t

z>x̄tx̄
>
t z

≥

(
nmin

i,k

{
πi
(

Bi

ci(k)

)2
}
− C2

√
n log(6d/δ)

)
‖z(D)‖22 − C3d

√
τ(E) log(6d/δ)‖z‖22

≥

(
λ(Σ)n

2
min
i,k

{
πi
(

Bi

ci(k)

)2
}
− λ(Σ)C2

2

√
n log(6d/δ)− C3d

√
τ(E) log(6d/δ)

)
‖z‖22

≥

(
λ(Σ)n

2
min
i,k

{
πi
(

Bi

ci(k)

)2
}
− λ(Σ)C2

2

√
τ(E) log(6d/δ)− C3d

√
τ(E) log(6d/δ)

)
‖z‖22.

Noting that by definition λr > 0 and mini,k

{
πi
(

Bi

ci(k)

)2
}
> 0, and picking the worse of the two above bounds

on
∑
t z
>x̄tx̄

>
t z concludes the proof with

λ =
λ(Σ)

2
min

(
λr,min

i,k

{
πi
(

Bi

ci(k)

)2
})

> 0.

We can now prove Theorem 4.1. By Lemma A.2, we have that(
X̄τ(E)

(
Vτ(E)

)>
X̄τ(E)

(
Vτ(E)

))(
β̂E
(
Vτ(E)

)
− β∗

(
Vτ(E)

))
= X̄τ(E)

(
Vτ(E)

)>
ετ(E),

which immediately yields(
β̂E
(
Vτ(E)

)
− β∗

(
Vτ(E)

))> (
X̄τ(E)

(
Vτ(E)

)>
X̄τ(E)

(
Vτ(E)

))(
β̂E
(
Vτ(E)

)
− β∗

(
Vτ(E)

))
=
(
β̂E
(
Vτ(E)

)
− β∗

(
Vτ(E)

))>
X̄
(
Vτ(E)

)>
ετ(E)

by performing matrix multiplication with
(
β̂E
(
Vτ(E)

)
− β∗

(
Vτ(E)

))>
on both sides on the first-order conditions.

Further, by Lemma A.3, Corollary A.6, and a union bound, we get that with probability at least 1− δ,(
β̂E
(
Vτ(E)

)
− β∗

(
Vτ(E)

))>
X̄τ(E)

(
Vτ(E)

)>
X̄τ(E)

(
Vτ(E)

) (
β̂E
(
Vτ(E)

)
− β∗

(
Vτ(E)

))
≥
(
λn

2
− κ′d2

√
τ(E) log(12d/δ)

)∥∥∥β̂E (Vτ(E)

)
− β∗

(
Vτ(E)

)∥∥∥2

2
,

and (
β̂E
(
Vτ(E)

)
− β∗

(
Vτ(E)

))>
X̄τ(E)

(
Vτ(E)

)>
ε

≤
∥∥∥β̂E (Vτ(E)

)
− β∗

(
Vτ(E)

)∥∥∥
2
·K ′

√
dτ(E) log(4d/δ).



Gaming Helps! Learning from Strategic Interactions in Natural Dynamics

Combining the two above inequalities with the first-order conditions yields

∥∥∥β̂E (Vτ(E)

)
− β∗

(
Vτ(E)

)∥∥∥
2
≤

K ′
√
dτ(E) log(4d/δ)

λn
2 − κ′d2

√
τ(E) log(12d/δ)

.

For

n ≥ 4κ′d2

λ

√
τ(E) log(12d/δ),

the bound becomes ∥∥∥β̂E (Vτ(E)

)
− β∗

(
Vτ(E)

)∥∥∥
2
≤

4K ′
√
dτ(E) log(4d/δ)

λn
.

The proof concludes by letting K , 4K ′, κ , 4κ′ and noting that since Dτ(E) ⊂ Vτ(E) by construction, the
statement holds true over Dτ(E) (projecting onto a subspace cannot increase the `2-norm).

A.2.1 Proof of Lemma A.4

For the first statement, note that for all k 6= j ≤ r,

E
[
f>k xtx

>
t fj

]
= f>k E

[
xtx
>
t

]
fj = λjf

>
k fj ,

as fj is (by definition) an eigenvector of Σ = E
[
xtx
>
t

]
for eigenvalue λj . Note that the f>j xtx

>
t fk = (f>j xt)(f

>
k xt)

are random variables that are independent across t. Further, by Cauchy-Schwarz,∣∣(f>k xt)(f>j xt)∣∣ ≤ ‖fk‖2‖fj‖2‖xt‖22 = ‖xt‖22 ≤ d.

Therefore, we can apply Hoeffding with a union bound over the r2 choices of (fk, fj) to show that with probability
at least 1− δ′, ∣∣∣∣∣∣

τ(E)∑
t=1

f>k xtx
>
t fj − λjτ(E)f>k fj

∣∣∣∣∣∣ ≤ d√2τ(E) log(2r2/δ′).

Note now that for all z ∈ Σ, we can write z =
∑r
k=1

(
z>fk

)
fk, and as such∣∣∣∣∣∣

τ(E)∑
t=1

z>xtx
>
t z −

r∑
k,j=1

(z>fk)(z>fj)λjτ(E)f>k fj

∣∣∣∣∣∣
=

∣∣∣∣∣∣
τ(E)∑
t=1

r∑
k,j=1

(z>fk)(z>fj)f
>
k xtx

>
t fj −

r∑
k,j=1

(z>fk)(z>fj)λjτ(E)f>k fj

∣∣∣∣∣∣
=

∣∣∣∣∣∣
r∑

k,j=1

(z>fk)(z>fj)

(∑
t

f>k xtx
>
t fj − λjτ(E)f>k fj

)∣∣∣∣∣∣
≤ d
√

2τ(E) log(2r2/δ′)

r∑
k,j=1

|z>fk||z>fj |

≤ rd
√

2τ(E) log(2r2/δ′)‖z‖22,

where the last step follows from the fact that by Cauchy-Schwarz,

r∑
k=1

|z>fk| ≤

√√√√ r∑
k=1

12

√√√√ r∑
k=1

(z>fk)2 =
√
r‖z‖2.
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Hence, for z ∈ Σ, remembering f>k fj = 0 when k 6= j and f>k fk = 1, and noting ‖z‖22 =
∑r
k=1(z>fk)2, we get

that

τ(E)∑
t=1

z>xtx
>
t z ≥

r∑
k,j=1

(z>fk)(z>fj)λjτ(E)f>k fj − rd
√

2τ(E) log(2r2/δ′)‖z‖22

=

r∑
k=1

λkτ(E)(z>fk)2 − rd
√

2τ(E) log(2r2/δ′)‖z‖22

≥ λrτ(E)

r∑
k=1

(z>fk)2 − rd
√

2τ(E) log(2r2/δ′)‖z‖22

=
(
λrτ(E)− 2rd

√
τ(E) log(2r/δ′)

)
‖z‖22.

For the second statement, we remind the reader that the costs of modification are such that
∣∣∆t(k)2

∣∣ ≤(
maxi,j

{
Bi

ci(j)

})2

, and that within any epoch φ, the ∆t’s are independent of each other. We can therefore

apply Hoeffding’s inequality and a union bound (over k ∈ Dτ(E) ⊂ [d]) to show that with probability at least
1− δ′, for any k ∈ Dτ(E), there exists an epoch φ(k) ≤ E (pick any φ in which k is modified) such that

∑
t∈φ(k)

e>k ∆t∆
>
t ek ≥ nE

[
∆t(k)2

]
−
(

max
i,j

{
Bi

ci(j)

})2√
2n log(d/δ′)

≥ n min
i∈[l],j∈[d]

{
πi
(
Bi

ci(j)

)2
}
−
(

max
i,j

{
Bi

ci(j)

})2√
2n log(d/δ′).

The last inequality holds noting that k can be modified in period φ(k) only if there exists a cost type i on the

support of C such that k is a best response to β̂φ(k)−1; in turn, k is modified with probability πi by amount
∆(k) = Bi/ci(k), leading to

E
[
∆t(k)2

]
≥ πi

(
Bi

ci(k)

)2

.

Since ∆t(k)∆t(j) = 0 when k 6= j as a single direction is modified at a time, note that for all z ∈ Dτ(E), we have∑
t≤τ(E)

z>∆t∆
>
t z

=
∑

t≤τ(E)

d∑
k=1

∆t(k)2z>eke
>
k z

=

d∑
k=1

∑
t≤τ(E)

∆t(k)2(z>ek)2

≥
∑

k∈Dτ(E)

∑
t∈φ(k)

∆t(k)2(z>ek)2

≥
∑

k∈Dτ(E)

(
n min
i∈[l],j∈[d]

{
πi
(
Bi

ci(j)

)2
}
−
(

max
i,j

{
Bi

ci(j)

})2√
2n log(d/δ′)

)
(z>ek)2

=

(
n min
i∈[l],j∈[d]

{
πi
(
Bi

ci(j)

)2
}
−
(

max
i,j

{
Bi

ci(j)

})2√
2n log(d/δ′)

) ∑
k∈Dτ(E)

(z>ek)2.

For z ∈ Dτ(E),
∑
k∈Dτ(E)

(z>ek)2 = ‖z‖22, and the second inequality immediately holds.

Finally, let us prove the last inequality. Take (k, j) ∈ [d]2, and let us write Wt = e>k xt∆
>
t ej . First, note that

xt and ∆t are independent: in epoch φ, the distribution of ∆t is a function of β̂φ−1 (and C) only, which only



Gaming Helps! Learning from Strategic Interactions in Natural Dynamics

depends on the realizations of x, ε, ∆ in previous time steps. Further, xt is independent of the history of features
and modifications up until time t− 1 included. Hence, it must be the case that

E [Wt|Wt−1, . . . ,W1] = E
[
E
[
e>k xt

∣∣∆t,Wt−1, . . . ,W1

]
∆>t ej

∣∣Wt−1, . . . ,W1

]
= E

[
E
[
e>k xt

]
∆>t ej

∣∣Wt−1, . . . ,W1

]
= E

[
e>k xt

]
· E
[
∆>t ej

∣∣Wt−1, . . . ,W1

]
= 0,

where the last equality follows from the fact that E [xt] = 0. Further,

∣∣e>k xt∆>t ej∣∣ = |xt(k)||∆t(j)| ≤ max
i,k

{
Bi

ci(k)

}
.

We can therefore apply Lemma A.1 and a union bound over all (k, j) ∈ [d]2 to show that with probability at
least 1− δ′, ∣∣∣∣∣∣

τ(E)∑
t=1

e>k xt∆
>
t ej

∣∣∣∣∣∣ ≤ max
i,k

{
Bi

ci(k)

}√
2τ(E) log(2d2/δ′).

In particular, we get that for all z ∈ Rd,∣∣∣∣∣∑
t∈E

z>xt∆
>
t z

∣∣∣∣∣ =

∣∣∣∣∣∣
∑
k,j

∑
t∈E

(z>ek)(z>ej)e
>
k xt∆

>
t ej

∣∣∣∣∣∣
≤
∑
k,j

|z>ek||z>ej |

∣∣∣∣∣∑
t∈E

e>k xt∆
>
t ej

∣∣∣∣∣
≤ max

i,k

{
Bi

ci(k)

}√
2τ(E) log(2d2/δ′)

(∑
k

|z>ek|

)2

≤ 2dmax
i,k

{
Bi

ci(k)

}√
τ(E) log(2d/δ′)‖z‖22,

where the last step follows from the fact that by Cauchy-Schwarz,(∑
k

|z>ek|

)2

=

(∑
k

|z(k)|

)2

≤
∑
k

12 ·
∑
k

z(k)2 = d · ‖z‖22.

We conclude the proof with a union bound over all three inequalities, taking δ′ = 3δ.

B Proof of Theorem 5.2

We drop the τ(E) subscripts when clear from context. We first note that β̂E is a least-square solution.

Claim B.1.
β̂E ∈ LSE(τ(E)).

Proof. This follows immediately from noting that(
X̄β̂E − Ȳ

)> (
X̄β̂E − Ȳ

)
=
(
X̄βE − Ȳ

)> (
X̄βE − Ȳ

)
,

as X̄>v = X̄(U)>v = 0 by definition of U , and since v ∈ U⊥.

Second, we show that β̂E has large norm:
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Claim B.2. ∥∥∥β̂E∥∥∥
2
≥ α.

Proof. First, we note that necessarily, βE ∈ Uτ(E). Suppose not, then we can write

βE = βE
(
Uτ(E)

)
+ βE

(
U⊥τ(E)

)
,

with βE

(
U⊥τ(E)

)
6= 0. By the same argument as in Claim B.1, βE

(
Uτ(E)

)
is a least-square solution. Using

orthogonality of Uτ(E) and U⊥τ(E) and the fact that
∥∥∥βE (U⊥τ(E)

)∥∥∥
2
> 0, we have

‖βE‖2 =
∥∥βE (Uτ(E)

)∥∥2

2
+
∥∥∥βE (U⊥τ(E)

)∥∥∥2

2
>
∥∥βE (Uτ(E)

)∥∥2

2
.

This contradicts βE being a minimum norm least-square solution. Hence, it must be the case that βE ∈ Uτ(E).

Since v ∈ U⊥τ(E), we have that βE and v are orthogonal with ‖v‖2 = 1, implying∥∥∥β̂E∥∥∥2

2
= ‖βE‖22 + α2‖v‖22 ≥ α2.

This concludes the proof.

We argue that such a solution places a large amount of weight on currently unexplored features:

Lemma B.3. At time τ(E), suppose rank
(
Uτ(E)

)
≤ [d]. Suppose n ≥ κd2

λ

√
τ(E) log(12d/δ′). Take any α with

α ≥ γ

(
√
d+

Kd
√
T log(4d/δ′)

λn

)
,

where γ is a constant that depends only on C. With probability at least 1 − δ′, there exists i ∈ [l] and a feature
k /∈ Dτ(E) with ∣∣∣β̂E(k)

∣∣∣
ci(k)

>

∣∣∣β̂E(j)
∣∣∣

ci(j)
, ∀j ∈ Dτ(E).

Proof. Since β̂E ∈ LSE(τ(E)), it must be by Theorem 4.1 that with probability at least 1− δ′,√∑
k∈D

(
β̂E(k)− β∗(k)

)2

≤
K
√
dτ(E) log(4d/δ′)

λn

≤
K
√
dT log(4d/δ′)

λn
.

(4)

First, since z →
√∑

k∈D z(k)2 defines a norm (in fact, the `2-norm in R|D|), it must be the case that√∑
k∈D

(z(k)− z′(k))2 ≥
√∑
k∈D

z(k)2 −
√∑
k∈D

z′(k)2.

In turn, plugging this in Equation (4), we obtain√∑
k∈D

β̂E(k)2 ≤
√∑
k∈D

β∗(k)2 +
K
√
dT log(4d/δ′)

λn

≤ ‖β∗‖2 +
K
√
dT log(4d/δ′)

λn

≤
√
d+

K
√
dT log(4d/δ′)

λn
.
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By the triangle inequality and the lemma’s assumption, we also have that√∑
k∈D

β̂E(k)2 +

√∑
k/∈D

β̂E(k)2 ≥ ‖β̂E‖2 ≥ α.

Combining the last two equations, we obtain

√
d+

K
√
dT log(4d/δ′)

λn
+

√∑
k/∈D

β̂E(k)2,≥ α

which implies that for α ≥ γ
(√

d+
Kd
√
T log(4d/δ′)

λn

)
, we have:

√∑
k/∈D

β̂E(k)2 ≥ α−
√
d−

K
√
dT log(4d/δ′)

λn

≥ α−
√
d−

K
√
dT log(4d/δ′)

λn

≥
√
d (γ − 1)

(
1 +

K
√
dT log(4d/δ′)

λn

)
.

Second, note that Equation (4) implies immediately that for any j ∈ DT ,∣∣∣β̂E(j)− β∗(j)
∣∣∣ ≤ K

√
dT log(4d/δ′)

λn
,

and in turn, ∣∣∣β̂E(j)
∣∣∣ ≤ |β∗(j)|+ K

√
dT log(4d/δ′)

λn
≤ 1 +

K
√
dT log(4d/δ′)

λn
.

Therefore, √∑
k/∈D

β̂E(k)2 ≥
√
d (γ − 1) max

j∈D
β̂E(j).

Hence, there must exist feature k 6∈ D with∣∣∣β̂E(k)
∣∣∣ ≥ (γ − 1) max

j∈D
β̂E(j).

Picking γ such that for some i ∈ [l],

γ − 1 ≥ max
j∈D

ci(k)

ci(j)

yields the result immediately.

The proof of Theorem 5.2 follows directly from Lemma B.3 and a union bound over the first d epochs. With
probability at least 1− dδ′, for every epoch E ∈ [d], there is a feature k /∈ Dτ(E) such that for some i ∈ [l],∣∣∣β̂E(k)

∣∣∣
ci(k)

>

∣∣∣β̂E(j)
∣∣∣

ci(j)
∀j ∈ Dτ(E).

This implies that there exists k ∈ Dτ(E+1) but k /∈ Dτ(E). Applying this d times, we have that if T ≥ dn,
necessarily DT = [d]. We can then apply Theorem 4.1 to then show that with probability at least 1− δ′∥∥∥β̂T/n − β∗∥∥∥

2
≤
K
√
dT log(4d/δ′)

λn
.

Taking a union bound over the two above events and δ = 2dδ′, we get the theorem statement with probability
at least 1− δ′ (d+ 1) ≥ 1− δ.


