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Abstract

We consider an online regression setting in
which individuals adapt to the regression
model: arriving individuals are aware of the
current model, and invest strategically in
modifying their own features so as to improve
the predicted score that the current model
assigns to them. Such feature manipulation
has been observed in various scenarios—from
credit assessment to school admissions—
posing a challenge for the learner. Surpris-
ingly, we find that such strategic manipu-
lations may in fact help the learner recover
the meaningful variables—that is, the fea-
tures that, when changed, affect the true la-
bel (as opposed to non-meaningful features
that have no effect). We show that even
simple behavior on the learner’s part allows
her to simultaneously i) accurately recover
the meaningful features, and ii) incentivize
agents to invest in these meaningful features,
providing incentives for improvement.

1 Introduction

As algorithmic decision-making takes a more and more
important role in myriad application domains, incen-
tives emerge to change the inputs presented to these
algorithms. Recently, a collection of very interesting
papers has explored various models of strategic behav-
ior on the part of the classified individuals in learning
settings, and ways to mitigate the harms to accuracy
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that can arise from falsified features [6, 1, 11, 8]. Addi-
tionally, some recent work has focused on the design of
learning algorithms that incentivize the classified indi-
viduals to make “good” investments in true changes
to their variables [15].

The present paper takes a different tack, and explores
another potential effect of strategic investment in true
changes to variables, in an online learning setting: we
claim that interaction between the online learning and
the strategic individuals may actually aid the learn-
ing algorithm in identifying meaningful variables. By
meaningful, we mean, informally, and within the con-
text of this paper, variables for which changing their
true value affects the true label and thus, may lead
agents to improve. In contrast, non-meaningful vari-
ables do not affect the true label; such features are
susceptible to gaming, as they can potentially be used
to obtain better outcomes with respect to the posted
model without actually improving true labels.

The idea is quite simple. First, if a learning algo-
rithm’s hypothesis at a particular round depends heav-
ily on a certain variable, this incentivizes the arriving
individual to invest in improving that variable. If that
variable were meaningful (that is, it has an effect on
the true label), then the learner would observe an im-
proved true label, increasing the observed correlation
between the variable and the label. However, if that
variable were non-meaningful, the changes would not
have an effect on the true label, reducing the observed
correlation between the variable and the label. Sec-
ond, if a learning algorithm improves its hypotheses
over time, this changing sequence of incentives should
encourage investment in a variety of promising vari-
ables, exposing those that are meaningful. This pro-
cess should naturally induce the learner to shift its
dependence towards meaningful variables, thereby in-
centivizing individuals to invest in improving as op-
posed to gaming, resulting in an overall higher-quality
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population.

The goal of this paper is to highlight this potential ben-
eficial effect of the interaction between online learning
and strategic modification. To do so, we choose to
focus our study on a simple linear regression setting.
In our model, there is a true underlying latent regres-
sion parameter vector β∗, and there is an underlying
distribution over unmodified feature vectors. On every
round t, the learner must announce a regression vector
β̂t.

1 An individual then appears, with an unmodified
feature vector xt chosen i.i.d. from the distribution.
Before presenting himself to the learner, the individ-
ual observes β̂t and has the opportunity to invest in
changing his true features to some x̄t; we focus on a
simple model wherein the individual’s investment re-
sults in a targeted change to a single variable. The in-
dividual then receives utility 〈β̂t, x̄t〉, and the learner
gets feedback ȳt = β∗ᵀx̄t + εt, where εt is some noise.

Within this simple model, we consider simple behav-
iors for both the learner and the individuals: At each
time t, the individual modifies his features so as to
maximize his utility given the posted β̂t; periodically,
the learner updates β̂t with her best estimate of β∗

given the (modified) features and labels she has ob-
served, via least-square regression. Our main result is
that under this simple behavior, the learner recovers
β∗ accurately, after observing sufficiently many indi-
viduals. Our result is divided in two parts: first, we
show that least-square regression accurately recovers
β∗ with respect to features that many individuals have
invested in. Second, we show that these dynamics in-
centivize investments in every feature, leading to ac-
curate recovery of β∗ in its entirety, under an assump-
tion on how the learner breaks ties between multiple
least-square solutions. Our accuracy guarantees for a
feature improve with the number of times that feature
is invested in.

It is important to emphasize that we focus on a setting
in which individuals’ modifications (which we refer to
interchangeably as “manipulations”) of their variables
can be true investments (e.g., studying to achieve bet-
ter mastery of material before an exam—the exam
score is the variable and the mastery level is the label)
rather than deceitful manipulations (e.g., cheating on
the exam to achieve a higher score without improv-
ing mastery). Deceitful manipulations would not help
to expose meaningful variables, because such changes
would never affect the true label (subject mastery), re-
gardless of whether the manipulations were in mean-
ingful or non-meaningful variables.

1Eventually, the learner we will consider does not up-
date its regression vector at every round, but rather peri-
odically, so that individuals can be treated in batches.

Notice that any discovery of meaningful variables that
occurs in our model is a result of the interaction be-
tween the online learner and the strategic individuals.
On the one hand, online learning with no strategic
response has no ability to distinguish non-meaningful
variables from meaningful ones when the two are cor-
related. On the other hand, if strategic individuals
faced with a static scoring algorithm tried to maximize
their scores by investing in a non-meaningful feature,
the resulting information would be insufficient for an
observer to draw conclusions about whether other fea-
tures are meaningful or not.

For example, historical data might show that both a
student’s grades in high school and the make of car
his parents drive to the university visit day are predic-
tive of success in university. Suppose, for simplicity,
that success in high school is causally related to suc-
cess in university, but that make of parents’ car is not,
and is merely a proxy for other features that control
one’s chances of success in college. If the university
admissions process put large weight on high school
grades, that would incentivize students to invest ef-
fort in performing well in high school, which would
also observably pay off in university, which would re-
inforce the emphasis on high school grades. If the ad-
missions process put large weight on the make of car
in which students arrive to the visit day, that would
incentivize renting fancy cars for visits. However, this
would result in a different distribution over the ob-
served student variables, and on this modified distri-
bution the correlation between cars and university suc-
cess would be weakened, and therefore the admissions
formula would not perform well. In future years, the
university would naturally correct the formula to de-
emphasize cars.

It is important to note that our work operates under
a simplifying assumption with regards to the underly-
ing structure of the problem (introduced in Section 3).
Adding an assumption of this kind is necessary since
in the general case recovering the exact model struc-
ture is hard. Our work thus aims to bring attention to
a natural mechanism, based on re-training, for expos-
ing meaningful variables, that we believe is worthy of
further attention.

2 Related Work

Much of the work on learning assumes that an indi-
vidual’s data is a fixed input that is independent of
the algorithm used by the decision-maker. In practice,
however, individuals may try to adapt to the model
in place in order to improve their outcomes. A recent
line of work studies such strategic behavior in classifi-
cation settings. Part of this line of work concerns itself
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with the negative consequences of strategic behavior,
when individuals aim to game the model in place; for
example, individuals may manipulate their data or fea-
tures (often at a cost) in an effort to obtain positive
qualification outcomes or otherwise manipulate an al-
gorithm’s output [6, 19, 7, 1, 14, 12, 2, 11, 8, 4, 3]
or even to protect their privacy [9, 5]. The goal in
these results is to provide algorithms whose outputs
are robust to such gaming. [17] and [13] focus on the
social impact of robust classification, and show that
i) robust classifiers come at a social cost (by forcing
even qualified individuals to invest in costly feature
manipulations in order to be classified positively) and
ii) disparate abilities to game the model inevitably lead
to unfair outcomes.

Another part of this line of work instead sees strategic
manipulation as possibly positive, when the classifier
incentivizes individuals to invest in true improvements
to their features—e.g., a student may decide to study
and actually improve his knowledge in order to raise
his test score. [15], [23], [21], [22] and [10] study how to
incentivize agents to invest effort in modifying mean-
ingful features that improve their labels. Much of this
line of work assumes that the decision-maker already
understands which features are meaningful and affect
agents’ labels or outcomes, and which do not.

In contrast, we consider a setting where the decision-
maker does not initially know which features affect
agents’ labels, and aims to leverage the agents’ strate-
gic behavior to expose what features these are. Most
closely related to this paper is the work of [16], as well
as the concurrent works of [18] and [20]. [16] formalize
the distinction between gaming and actual improve-
ments by drawing a connection to causality and in-
troducing causal graphs that model the effects of the
features and target variables on each other. They show
that in such settings, the decision-maker should incen-
tivize actual improvements rather than gaming, and
that designing good incentives that push agents to
improve is at least as hard as causal inference. [20]
study the sample complexity of learning a linear re-
gression model so as to either i) maximize the accu-
racy of the predictions, ii) maximize the agents’ self-
improvements, or iii) recover the causality structure
of their problem. [18] show how re-training can lead to
stable and optimal outcomes when the learner’s model
affects the distribution of agent features and labels;
while our paper considers a similar re-training frame-
work, our assumptions differ from those of [18].

3 Model

We consider a linear regression setting where the
learner estimates the regression parameters based on

strategically manipulated data from a sequence of
agents over rounds. There is a true latent regression
parameter β∗ ∈ [−1, 1]d that generates an agent’s la-
bel as a function of his feature vector. That is, for any
agent with feature vector x ∈ [−1, 1]d, the real-valued
label y is obtained via y = β∗>x + ε, where ε is a
noise random variable with |ε| ≤ σ, and E[ε | x] = 0.
We also refer to an individual’s features as variables.
There is a distribution over the unmodified features x
in [−1, 1]d; we let µ be the mean and Σ be the co-
variance matrix of this distribution; we note that the
distribution of unmodified features may be degener-
ate, i.e., Σ may not be full-rank. For example, this
can happen in settings in which the non-meaningful
features are merely proxies for the meaningful features
(i.e., those that really control the label); in that case,
one may imagine that the non-meaningful features are
(possibly randomized) functions of the meaningful fea-
tures, leading in particular to low-rank observations
when few features are meaningful. Throughout the
paper, we set µ = 0.2

The agents and the learner interact in an online fash-
ion. At time t, the learner first posts a regression es-
timate β̂t ∈ Rd, then an agent (indexed by t) arrives
with their unmodified feature vector xt. Agent t mod-
ifies the feature xt into x̄t in response to β̂t, in order
to improve their assigned score 〈β̂t, x̄t〉. Finally, the
learner observes the agent’s realized label after feature
modification, given by ȳt = β∗ᵀx̄t + εt.

Meaningful vs non-meaningful features. When
an agent modifies a feature k, this may also affect the
agent’s true label. We divide the coordinates of any
feature vector x into meaningful and non-meaningful
features; meaningful features inform and control an
agent’s label, while non-meaningful features are those
that can be manipulated without directly affecting
an agent’s label. (One can think, intuitively, of the
meaningful features as causal, and the non-meaningful
features as non-causal, but the language of causality
is typically reserved for more complex settings than
ours.) Formally, for any k ∈ [d], feature k is mean-
ingful if and only if the coordinate β∗(k) 6= 0, and
non-meaningful if and only if β∗(k) = 0. An agent
t can modify his true label by modifying meaningful
features. As such, note that β∗ captures the underly-
ing model structure of our problem. The magnitude
of each feature in β∗ captures the extent to which said

2This can be done whenever the learner can estimate the
mean feature vector, since the learner can then center the
features. The learner could estimate the mean by using
unlabeled historical data; for example, she could collect
data during a period when the algorithm does not make any
decision on the agents, thus they would have no incentive
to modify their features.
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feature is meaningful and affects the agents’ labels.

We remark that strategic agents—that best-respond
to the learner’s model to improve their regression
outcomes—may at times have incentives to manipu-
late a feature k such that β∗(k) = 0; this can hap-

pen when the learner sets β̂(k) 6= 0. In such cases,
agents can improve their regression outcomes without
improving their true label, which we refer to as gam-
ing. When agents modify a feature k that aligns with
the true model, we refer to such a modification as an
improvement.

Agents’ responses. Agents are strategic: they
modify their features so as to maximize their own re-
gression outcome;3 modifications are costly and agents
are budgeted. We assume agent t incurs a linear cost
ct(∆t) =

∑d
k=1 ct(k) |∆t(k)| to change his features by

∆t, and has a total budget of Bt to modify his features.(
{ct(k)}k∈[d], Bt

)
’s are drawn i.i.d. from a distribution

C that is unknown to the learner. We assume C has
discrete support {

(
c1, B1

)
, . . . ,

(
cl, Bl

)
}, and we de-

note by πi the probability that (ct, Bt) =
(
ci, Bi

)
. We

assume ci(k) > 0, Bi > 0 for all i ∈ [l], k ∈ [d]; that
is, every agent can modify his features, but no fea-
ture can be modified for free.4 When facing regression
parameters β̂, agent t solves

M(β̂, ct, Bt) = argmax
∆t

β̂> (xt + ∆t)

s.t.

d∑
k=1

ct(k) |∆t(k)| ≤ Bt;

That is, agent t strategically aims to maximize his pre-
dicted outcome given a budget of B for modifying his
features, when facing model β̂. The solution of the
above program does not depend on xt, only on β̂ and
(ct, Bt), and is given by

∆t =

d∑
k=1

sgn
(
β̂(k)

)
· . . .

. . . · 1
{
k = argmax

j

∣∣∣β̂(j)
∣∣∣ /ct(j)} Bt

ct(k)
,

3Importantly, our agents’ goal is not to cooperate with
the learner. Agents are self-interested and aim to maximize
their own regression outcomes; they do not actively seek
to help the learner improve the accuracy of her model.
The agents prefer when the learner emphasizes features
that are easier to manipulate, even if said features are non-
meaningful. These incentives may be ill-aligned with the
learner’s goal of optimizing predictive power and recovering
model structure, which requires putting more weight on
meaningful features.

4In our model, modifying a feature affects only that
feature and the label, but does not affect the values of
any other features. We leave exploration of more complex
models of feature intervention to future work.

up to tie-breaking; when several features maximize
|β̂(j)|/ct(j), the agent modifies a single one of these
features. We call Dτ the set of features that have been
modified by at least one agent t ∈ [τ ].

Remark 3.1. We make the linearity assumption on
the cost functions for simplicity. Our results extend
to a more general class of cost functions that do not
induce modifications wherein several features are mod-
ified in a perfectly correlated fashion.

The key technical insight we need is that the manip-
ulations are full-rank in the subspace defined by the
features that have been manipulated so far, defined as
Vτ(E) in the paper. Very strong feature correlations
(which may also be thought of possible “directions” for
modification) imply a very small minimum eigenvalue
of the observation matrix, making recovery harder and
increasing sample complexity. This is unavoidable: the
more features are correlated, the harder they are to dis-
tinguish information-theoretically; if two features were
perfectly correlated, it would be impossible to know
which one affected the label.

In Theorem 4.1, we encode this correlation between
modification across features in a parameter we call λ.
As feature modifications become more and more corre-
lated, the value of λ becomes smaller and our recovery
guarantees weaken.

Natural learner dynamics: batch least-squares
regression. Our goal here is to identify simple, nat-
ural learning dynamics that expose meaningful vari-
ables. Note that a simple way for the learner to ex-
pose and leverage meaningful variables is to use an
explore-first then exploit type of algorithm: initially,
the learner can post a model that focuses on a single
feature at a time to observe how changing this feature
affects the distribution of agents labels. After sequen-
tially exploring each feature, the learner obtains an
accurate estimate of β∗ that she can deploy for the re-
mainder of the time horizon. However, one may want
to avoid such an approach that artificially separates
features in practice: posting models that ignore most
of an agent’s attribute for the sake of learning may
not be desirable in real life. A bank may not want
to offer loans “blindly” and willingly ignore most of a
customer’s data when making lending decisions just for
the purpose of learning which features are predictive
of an agent’s ability to repay loans. Instead, in this pa-
per, we focus on algorithms based on re-training : i.e.,
periodically, the learner updates her model based on
the data she has observed so far, so as to keep it consis-
tent with the history of agent behavior. A bank may
be willing to periodically update their loan decision
rule in order to keep up with new, unexpected agent
behavior. While re-training leads to more natural dy-
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namics than a “naive” explore-then-exploit approach,
it comes with new technical challenges. In particular,
periodic re-training leads to adaptivity : indeed, as the
model posted in the current period depend on past
data, and the agents’ strategic behavior depends on
the model in place, the observed modified data in each
period depends on the data in all previous periods.
In turn, we cannot treat data points as independent
across periods.

The dynamics we consider are formally given in Algo-
rithm 1. It is possible that more sophisticated learning
algorithms could yield better guarantees with respect
to regret and recovery; the focus of this paper is on
simple and natural dynamics rather than optimal ones.

When the learner updates her regression parameters,
say at time τ , she does so based on the agent data
observed up until time τ . We model the learner as
picking β̂ from the set LSE(τ) of solutions to the least-
square regression problem run on the agents’ data up
until time τ , formally defined as

LSE(τ) = argmin
β

τ∑
t=1

(
x̄>t β − ȳt

)2
.

We introduce notation that will be useful for regres-
sion analysis. We let X̄τ ∈ Rτ×d be the matrix of
(modified) observations up until time τ . Each row
corresponds to an agent t ∈ [τ ], and agent t’s row is

given by x̄>t . Similarly, let Ȳτ = (ȳt)
>
t∈[τ ] ∈ Rτ×1. We

can rewrite, for any τ ,

LSE(τ) = argmin
β

(
X̄τβ − Ȳτ

)> (
X̄τβ − Ȳτ

)
. (1)

Agents are grouped in epochs. The time horizon
T is divided into epochs of size n, where n is chosen
by the learner. At the start of every epoch E, the
learner updates the posted regression parameter vector
as a function of the history of x̄t, ȳt up until epoch E.
We let τ(E) = En denote the last time step of epoch
E. Dτ(E) denotes the set of features that have been
modified by at least one agent by the end of epoch E.

Algorithm 1: Online Regression with Epoch-
Based Strategic modification (Epoch size n)

Learner picks (any) initial β̂0.
for every epoch E ∈ N do

for t ∈ {(E − 1)n+ 1, . . . , En} do

Agent t reports x̄t ∈M(β̂E−1, ct, Bt).
Learner observes ȳt = β∗>x̄t + εt.

end

Learner picks β̂E ∈ LSE (τ(E)).
end

Examples We first illustrate why unmodified obser-
vations are insufficient for any algorithm to distinguish
meaningful from non-meaningful features. Consider a
setting where non-meaningful features, as merely prox-
ies for the meaningful features, are in fact convex com-
binations of these meaningful features in the underly-
ing (unmodified) distribution. Absent additional in-
formation, a learner would be faced with degenerate
sets of observations that have rank strictly less than d,
which can make accurate recovery of the model struc-
ture impossible:

Example 3.2. Suppose d = 2, β∗ = (1, 0). Suppose
feature 1 is meaningful and feature 2 is non-meaningful
and is correlated with 1: the distribution of unmodified
features is such that for any feature vector x, feature
2 is identical to feature 1 as x(2) = x(1). Then, any
regression parameter of the form β(α) = (α, 1−α) for
α ∈ R assigns agents the same score as β∗. Indeed,

β∗>x = x(1) = αx(1) + (1− α)x(2) = β(α)>x.

In turn, in the absence of additional information other
than the observed features and labels, β∗ is indistin-
guishable from any β(α), many of which recover the
model structure poorly (e.g., consider any α bounded
away from 1).

At this point, a reader may wonder why it is important
in Example 3.2 to recover the true model β∗, rather
than simply any vector β that is consistent with all
the data observed so far. A major reason to do so is
because only the true model β∗ can guarantee robust-
ness in response to agent modifications, and accurately
predict labels after agents have changed their features.
This is illustrated in Example 3.3 below:

Example 3.3. Consider the setting of Example 3.2,
and imagine agents have much lower cost for manipu-
lating feature 2 than feature 1. Then, posting a regres-
sion parameter vector of the form (α, 1 − α) where α
is small enough may lead agents to modify the second,
non-meaningful feature. When facing such a modifi-
cation of the form ∆ = (0,∆(2)), (α, 1 − α) predicts
label

αx(1) + (1− α) (x(2) + ∆(2)) = x(1) + (1− α)∆(2),

for an agent with x(1) = x(2), while the true label is
given by β∗>(x + ∆) = x(1). In turn, the predicted
and true labels are different for any α 6= 1.

We next illustrate that strategic agent modifications
may aid in recovery of meaningful features, but only
for those features that individuals actually invest in
changing:

Example 3.4. Consider a setting where d = 3, fea-
ture 1 is meaningful, and features 2 and 3 are non-
meaningful and are correlated with feature 1 as fol-
lows: for any feature vector x, x(2), x(3) = x(1). Let
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β∗ = (1, 0, 0). Consider a situation in which the la-
bels are noiseless (i.e., ε = 0 almost surely). Suppose
that agents only modify their meaningful feature by a
(possibly random) amount ∆(1).

Note that the difference (in absolute value) between the
score obtained by applying a given regression parame-
ter β̂ and the score obtained by applying β∗ to feature
vector x is given by∣∣∣β̂>x− β∗>x∣∣∣
=
∣∣β̂(1) (x(1) + ∆(1)) + β̂(2)x(2) + . . .

. . .+ β̂(3)x(3)− x(1)−∆(1)
∣∣

=
∣∣∣(β̂(1) + β̂(2) + β̂(3)− 1

)
x(1) +

(
β̂(1)− 1

)
∆(1)

∣∣∣ .
In particular, for appropriate distributions of x and
∆(1), the predictions of β̂ and β∗ coincide if only

if β̂(1) = 1 and β̂(2) = −β̂(3). As such, the
learner learns after enough observations that necessar-
ily, β∗(1) = 1. However, any regression parameter

vector with β̂(1) = 1, β̂(2) + β̂(3) = 0 is indistinguish-
able from β∗, and accurate recovery of β∗(2) and β∗(3)
is impossible.

Note that even in the noiseless setting of Example 3.4,
only the feature that has been modified can be recov-
ered accurately. In more complex settings where the
true labels are noisy, one should not hope to recover ev-
ery feature well, but rather only those that have been
modified sufficiently many times.

4 Recovery Guarantees for Modified
Features

In this section, we focus on characterizing the recov-
ery guarantees (with respect to the `2-norm) of Algo-
rithm 1 at time τ(E) = En for any epoch E, with
respect to the features that have been modified up un-
til τ(E) (that is, in epochs 1 to E). We leave discussion
of how the dynamics shape the set Dτ(E) of modified
features to Section 5.

The main result of this section guarantees the accuracy
of the β̂E that the learning process converges to in its
interaction with a sequence of strategic agents. The
accuracy of the β̂E that is recovered for a particular
feature naturally depends on the number of epochs in
which that feature is modified by the agents. For a
feature that is never modified, we have no ability to
distinguish whether it is meaningful or not. Recovery
improves as the number of observations of the modified
variable increases.

Formally, our recovery guarantee is given by the fol-
lowing theorem:

Theorem 4.1 (`2 Recovery Guarantee for Modified
Features). Pick any epoch E. With probability at least

1− δ, for n ≥ κd2

λ

√
τ(E) log(12d/δ),√√√√ ∑

k∈Dτ(E)

(
β̂E(k)− β∗(k)

)2

≤
K
√
dτ(E) log(4d/δ)

λn
,

where K, κ, λ are instance-specific constants that only
depend on σ, C, Σ, such that λ > 0.

When the epoch size is chosen so that n = Ω (τ(E)α)
for α > 1/2, our recovery guarantee improves as τ(E)
becomes larger.

Now, let us fix τ(E) = T as the time horizon,
and study how the relationship between E and n at
fixed τ(E) affects the recovery guarantees. When
n = Θ(τ(E)) (equivalently, E = Θ(1), and agents
are grouped in a small, constant number of epochs),
our bound becomes O(1/

√
τ(E)); this matches the

well-known recovery guarantees of least square re-
gression for a single batch of τ(E) i.i.d observations
drawn from a non-degenerate distribution of features.
When the epoch size n is sub-linear in τ(E) (i.e.,
E � 1, and agents are grouped in more numerous
but smaller epochs),the accuracy guarantee degrades
to O(

√
τ(E)/n), where

√
τ(E)/n � 1√

τ(E)
. This is

because some features may be modified only in a small
number of epochs,5 that is, Θ(n) times, and the num-
ber of times such features are modified drives how ac-
curately they can be recovered.

Proof sketch for Theorem 4.1. Full proof in Ap-
pendix A. We focus on the subspace Vτ(E) of Rd
spanned by the observed features x̄1, . . . , x̄τ(E),

and for any z ∈ Rd, we denote by z(Vτ(E)) the
projection of of z onto Vτ(E). First, we show via
concentration that in this subspace, the mean-square
error is strongly convex, with parameter Θ(n) (see
Claim A.6). This strong convexity parameter is
controlled by the smallest eigenvalue of X̄>τ(E)X̄τ(E)

over subspace Vτ(E). Formally, we lower bound this
eigenvalue and show that with probability at least
1− δ/2, for n large enough,(

β̂E(Vτ(E))− β∗(Vτ(E))
)>

X̄>τ(E)X̄τ(E) · . . .

. . . ·
(
β̂E(Vτ(E))− β∗(Vτ(E))

)
≥ λn

4
.

(2)

5In particular, as we will see, we expect correlated, non-
meaningful features to only be modified in a small number
of epochs: once a non-meaningful feature k has been mod-
ified in a few epochs, it is accurately recovered. In further

periods E, the learner sets β̂E(k) close to 0. This disincen-
tivizes further modifications of feature k.
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Second, we bound the effect of the noise ε on the mean-
squared error by O(

√
τ(E)) in Lemma A.3, once again

via concentration. Formally, we abuse notation and let
ετ(E) , (εt)

>
t∈[τ(E)], and show that with probability at

least 1− δ/2,(
β̂E(Vτ(E))− β∗(Vτ(E))

)>
X̄>τ(E)ετ(E) ≤∥∥∥β̂E(Vτ(E))− β∗(Vτ(E))

∥∥∥
2
·K
√
dτ(E) log(4d/δ).

(3)

Finally, we obtain the result via Lemma A.2, that
states that taking the first-order conditions on the
mean-squared error yields

X̄>τ(E)X̄τ(E)

(
β̂E(Vτ(E))− β∗(Vτ(E))

)
= X̄>τ(E)ετ(E),

which can be combined with Equations (2) and (3)
to show our bound with respect to sub-space Vτ(E).
In turn, as Dτ(E) defines a sub-space of Vτ(E), our
accuracy bound applies to Dτ(E).

Remark 4.2. Theorem 4.1 is not a direct consequence
of the classical recovery guarantees of least-square re-
gression, as they assume X̄>τ(E)X̄τ(E) has full rank d.
We deal with degenerate distributions over modified
features, that can arise in our setting as per Exam-
ples 3.2 and 3.4.

5 Exploration via Least Squares
Tie-Breaking

In this section, we show that a natural tie-breaking
rule among the set of least squares incentivizes agents’
modification of a diverse set of variables over time.

Recall we are solving the least-square problem
LSE(τ(E)) given in Equation (1) for all epochs E.
When X̄>τ(E)X̄τ(E) is invertible, this has a single solu-
tion. However, in our setting, it may be the case that
X̄>τ(E)X̄τ(E) is rank-deficient (see Examples 3.2, 3.4).
In this case, the least-square problem admits a con-
tinuum of solutions. This gives rise to the question of
which solutions are preferable in our setting, and how
to break ties between several solutions.

The learner’s choice of regression parameters in each
epoch affects the distribution of feature modifications
in subsequent epochs. As the recovery guarantee of
Theorem 4.1 only applies to features that have been
modified, we would like our tie-breaking rule to reg-
ularly incentivize agents to modify new features. We
first show that a natural, commonly used tie-breaking
rule—picking the minimum norm solution to the least-
square problem—may fail to do so:

Example 5.1. Consider a setting with d = 2, β∗ =
(1, 2) and noiseless labels, i.e., εt = 0 always. Suppose
that with probability 1, every agent t has features xt =
(0, 0), budget Bt = 1, and costs ct(1) = ct(2) = 1 to
modify each feature. We let the tie-breaking pick the
solution with the least `2 norm among all solutions to
the least-square problem.

Pick any initial regression parameter β̂0 with β̂0(1) >

β̂0(2). For every agent t in epoch 1, t picks modifi-
cation vector ∆t = (1, 0). This induces observations
x̄t = (1, 0), ȳt = 1. The set of least-square solu-
tions (with error exactly 0) in epoch 1 is then given by
{(1, β2) : ∀β2 ∈ R}, and the minimum-norm solution

chosen at the end of epoch 1 is β̂1 = (1, 0). This solu-
tion incentivizes agents to set ∆t = (1, 0), and Algo-
rithm 1 gets stuck in a loop where every agent t reports
x̄t = (1, 0), and the algorithm posts regression param-

eter vector β̂E = (1, 0) in response, in every epoch E.
The second feature is never modified by any agent, and
is not recovered accurately.

Example 5.1 highlights that a wrong choice of tie-
breaking rule can lead Algorithm 1 to explore the
same features over and over again. In response, we
propose the following tie-breaking rule, described in
Algorithm 2: Intuitively, at the end of epoch E, our

Algorithm 2: Tie-Breaking Scheme at Time τ(E).

Input: Epoch E, observations
(x̄1, ȳ1), . . . , (x̄τ(E), ȳτ(E)), parameter α

Let Uτ(E) = span
(
x̄1, . . . , x̄τ(E)

)
.

if rank
(
Uτ(E)

)
< d then

Find an orthonormal basis B⊥τ(E) for U⊥τ(E).

Set v =
∑
b∈B⊥

τ(E)
b 6= 0, renormalize v := v

‖v‖2
.

Pick βE a vector in LSE(τ(E)) with minimal
norm.

Set β̂E = βE + αv.
else

Set β̂E be the unique element in LSE(τ(E)).
end

Output: β̂E .

tie-breaking rule picks a solution in LSE(τ(E)) with
large norm. This ensures the existence of a feature
k 6∈ Dτ(E) that has not yet been modified up until time
τ(E), and that is assigned a large weight by our least-
square solution. In turn, this feature is more likely to
be modified in future epochs.

Our main result in this section shows that the tie-
breaking rule of Algorithm 2 eventually incentivizes
the agents to modify all d features, allowing for accu-
rate recovery of β∗ in its entirety. The intuition behind
our algorithm is to choose a tie-breaking rule that puts
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enough weight on directions that have not yet been ex-
plored, incentivizing agents to explore them.

Theorem 5.2 (Recovery Guarantee with Tie-Break-
ing Scheme (Algorithm 2)). Suppose the epoch size sat-

isfies n ≥ κd2

λ

√
2T log(24d/δ), and take α to be

α ≥ γ

(
√
d+

Kd
√

2T log(8d/δ)

λn

)
,

where γ, K, κ, λ are instance-specific constants that
only depend on σ, C, Σ, and λ > 0. If T ≥ dn, we
have with probability at least 1 − δ that at the end of
the last epoch T/n,∥∥∥β̂T/n − β∗∥∥∥

2
≤
K
√

2dT log(8d/δ)

λn
,

under the tie-breaking rule of Algorithm 2 .

Remark 5.3. The bound in Theorem 5.2 provides
guidance for selecting the epoch length, so as to en-
sure optimal recovery guarantees. Under the natural
assumption that T >> d, the optimal recovery rate is
achieved when roughly n = Θ(T/d). This results in
an O(d

√
(d log d)/T ) upper bound on the `2 distance

between the recovered regression parameters and β∗.

Proof sketch of Theorem 5.2. Full proof in Ap-
pendix B. For α arbitrarily large, the norm of β̂
becomes arbitrarily large. Because at the end of
epoch E, β̂E guarantees accurate recovery of all
features modified up until time En, it must be that
β̂E(k) is arbitrarily large for some feature k that
has not yet been modified. In turn, this feature is
modified in epoch E + 1. After d epochs, and in
particular for T ≥ dn, this leads to DT = [d]. The
recovery guarantee of Theorem 4.1 then applies to all
features.

6 Conclusion

This work takes a first step towards illuminating a
phenomenon we believe is both surprising and worthy
of further study: strategic agents may in fact help a
learner in better understanding the underlying struc-
ture of a classification problem. As an immediate
implication, the recovery guarantees we have proven
provide the learner with knowledge regarding how to
choose good incentives, laying the ground for individ-
ual improvement, rather than gaming. In future work,
it would be natural to explore this interaction in richer
and more complex settings.
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