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SUPPLEMENTARY MATERIAL

e In Section A we provide a table of Lipschitz bounds for various INN building blocks.

e In Section B we provide statements on Lipschitz bounds and their corresponding proofs.
e In Section C we provide details for the 2D checkerboard experiments.

e In Section D we provide details for the OOD and sample evaluation experiments.

e In Section E we expose non-invertibility in the data distribution by optimizing within the dequantization
distribution of a datapoint to find regions that are poorly reconstructed by the model.

e In Section F we provide details for the 2D toy regression experiment.
e In section G we provide details for the CIFAR-10 classification experiments.

e In Section H we discuss an outlook on bi-directional training with FlowGANs.

A TABLE OF LIPSCHITZ BOUNDS

Building Block Forward Operation Lipschitz Forward Lipschitz Inverse
Additive F(x)r, =z, <1+ Lip(¢t) <1+ Lip(¢)
Coupling Block F(z)r, = x1, + t(zr,)
(Dinh et al., 2014)
Affine F(z)r, =, < max(1l,¢g) + M < max(1l,c1)+ M*
9
Coupling Block F(z)r, =z, © g(s(zr,)) + t(zr,) local for x € [a,b]*  local for y € [a*,b*]¢
(Dinh et al., 2017) g(-)#0 g(z) < c¢q %(y) <cz
g
Invertible F(z)=z+g(x) <1+ Lip(g) < #lp(g)
Residual Layer Lip(g) < 1
(Behrmann et al., 2019)
Neural ODE dzsf) = F(z(t),t) < elip(F)t < elip(h):t
(Chen et al., 2018) t€[0,7T]
Diagonal Scaling F(z) = Dx = max; | D] = ﬁ\DI
(Dinh et al., 2014) D diagonal
ActNorm Dii #0
(Kingma and Dhariwal, 2018)
Invertible 1 x 1 F(x) = PL(U + diag(s)) =: W
Convolution P permutation, L lower-triangular < IW |2 <2
(Kingma and Dhariwal, 2018) U upper-triangular, s € R?

Table 3: Lipschitz bounds on building blocks of invertible neural networks. The second column
shows the operations of the forward mapping and the last two columns show bounds on the Lipschitz constant
of the forward and inverse mapping. M in the row for the forward mapping of an affine block is defined
as M = max(|al,|b]) - ¢g - Lip(s) + Lip(¢). Furthermore, M* for the inverse of an affine block is M* =
max(|a*|, [b*]) - Cay Lip(s) + Clay Lip(s) - ¢t + c1 - Lip(t). Note that the bounds of the affine blocks hold only

locally.
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B STATEMENTS ON LIPSCHITZ BOUNDS AND PROOFS

In this section, we provide our analysis of bi-Lipschitz bounds of common INN architectures. The obtained
bounds are summarized in Table 3. In general, Lipschitz bounds for deep neural networks often tend to be loose in
practice, because a derived bound for a single layer needs to be multiplied by the number of layers of then entire
network. Thus these bounds are rarely used quantitatively, however such an analysis can reveal crucial qualitative
differences between architecture designs. This is why, we provide the technical analysis of the bi-Lipschitz bounds
in the appendix and discuss their qualitative implications in Section 3 of the main body.

The bounds for i-ResNets are taken from (Behrmann et al., 2019). For Neural ODEs (Chen et al., 2018), one
needs to consider a Lipschitz constant Lip(F) that holds for all ¢ € [0,T7, i.e.

|E(t,z1) — F(t,x2)||2 < Lip(F)||z1 — 22]|2, forall te0,T].

Then, the claimed bound is a standard result, see e.g. (Ascher, 2008, Theorem 2.3). Note that the inverse is
given by d%—(tt) = —F(y(t),t), hence the same bound holds.

In the following, we proceed as follows: First, we state bi-Lipschitz bounds of additive coupling blocks as a lemma
and proove them (Lemma 5). Their derivation is generally straightforward but somewhat technical at stages due
to the handling of the partition. Second, we perform the same analysis for affine coupling blocks (Lemma 6).
Third, we use these technical lemmas to proof Theorem 2 from the main body of the paper.

Before deriving the upper bounds, we note that the upper bounds on the bi-Lipschitz constants also provide lower
bounds:

Remark 3 (Lower bounds via upper bounds). By reversing, upper bounds on the Lipschitz constant of the
inverse mapping yield lower bounds on the Lipschitz constant of the forward and vice versa. This holds due to the
following derivation: Let x,x* € R? and F~1(z) = 2, F~'(2*) = x*. By employing the definition of the forward
and inverse Lipschitz constants, we have:

lo — 2| = |F =" () = F~'(z")|| < Lip(F~")|lz — 2"|| = Lip(F )| F(z) — F(a")|
< Lip(F~")Lip(F) [z — 27|
1

& WHSU*IU*H < |[[F(z) = F(a7)|| < Lip(F) [z — 27]. (9)

By denoting the upper bounds as L > Lip(F) and L* > Lip(F~1) and using the same reasoning as above, we thus
have:

S 1

= Lip(F 1)

1 1

> —.
Lip(F) = L

1
L > Lip(F) > and L* > Lip(F~ ') >

Hence our bounds provide a rare case, where not only upper bounds on the Lipschitz constants of neural networks
are known, but also lower bounds due to the bi-Lipschitz continuity.

Remark 4 (bi-Lipschitz constant). By considering inequality 9, it is further possible to introduce a single constant
as biLip(F) = max{Lip(F), Lip(F~1)} for which:

1

— ||z —2*|| < |[F(2) — F(z*)|| < biLip(F)||z — z*
s 1 < 1P ~ P < biLip(F) e — |

holds. This constant is usually called the bi-Lipschitz constant. We, on the other hand, refer to both constants
Lip(F),Lip(F~') as bi-Lipschitz constants. We wuse this slightly more descriptive language, because we are
particularly interested in the stability of each mapping direction.

Now we consider coupling blocks and provide upper Lipschitz bounds:
Lemma 5 (Lipschitz bounds for additive coupling block). Let I, Iy be a disjoint index sets of {1,...,d} and let
I, Iy be non-empty. Consider an additive coupling block (Dinh et al., 2014) as:

F(z)n, =y,

F(x)1, = vp, + t(zr,),
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where t : R — RI21 45 o Lipschitz continuous and differentiable function. Then, the Lipschitz constant of the
forward mapping F and inverse mapping F~' can be upper-bounded by:

Lip(F) < 1+ Lip(¢)
Lip(F~") <1+ Lip(¢).

Proof. To prove the Lipschitz bounds, we use the identity:

Lip(F) = sup [[Jp(z)]2.
zERC

Thus, in order to obtain a bound on the Lipschitz constant, we look into the structure of the Jacobian. Without
loss of generality we consider I; = {1,...,m} and I = {m + 1,...,d}, where 1 < m < d. The general case,
where Iy, I are arbitrary disjoint and non-empty index sets, can be recovered by a permutation. A permutation
is norm-preserving and thus does not influence the bound on the Lipschitz constant.

The Jacobian of F' has a lower-block structure with an identity diagonal, i.e.

Lnxm O(m)x(d—m) >
J = 9
r (@) <Jt (@) Iia—m)x(d—m)

where J;(z) € R(4="™)>™ denotes the Jacobian of ¢ at . By using this structure, we can derive the following
upper bound:

Lip(F)? = sup [ Jr(2)|3
zER4

=sup sup | Jp(x)a"|3
2ER [l2* 2=1

=sup sup ||(Jp(@)a")p |3+ |(Tr(2)2")n )13
z€R? ||lz*[]2=1

=sup sup |27, |3+ [l2g, + Je(2)a, |13
z€R? ||lz*|]2=1

<sup sup |l |5 + (a7, ll2 + [T (2)27, [|2)? (10)
wER? [|z* [o=1

= sup sup o, |3 + 7,13 + 2llag, ll2ll e (@), Iz + | Je(2)a], 113
z€R? ||lz*[]2=1

=sup sup [|2*[[3 + 22, 2]l Je(2)a7, 12 + 1 ()2, |13
TER? [|lz*[|2=1

=sup sup 1+ 2|, 2]l (@)a], ll2 + T (@), |13
z€R? [|lz*[]2=1

= sup sup 1+2|J(x)a, |2 + || Je(2)a], 3
2ER fl2* [2=1

N 2
=sup sup (14 [|Je(z)27,[|2)
z€RY [lz*||l2=1

= sup (1+ || J(z)]2)”
z€ER4

= Lip(F) <1+ Lip(t).

Furthermore, the inverse of F' can be obtained via the simple algebraic transformation (y := F(x))

F'(y)n =y,
F_l(y)lz =Y, — t(yh)

Since the only difference to the forward mapping is the minus sign, the Lipschitz bound for the inverse is the
same as for the forward mapping. O
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Lemma 6 (Lipschitz bounds for affine coupling block). Let I1, Iy be a disjoint partition of indices {1, ...,d} and
let I, Iy be non-empty. Consider an affine coupling block (Dinh et al., 2017) as:

F(‘T)Il =T
F(x)h =T © g(S(J?]l)) + t(x11)7

where g, s,t : R — RI2| gre Lipschitz continuous, continuously differentiable and non-constant functions. Then,
the Lipschitz constant of the forward F can be locally bounded for x € [a,b]? as:

Lip(F) < max(1,c¢q) + M,

where M = max(|al,|b]) - ¢y - Lip(s) + Lip(t). The Lipschitz constant of the inverse F~' can be locally bounded
fory € [a*,b*]? as:

Lip(F~) < max(1,c1) + M*,
g

where M* = max(|a*|, |b*|) - Cay - Lip(s) + c(1y -Lip(s) - ¢t + c1 - Lip(?).

Q=
Q=

Proof. We employ a similar proof strategy as in Lemma 5 and consider the Jacobian of the affine coupling layer.
As in the proof of Lemma 5 we consider I} = {1,...,m} and I, = {m +1,...,d}, where 1 < m < d, without
loss of generality. Since the structure of the forward and inverse mapping for affine coupling layers has some
differences, we split the proof of the Lipschitz bounds into two steps. First, we start with the forward mapping
and then reuse several steps for the bounds on the inverse mapping.

Derivation for the forward mapping:
The Jacobian of the forward affine block has the structure

Im><m 0 m)X(d—m
Tr(@) = <D1(:v12)Dg’($h)Js(xh) + Ji(wr,) D(g()s((;h)))) ,

where D are the following diagonal matrices

Dy(x1,) = diag ((21,)1,- -+ (#1,)|1]) »
Dg’ (xh) = diag (g/(S(:L‘]Q)h s 79/(8(1.[2)”2\)) s
Dy(s(xr,)) = diag (9(s(xp)1, -, 9(s(x1,) 1)) »

where Dy(zr,), Dy (x7,) € REA=™Xm and D, (s(zg,)) € RE=)x(@=m) " To simplify notation, we introduce
M(z) = Di(zr,) Dy (x1,)Js(xr,) + Ji(zr,)-

By using an analogous derivation as in the proof of Lemma equation 6 (up to the inequality sign), we get:

. * * * 2
Lip(F)? < S P 7,13 + (1Dg(s(zr,))at, ll2 + 1M ()27, [|2)
z€la, z*|[2=

= sup max (1, Dy(s(zr,)i))* +2 max (Dy(s(wn,)i)|M ()2 + M (2)]3

z€a,b]d 1€[11]] i€[|11]]
< sup  max (1, Dy(s(z1,)s))* +2 max (1, Dy(s(z1,)i) | M ()2 + | M ()3
w€a,b]d tE[1]] i€[|I1]]

= sup ( max (1, Dy(s(xr,)i)) + ||M(:c)|2)

vefapd \i€lll]
<= Lip(F) < max (1,D4(s(xr,):)) + sup | M(z)].
i€[|11]] z€[a,b)d

Next, we will look into the structure of M (z) to derive a more precise bound. Since inputs z are assumed to be
bounded as = € [a, b]%, it holds:

1D1(z1,)l2 < max([al, [b])-
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Since we assumed that g is continuously differentiable, both g and ¢’ will be bounded over closed intervals like
[a,b]?. We will denote these bounds as ¢, and c,. Thus, for « € [a,b]¢ it holds

[ Dgr(zr,)ll2 < cgr-

In a similar manner as in Lemma 5, the spectral norm of the Jacobian of the scale-function s and translation-
function ¢ can be bounded by their Lipschitz constant, i.e.

[ Ts(21,)|l2 < Lip(s)
[Je(z1,)ll2 < Lip(#).

By using the above bounds, we obtain

sup M@} < max(lal, o) - e - Lip(s) + Lin(t),
xr€|a,

which results in the local Lipschitz bounds for x € [a, b]?

Lip(F') < max(1, ¢q) + max(|al, |b|) - ¢g - Lip(s) + Lip(t).

Derivation for the inverse mapping:
For the affine coupling block, the inverse is defined as:

F_l(y)ll =YL
F YY), = (yr, — t(zn,)) @ 9(s(yn,)),

where g(-) # 0 for all X;,, I, I> as before and @ denotes elementwise division. The Jacobian for this operation
has the structure:

me%ﬁ@D&mJ

1
9

where D1 (s(xy,)) denotes a diagonal matrix, as before. Furthermore, M* is defined as:

M*(y) = Dl(yIz)D(é)'(s(yh))‘]s(yh) - D(é)/(s(yh))‘]s(yh)DI(t(yIl)) -D (S(yh))‘]t(yh)7

1

g

where D1y (s(xy,)) also denotes a diagonal matrix. Using analogous arguments as for the forward mapping, we
g

obtain the bound:

Lip(F™!) < max (1,Da(s(zr,)i)) +  sup [|M*(y)]2-
i€(|11]] g y€Ela*,b*]?

Hence, we need to further bound the spectral norm of M*. Since we assumed that g is continuously differentiable,

!/
both % and % will be bounded over closed intervals like [a*, b*]¢. Furthermore, translation ¢ is assumed to be

globally continuous and thus also bounded over closed intervals. We will denote these upper bounds by c1, c( 1y
g g

and ¢;. Then we obtain the bound:

sup [ M (y)|3 < max(la”[, b)) - ¢(

) Lip(s) + e
yE[a*,b*]d

) Lip(s) - ¢t + c1 - Lip(t).

Q=

1
9
Hence, we can bound the Lipschitz constant of the inverse of an affine block over the interval [a*,b*]¢ as:

Lip(F~') < max (1,c1) + max(|a*],|b*|) “C(ay -Lip(s) + c(1y -Lip(s) - ¢, + ¢ - Lip(¢).
i€[[11]] g g g g
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B.1 Proof of Theorem 2

Proof. Proof of statement (i):
The larger bi-Lipschitz bounds of the affine models compared to the additive models follows directly from Lemmas
5 and 6, as the affine bounds have only additional non-zero components in their bounds.

Proof of statement (ii):

The global Lipschitz bound for additive models is given in Lemma 5. In Lemma 6 we also provide local bounds
for z € [a,b]? for affine models. What remains to be show, is that there are no bi-Lipschitz bounds that hold
globally for = € R,

For this, consider a simplified affine model as F'(z1,22) = 21 f(22) with % =1 %fz. This derivative is unbounded
if 1 is allowed to be arbitrarily large, hence there is no global bound.

The same argument caries over to the full affine model, since both forward and inverse Jacobian involve the terms
Dj(xy,) and Dy(yy,), respectively (see proofs of Lemma 5 and 6). When « for the forward and y for the inverse
are not assumed to be bounded, the Jacobian can have unbounded Frobenius norm. Not that this only holds if g
and s are not constant functions, which is why we need to assume this property to hold (otherwise the affine
model would collapse to an additive model). The unbounded Jacobian in turn induces a unbounded spectral
norm due to the equivalence of norms in finite dimensions and thus no Lipschitz bound can be obtained. O

C DETAILS FOR 2D DENSITY MODELING EXPERIMENTS

Here we provide experimental details for the 2D checkerboard experiments from Section 4.1.1. The samples are
shown in Figure 7, which shows that the data lies within 1 € [—4,4] and x5 € [—4, 4] and exhibit jumps at the
border of the checkerboard.

Figure 7: Samples from 2D checkerboard.

We train the following three large models using the residual flows repository and the corresponding hyperparameter
settings®. For completeness, we provide the hyperparameters in Table 4 below.

Hyperparameter Value
Batch Size 500
Learning Rate le-3
Weight Decay le-5
Optimizer Adam
Hidden Dim 128-128-128-128
Num Blocks 100
Activation swish
ActNorm False

Table 4: Hyperparameters for training 2D models on checkerboard data.

To consider the effect of different architecture settings on stability we train three INN variants:

4from https://github.com/rtqichen/residual-flows/blob/master/train_toy.py
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Figure 8: Learned density on 2D checkerboard data: Left: standard affine model with sigmoid scaling;
Middle: more stable affine model with scaling in [0.5, 1]; Right: Residual Flow (Chen et al., 2019).

1. Affine coupling model with standard sigmoid scaling for the elementwise function g from equation 4, which
results in a scaling in (0, 1).

2. Modified affine coupling model with a scaling in (0.5,1) by a squashed sigmoid.

3. Residual flow (Chen et al., 2019) with a coefficient of 0.8 for spectral normalization to satisfy the contraction
requirement from i-ResNets (Behrmann et al., 2019).

In addition to the reconstruction error in Figure 2 (main body of the paper), we visualize the learned density
function for the models above in Figure 8. Most importantly, the instability a the affine model is clearly visible in
the NaN density values outside the data domain. The more stable affine model with the modified scaling does
not exhibit this failure, but still appears to learn a density with large slopes. The residual flow on the other hand
learns a more stable distribution. Lastly, we note that the trained models on this 2D data were deliberately large
to emphasize failures even in a low dimensional setting.

D DETAILS FOR OOD AND SAMPLE EVALUATION EXPERIMENTS

The examples from each OOD dataset were normalized such that pixel values fell into the same range as each
model was originally trained on: [—0.5,0.5] for Glow, and [0, 1] for Residual Flows. The OOD datasets were
adopted from previous studies including those by Hendrycks and Gimpel (2016); Liang et al. (2017). Extended
results are shown in Table 5. The pre-trained models we used for OOD evaluation were from the official Github
repositories corresponding to the respective papers. The pre-trained Glow model used 1 x 1 convolutions.
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CIFAR-10 SVHN Uniform Rademacher Places

Table 5: Reconstructions of OOD data, using a CIFAR-10 pre-trained Glow model. Broken recon-
structions that contain inf values are highlighted in cyan.

Details for Training Glow This section details the Glow models trained with the Flow/MLE objective
reported in Section 4.1.2. These models have slightly different hyperparameters than the pre-trained Glow models.
The controlled hyperparameters are listed in Table 6.

Hyperparameter Value
Batch Size 64
Learning Rate Se-4
Weight Decay 5e-5
Optimizer Adamax
Flow Permutation Reverse
# of Layers 3
# of Blocks per Layer 32
# of Conv Layers per Block 3
# of Channels per Conv 512

Table 6: Hyperparameters for trained Glow.

The LR is warmed up linearly for 5 epochs. The training data is augmented with 10% translation, and random
horizontal flips. The additive and affine models used the coupling blocks described in Eq. 3 and Eq. 4.

Details for Evaluating Glow Stability statistics reported included reconstruction errors and condition
numbers (Figure 9). Reconstruction error reported is the pixel-wise £3 distance measured in the [—0.5,0.5] range.
Input and reconstruction pairs are visualized in Figure 10. Condition numbers are computed numerically as
follows: 1. gradient w.r.t. each dimension of the network output is computed sequentially to form the Jacobian,
2. SVD of the Jacobian is computed using “numpy.linalg.svd”, 3. the reported condition number is the ratio of
the largest to smallest singular value.

E Non-Invertibility in Data Distribution

In this section we expose non-invertibility in the data distribution by optimizing within the dequantization
distribution of a datapoint to find regions that are poorly reconstructed by the model. Note that the inputs found
this way are valid samples from the training distribution. We performed this analysis with three NFs trained on
CelebA64 with commonly-used 5-bit uniform dequantization: 1) affine Glow with standard sigmoid scaling; 2)
affine Glow model with modified scaling in (0.5,1); and 3) a Residual Flow. Starting from an initial training
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Figure 9: Stability statistics of Flow model over gradient steps on the x-axis.

datapoint z, we optimized in input-space to find a perturbed example z’ that induces large reconstruction error
using Projected Gradient Descent (Madry et al., 2018):

argmax ||z’ — F~Y(F(z'))]]2, (11)

[|z'—2|| oo <€

where ¢ is determined by the amount of uniform dequantization, see Appendix E.1 for details. As shown in
Figure 11, this attack reveals the instability of affine models and underlines the stability of Residual Flows (Chen
et al., 2019). To conclude, we recommend Residual Flows for a principled application of NFs.

E.1 Experimental Details of Invertibility Attack

In order to probe the invertibility of trained flow models over the entire data distribution, we trained three
INN models on CelebA64 (with 5-bit dequantization) using the residual flows repository and the corresponding
hyperparameter settings®. For completeness, we provide the hyperparameters in the Table 7.

Hyperparameter Value
Batch Size 64
Learning Rate le-3
Weight Decay 0
Optimizer Adam (ResFlow), Adamax (Affine)
Warmup iter 1000
Inner Dim 512
Num Blocks 16-16-16-16
ActNorm True
Activation Swish (ResFlow), ELU (Affine)
Squeeze First True
Factor Out False
FC end True
Num Exact Terms 8
Num Trace Samples 1
Padding Distribution uniform

Table 7: Hyperparameters for training affine and ResFlow models on CelebA64.

Sfrom https://github.com/rtqichen/residual-flows/blob/master/train_img.py
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Top: Input, Bottom: Recon

samples

gaussian rademacher texture3
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Figure 10: Reconstructions using Affine model. Top row is the input, and bottom row is the reconstruction.
In the case of perfect reconstruction, the two rows should look identical. Notice that the model is not only
non-invertible for the white noise, the top-left image of “texture 3” also fails to be reconstructed. Some of the
images in “samples” also look slightly different.

For evaluation we used the checkpoint obtained via tracking the lowest test bits-per-dimension. As a summary,
we obtained the following three models:

1. An affine coupling model with standard sigmoid scaling for the elementwise function g from Eq. 4, which
results in a scaling in (0, 1).

2. A modified affine coupling model with a scaling in (0.5,1) by a squashed sigmoid.

3. A Residual Flow (Chen et al., 2019) with a coefficient of 0.98 for spectral normalization to satisfy the
contraction requirement from i-ResNets (Behrmann et al., 2019).

To explore the data distribution, we first need to consider the pre-processing step that is used to turn the
quantized digital images into a continuous probability density: dequantization, see e.g. (Ho et al., 2019) for a
recent discussion on dequantization in normalizing flows. Here we used the common uniform dequantization with
5-bit CelebA64 data, which creates noisy samples:

x+9

25 7
where d = 64 - 64 - 3. Thus, around each training sample = there is a uniform distribution which has equal
likelihood under the data model. If we explore this distribution with the invertibility attack below, we can
guarantee by design that we stay within the data distribution. This is fundamentally different to the classical
setting of adversarial attacks (Szegedy et al., 2013), where it is unknown if the crafted inputs stay within the
data distribution.

T = where € {0,...,2°}¢ and § ~ uniform{0, 1},

These models were then probed for invertibility with the data distribution using the following attack objective:
argmax L(z') := ||z’ — F7Y(F(z"))||2, (12)
2" =200 <€

where ¢ = %, T = %2'5 and x was selected from the training set of CelebA64. By using this ¢, constraint,

we thus make sure that we explore only within the data distribution. The optimization was performed using
projections to fulfill the constraint and by signed gradient updates as:

Ty = @, + o sign(Vy L(x),)),
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Figure 11: Non-invertibility within the data-distribution of CelebA64 revealed by an invertibility
attack. Left: /s-reconstruction error obtained by the attack. The reconstructions of both affine models explode
to NaN (indicated by x), while the Residual Flow remains stable. Right: Despite no visual differences between
the original and perturbed image, reconstruction fails for the affine model.

il

Figure 12: Checking invertibility of Residual Flow on CelebA64. From left to right, the images show:
original image, perturbed image within dequantization range, reconstruction with 5 fixed point iterations,
reconstruction with converged fixed point iterations. While the attack is able to find regions in the data
distribution, which exhibit reconstruction error, the error is only due to a limited number of inversion steps.

with o = 5e™* and k = {1,...,200}.

In addition to the visual results in Figure 11, we present visual results from the Residual Flow model in Figure
12. For this model, we have to remark one important aspect: due to memory constraint on the used hardware
(NVIDIA GeForce GTX 1080, 12 GB memory), we could only use 5 fixed-point iterations for the inverse of the
i-ResNet (Behrmann et al., 2019), since computing backprop through this iteration is memory intensive. This is
why, we observe visible reconstruction errors in Figure 12, which are due to a small number of iterations as the
reconstruction on the right with more iterations shows. However, we note that the comparison is not entirely fair
since the gradient-based attack has only access to the 5-iteration inverse, while for affine models it has access to
the full analytical inverse. Thus, future work should address this issue e.g. by considering non-gradient based
attacks.

Furthermore, we note that the bi-Lipschitz bounds for i-ResNets from (Behrmann et al., 2019) (see also overview
Table 3) guarantee stability, which is why using more sophisticated attacks for the Residual Flow model should
not result in invertibility failures as in affine models.

F EXPERIMENTAL DETAILS FOR 2D TOY REGRESSION

In this section we provide experimental details for the 2D toy regression experiment in Section 4.2.

Data. To generate the toy data, we sampled 10,000 input-target pairs ((x1,y1), (z2,y2)) distributed according
to the following multivariate normal distributions:

()~ (0.5 9)) (13)

(22,y2) ~ N (07 E ﬂ) : (14)
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We used ¢ =1e-24 so that we are essentially mapping x onto a 1D subspace.

Model. We used an affine Glow model with reverse permutations and ActNorm (Kingma and Dhariwal, 2018),
where each block was a multi-layered perceptron (MLP) with two hidden layers of 128 units each and ReL.U
activations. We trained the model in full-batch mode using Adam with fixed learning rate le-4 for 40,000
iterations.

Additional Results. Figure 13 compares the mean squared error (MSE) loss, numerical reconstruction error,
and condition number of the unregularized and regularized Glow models trained on this toy task. The regularized
model adds the normalizing flow objective with a small coefficient of 1e-8. Here we see that the regularized model
still achieves low MSE, while remaining stable with reconstruction error more than four orders of magnitude
smaller than the unregularized model, and a condition number six orders of magnitude smaller.
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Figure 13: A comparison of the mean-squared error (MSE) loss, reconstruction error, and condition
number of an unregularized and a regularized Glow model trained on the toy 2D regression task.
The regularized model uses the normalizing flow objective with coefficient 1e-8.

G EXPERIMENTAL DETAILS FOR CLASSIFICATION EXPERIMENTS

In this section we provide details on the experimental setup for the classification experiments in Section 4.2, as
well as additional results. We used the PyTorch framework (Paszke et al., 2019) for our INN implementations.
All experiments were run on NVIDIA Titan Xp GPUs.

Experimental Setup. All the additive and affine coupling-based models we used have the same architecture,
that consists of 3 levels, 16 blocks per level, and 128 hidden channels. Each level consists of a sequence of
residual blocks that operate on the same dimensionality. Between levels, the input is spatially downsampled by
2x in both width and height, while the number of channels is increased by 4x. Each block consists of a chain
of 3x3 = ReLU — 1 x 1 — ReLU — 3 x 3 convolutions. Because the dimension of the output of an INN is
equal to that of the input (e.g., we have a 3072-dimensional feature space for 3 x 32 x 32 CIFAR-10 images), we
use a projection layer (1D BatchNorm — ReLU — Linear) to map the feature representation to 10 dimensions
representing class logits. We trained the models on CIFAR-10 for 200 epochs, using Adam with initial learning
rate le-4, decayed by a factor of 10 at epochs 60, 120, and 160 (following (Zhang et al., 2019)). We used standard
data normalization (transforming the data to have zero mean and unit variance), and data augmentation (random
cropping and horizontal flipping). The hyperparameters we used are summarized in Table 8.

Regularization Hyperparameters. We performed grid searches to find suitable coeflicients for the regular-
ization schemes we propose. In particular, we searched over coefficients { 1e-3, le-4, 1e-5 } for the normalizing flow
regularizer, and { le-3, le-4, 5e-5 } for bi-directional finite-differences (FD) regularization. The effects of different
regularization strengths are summarized in Table 9. We also plot the condition numbers, maximum /minimum
singular values, and test accuracies while training with different coefficients for the normalizing flow objective
(Figure 14) and bi-directional FD (Figure 15). For both regularization methods, larger coefficients (e.g., stronger
regularization) yield more stable models with smaller condition numbers, but too large a coefficient can harm
performance (i.e., by hindering model flexibility). For example, using a large coefficient (1e-3) for the normalizing
flow objective substantially degrades test accuracy to 83.28%, compared to 89.07% for the un-regularized model.
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Figure 14: Comparison of regularization strengths for the normalizing flow objective during training of a
Glow-like architecture (affine coupling, with 1 x 1 convolutions and ActNorm) on CIFAR-10. Top-Left: condition
numbers for the un-regularized and regularized models; Top-Right /Bottom-Left: min/max singular values of
the Jacobian; Bottom-Right: test accuracies.
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Figure 15: Comparison of regularization strengths for the bi-directional finite differences (FD) regularizer
during training of a Glow-like architecture with affine coupling and 1 x 1 convolutions on CIFAR-10. Top-Left:
condition numbers for the un-regularized and regularized models; Top-Right /Bottom-Left: min/max singular
values of the Jacobian; Bottom-Right: test accuracies.
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Hyperparameter Value
Batch Size 128
Learning Rate le-4 (decayed by 10x at epochs {60, 120,160})
Weight Decay 0
Optimizer Adam(B; = 0.9, B2 = 0.999)
# of Layers 3
# of Blocks per Layer 16
# of Conv Layers per Block 3
# of Channels per Conv 128

Table 8: Hyperparameters for INN classifiers.

Extended Results. We provide an extended version of Table 2 (from the main paper) in Table 10, where we
also include additive and affine models with shuffle permutations. Figures 16 and 17 visualize the stability during
training using each regularizer, for additive and affine models, respectively.

) —— Unregularized

£ 3 L — FD

2 10* — Unregularized % 10 — Unregularized 5 10 —— NF

s —— FD % — FD e

= — NF s |, — NF S o

2.0 10

510 /f/\—xl AN

O WA—_‘ S~~~ 4x107

0 20k 40k 60k 80k 0 20k 40k 60k 80k 0 20k 40k 60k 80k

Iteration Iteration Iteration

Figure 16: Stability during training of a Glow-like architecture with additive coupling and 1 x 1 convolutions
on CIFAR-10. Left: condition numbers for the un-regularized and regularized models. Middle/Right: min/max
singular values of the Jacobian. Note the large effect of both regularizes on the min singular value, indicating a
more stable inverse mapping.
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Figure 17: Stability during training of a Glow-like architecture with affine coupling and 1 x 1 convolutions on
CIFAR-10. Left: condition numbers for the un-regularized and regularized models. Middle/Right: min/max
singular values of the Jacobian.
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Method Coeff.  Inv? Test Acc Recons. Err. Cond. Num. Min SV Max SV

Add. C, None 0 v 89.73 4.3e-2 7.2e+4 6.1e-2 4.4e+3
Add. C, FD le-3 v 88.34 5.9e-4 4.3e+1 2.1e-1 9.1e+0
Add. C, FD le-4 v 89.10 9.3e-4 2.0e+2 9.8e-2 2.0e+1
Add. C, FD 5e-5 v 89.71 1.1e-3 3.0e+2 8.7e-2 2.6e+1
Add. C, NF le-3 v 84.11 5.5e-4 6.5e+3 3.2e-2 2.1e+42
Add. C, NF le-4 v 88.65 6.5e-4 4.7e+3 3.4e-2 1.6e+2
Add. C, NF le-5 v 89.52 9.9e-4 1.7e+3 3.9e-2 6.6e+1
Aff. S, None 0 X 87.64 NaN 9.9e+13 1.7e-12 1.6e+2
Aff. S, FD le-3 v 86.85 2.0e-5 4.0e+1 1.8e-1 7.1e+0
Aff. S, FD le-4 v 88.14 3.1e-5 1.2e+2 1.1e-1 1.3e+1
Aft. S, FD 5e-5 v 88.13 3.9¢e-5 1.8e+2 9.6e-2 1.7e+1
Aff. S, NF le-3 v 80.75 3.1e-5 2.2e+4 2.0e-2 4.4e+2
Aff. S, NF le-4 v 87.87 2.3e-5 5.8e+3 3.1e-2 1.8e+2
Aff. S, NF le-5 v 88.31 2.8e-5 8.5e+2 3.7e-2 3.2e+1
Aff. C, None 0 X 89.07 Inf 8.6e+14 1.9e-12 1.7e+3
Aff. C, FD le-3 v 88.24 6.0e-4 4.2e+1 2.0e-1 8.4e+0
Aff. C, FD le-4 v 89.47 9.6e-4 1.6e+2 9.6e-2 1.5e+1
Aff. C, NF le-3 v 83.28 7.0e-4 1.0e+4 3.6e-2 3.8e+2
Aff. C, NF le-4 v 88.64 8.6e-4 9.6e+3 2.7e-2 2.6e+2
Aff. C, NF le-5 v 89.71 1.3e-3 2.2e+3 3.5e-2 7.7e+1

Table 9: Effect of the regularization coefficients for both finite differences regularization (denoted
FD) and the normalizing flow regularizer (NF), when training several INN classifiers on CIFAR-
10. All experiments in this table used Glow-like architectures with either additive or affine coupling, and either
shuffle permutations or 1x1 convolutions. In the Method column, “Add.” and “Aff.” denote additive and affine
coupling, respectively; “C.” and “S.” denote 1 x 1 convolutions and shuffle permutations, respectively. Note that
for the affine model with 1 x 1 convolutions, FD coefficient 5e-5 was too small to ensure stabilization, so it is not
included above.

Finite Differences Regularization. As mentioned in Section 3.2, for the bi-directional finite differences
regularizer we used samples v ~ N(0, I). For the step size in Eq. 6, we used € = 0.1 to avoid numerical errors due
to catastrophic cancellation.

Computational Efficiency of Regularizers. Most invertible neural networks are designed to make it easy to
compute the log determinant of the Jacobian, needed for the change-of-variables formula used to train flow-based
generative models. For coupling-based INNs, the log determinant is particularly cheap to compute, and can
be done in the same forward pass used to map x — z. Thus, adding a regularizer consisting of the weighted
normalizing flow loss does not incur any computational overhead compared to standard training.

Bi-directional finite differences regularization is more expensive: memory-efficient gradient computation involves a
forward pass, an inverse pass, and a backward pass. The forward regularizer adds an additional overhead to these
computations because it requires the previous computations not only for clean x, but also for noisy x + ev. The
inverse regularizer also passes two variables z = F(x) and 2 = F(z) + ev* through its computations, which are: an
inverse pass to compute the reconstruction, a forward pass to re-compute activations of the inverse mapping and
the backward pass through the inverse and forward. However, in practice the cost can be substantially reduced by
applying regularization only once per every K iterations of training; we found that K =5 and K = 10 performed
similarly to K = 1 in terms of their stabilizing effect, while requiring only a fraction more computation (e.g.,
1.26x the computation when K = 10) than standard training. See the wall-clock time comparison in Table 11.

We also experimented with applying the FD regularizer only to the inverse mapping, and while this can also
stabilize the inverse and achieve similar accuracies, we found bi-directional FD to be more reliable across
architectures. Applying regularization once every 10 iterations, bi-FD is only 1.06x slower than inverse-FD.
As the FD regularizer is architecture agnostic and conceptually simple, we envision a wide-spread use for
memory-efficient training.
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Model Regularizer Inv? Test Acc Recons. Err. Cond. Num. Min SV Max SV

None v 88.35 1.1e-4 2.1e+3 2.9e-2 6.0e+1

Additive Shuffle FD v 88.49 5.4e-5 7.0e+2 5.3e-2 3.7e+1
NF v 88.49 2.2e-5 1.1e+3 3.0e-2 3.3e+1

None v 89.73 4.3e-2 7.2e+4 6.1e-2 4.4e+3

Additive Conv FD v 89.71 1.1e-3 3.0e+2 8.7e-2 2.6e+1
NF v 89.52 9.9e-4 1.7e43 3.9e-2 6.6e+41

None X 87.64 NaN 9.9e+13 1.7e-12 1.6e+2

Affine Shuffle FD v 88.14 3.1e-5 1.2e+42 1.1e-1 1.3e+1
NF v 88.31 2.8e-5 8.5e+2 3.7e-2 3.2e+1

None X 89.07 Inf 8.6e14 1.9e-12 1.7e+3

Affine Conv FD v 89.47 9.6e-4 1.6e+2 9.6e-2 1.5e+1
NF v 89.71 1.3e-3 2.2e+3 3.5e-2 7.7e+1

Table 10: Extended results: Effect of regularization when training several additive and affine INN
architectures for CIFAR-10 classification.

Method Time per Epoch (s) Overhead

Unregularized 281.0 1x

Reg. Every 1 854.1 3.04x
Reg. Every 5 406.6 1.45x%
Reg. Every 10 354.6 1.26 x

Table 11: Timing comparison for applying bi-directional finite differences regularization at different
frequencies during training (every 1, 5, or 10 iterations). Time is measured in seconds and corresponds
to a single training epoch. All rows use memory-saving gradient computation; we used additive models with 1 x 1
convolutions, as these are also trainable without regularization, allowing us to time unregularized memory-saving
gradients.
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Figure 18: Comparison of the angle between memory-saving and true gradients during training of
a Glow model with affine coupling and 1 x 1 convolutions on CIFAR-10. While the unregularized affine
model suffers from an exploding inverse (the angle rapidly increases at the start of training and becomes NaN after
the dashed vertical line), adding either finite differences (FD) or normalizing flow (NF) regularization stabilizes
the model and keeps the angles small throughout training.

Comparing True and Memory-Saving Gradients. For the gradient angle figure in the introduction
(Section 1), we used additive and affine Glow models with 1 x 1 convolutions. To create that figure, we first trained
both models with exact (non-memory-saving) gradients, and saved model checkpoints during training; then, we
loaded each checkpoint and computed the angle between the true and memory-saving gradients for a fixed set
of 40 training mini-batches and plotted the mean angle. We did not train those models with memory-saving



Understanding and Mitigating Exploding Inverses in Invertible Neural Networks

gradients, because this would have made it impossible to train the unstable affine model (due to the inaccurate
gradient).

Figure 18 shows a similar analysis, comparing the angles between true and memory-saving gradients for an
affine model trained with and without regularization. The regularized models were trained with memory-saving
gradients, while the unregularized model was trained with standard backprop. Similarly to the introduction
figure, we saved model checkpoints throughout training, and subsequently loaded the checkpoints to measure
the angle between the angles for the 40 training mini-batches, plotting the mean angle. Applying either finite
differences or normalizing flow regularization when training the affine model keeps the angles small, meaning that
the memory-saving gradient is accurate, and allowing us to train with this gradient.

H OUTLOOK ON BI-DIRECTIONAL TRAINING WITH FLOW-GAN

Experimental Details. Table 12 summarizes the hyperparameters for all models trained in our Flow-GAN
experiments. The INN architecture in this experiment is similar to those described in Appendix D. Table 12 lists
hyperparameters changed for this experiment.

Hyperparameter Value
Batch Size 32
Learning Rate (Generator) 5e-5
Learning Rate (Discriminator) 5e-5
Weight Decay (Both) 0
Optimizer Adam(p, = 0.5, B2 = 0.99)
# of Layers 3
# of Blocks per Layer 8
# of Conv Layers per Block 3
# of Channels per Conv 128

Table 12: Hyperparameters for ADV models

The prior is a standard normal. One extra hyperparameter here is the weight of the MLE loss (which is
considered as a regularizer here). The discriminator had 7 convolution layers, each is regularized by Spectral
normalization (Miyato et al., 2018) and using the LeakyReLU activation. The depth of the convolution layers are
(64, 64, 128, 128, 256, 256, 512). The discriminator is further regularized with gradient penalty (Gulrajani et al.,
2017) and optimized using the binary cross entropy GAN loss.

Stability at Data. Similarly to the results in the classification Section 4.2, when a flow is trained as a GAN,
it suffers from non-invertibility even at training points. This is easily explained as the INN generator is never
explicitly trained at the data points, but only receives gradients from the discriminator.

Using the MLE objective on the generator alleviates this issue. It increases the stability at the data-points, and
makes training more stable in general, as discussed in section 3.3.2. This is exactly the FlowGAN formulation
proposed in (Grover et al., 2018). See Table 13 for a comparison of test-set likelihoods and sample quality. In
contrast to (Grover et al., 2018), we find additive Glow models trained with the GAN objective alone to be very
unstable. We used a weighing of 1e-3 for the MLE loss for the reported results here. One suspicion is that the
introduced ActNorm in the Glow architecture is causing extra instability.

Originally, one hypothesis was that the astronomically large BPD when trained as a GAN was caused by instability.
This is likely incorrect. Even for stable runs (with a smaller, more stable architecture) that had no reconstruction
errors and small condition numbers, the model still assigns incredibly large BPDs.

Our FlowGAN models strike a good balance between good test-set likelihood and improving sample quality. See
Figure 19 for samples. The FlowGAN samples show better “objectness” and do not have the high-frequency
artifacts shown in the MLE samples.

Unfortunately, given the fact that the GAN-only objective assigns unexplained BPDs, it’s still unclear whether
interpreting the BPDs for the FlowGAN in the same way as MLE models is recommended.
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MLE GAN FlowGAN

Figure 19: Comparing samples from our FlowGANs to figures copied from (Grover et al., 2018)
(bottom row).

Objective | Inception Score | BPD
MLE 2.92 3.54
GAN 5.76 8.53
FlowGAN 3.90 4.21
- FID BPD
MLE 790 3.77
GAN* 850 Inf
FlowGAN 420 4

Table 13: Comparing test-set likelihood and sample quality. Top half of table copied from (Grover et al.,
2018). *We find using only the GAN objective to be very unstable. Training can diverge after recording reasonable
FID. One definitive difference between our results and (Grover et al., 2018) is BPD using only the GAN objective.
Our runs often get infinite BPDs in a few hundred iterations, whereas (Grover et al., 2018) reports a BPD of
8.53. After inspecting their Table 2 together with Figure 2, the BPD and Inception Score seem to be reported for
different times during training.



