
Understanding and Mitigating Exploding Inverses
in Invertible Neural Networks

Jens Behrmann∗1 Paul Vicol∗2,3 Kuan-Chieh Wang∗2,3 Roger Grosse2,3 Jörn-Henrik Jacobsen2,3

1University of Bremen 2University of Toronto 3Vector Institute ∗ Equal contribution

Abstract

Invertible neural networks (INNs) have been
used to design generative models, implement
memory-saving gradient computation, and
solve inverse problems. In this work, we show
that commonly-used INN architectures suffer
from exploding inverses and are thus prone to
becoming numerically non-invertible. Across
a wide range of INN use-cases, we reveal fail-
ures including the non-applicability of the
change-of-variables formula on in- and out-of-
distribution (OOD) data, incorrect gradients
for memory-saving backprop, and the inabil-
ity to sample from normalizing flow models.
We further derive bi-Lipschitz properties of
atomic building blocks of common architec-
tures. These insights into the stability of INNs
then provide ways forward to remedy these
failures. For tasks where local invertibility is
sufficient, like memory-saving backprop, we
propose a flexible and efficient regularizer. For
problems where global invertibility is neces-
sary, such as applying normalizing flows on
OOD data, we show the importance of design-
ing stable INN building blocks.

1 INTRODUCTION

Invertible neural networks (INNs) have become a stan-
dard building block in the deep learning toolkit (Papa-
makarios et al., 2019; Donahue and Simonyan, 2019).
Invertibility is useful for training normalizing flow
(NF) models with exact likelihoods (Dinh et al., 2014,
2017), increasing posterior flexibility in VAEs (Rezende
and Mohamed, 2015), learning transition operators
in MCMC samplers (Song et al., 2017), computing

Proceedings of the 24th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2021, San Diego,
California, USA. PMLR: Volume 130. Copyright 2021 by
the author(s).

memory-efficient gradients (Gomez et al., 2017), al-
lowing for bi-directional training (Grover et al., 2018),
solving inverse problems (Ardizzone et al., 2019a) and
analyzing adversarial robustness (Jacobsen et al., 2019).

All the aforementioned appli-
cations rely on the assumption
that the theoretical invertibil-
ity of INNs carries through to
their numerical instantiation.
In this work, we challenge this
assumption by probing their
inverse stability in generative
and discriminative modeling
settings. As a motivating ex-
ample, on the left we show
an image x from within the
dequantization distribution of
a training example, and the

reconstructed image F−1(F (x)) from a competitive
CelebA normalizing flow model F (Kingma and Dhari-
wal, 2018). In the same vein as exploding gradients
in RNNs, here the inverse mapping explodes, lead-
ing to severe reconstruction errors up to Inf/NaN val-
ues. The model exhibits similar failures both on out-
of-distribution data and on samples from the model
distribution (discussed in Section 4.1). Interestingly,
none of these failures are immediately apparent dur-
ing training. Hence, NFs can silently become non-
invertible, violating the assumption underlying their
main advantages—exact likelihood computation and
efficient sampling (Papamakarios et al., 2019).

Memory-saving gradient com-
putation (Gomez et al., 2017)
is another popular applica-
tion of INNs where explod-
ing inverses can be detrimen-
tal. On the left, we show the
angle between (1) gradients
obtained from standard back-
prop and (2) memory-efficient
gradients obtained using the
inverse mapping to recompute

Understanding and Mitigating Exploding Inverses in Invertible Neural Networks

activations, during training of additive- and affine-
coupling INN classifiers on CIFAR-10. The affine
model exhibits exploding inverses, leading to a rapidly
increasing angle that becomes NaN after the dashed ver-
tical line—making memory-efficient training infeasible—
whereas the additive model is stable. This highlights
the importance of understanding the influence of dif-
ferent INN architectures on stability. Different tasks
may have different stability requirements: NFs require
the model to be invertible on training and test data
and, for many applications, on out-of-distribution data
as well. In contrast, memory-saving gradients only
require the model to be invertible on the training data,
to reliably compute gradients.

As we will show in our numerical experiments, the
aforementioned failures are not a rare phenomenon,
but are a concern across most application areas of
INNs. To provide an understanding of these failures,
we study the elementary components that influence
the stability of INNs: 1) bi-Lipschitz properties of INN
blocks (section 3.1); 2) the effect of the training objec-
tive (section 3.3); and 3) task-specific requirements for
the inverse computations (section 4 on global invert-
ibility for change-of-variables vs. local invertibility for
accurate memory-efficient gradients). Finally, putting
our theoretical analysis into practice, we empirically
verify solutions to overcome exploding inverses. These
solutions follow two main paradigms: 1) Enforcing
global stability using Lipschitz-constrained INN archi-
tectures or 2) regularization to enforce local stability.
In summary, we both uncover exploding inverses as
an issue across most use-cases of INNs and provide
ways to mitigate this instability. Our code can be
found at: http://www.github.com/asteroidhouse/
INN-exploding-inverses.

2 INVERTIBLE NETWORKS
Invertible neural networks (INNs) are bijective func-
tions with a forward mapping F : Rd → Rd and an
inverse mapping F−1 : Rd → Rd. This inverse can
be given in closed-form (Dinh et al., 2017; Kingma
and Dhariwal, 2018) or approximated numerically
(Behrmann et al., 2019; Song et al., 2019). Central
to our analysis of the stability of INNs is bi-Lipschitz
continuity:
Definition 1 (Lipschitz and bi-Lipschitz continuity).
A function F : Rd → Rd is called Lipschitz continuous
if there exists a constant L := Lip(F) such that:

‖F (x1)− F (x2)‖ ≤ L‖x1 − x2‖, ∀ x1, x2 ∈ Rd. (1)

If an inverse F−1 : Rd → Rd and a constant L∗ :=
Lip(F−1) exists such that for all y1, y2 ∈ Rd

‖F−1(y1)− F−1(y2)‖ ≤ L∗‖y1 − y2‖ (2)

holds, then F is called bi-Lipschitz continuous. Further-
more, F or F−1 is called locally Lipschitz continuous
in [a, b]d, if the above inequalities hold for x1, x2 or
y1, y2 in the interval [a, b]d.

As deep-learning computations are carried out with
limited precision, numerical error is always introduced
in both the forward and inverse passes. Instability in
either pass will aggravate this imprecision, and can
make an analytically invertible network numerically
non-invertible. If the singular values of the Jacobian of
the inverse mapping can become arbitrarily large, we
refer to this effect as an exploding inverse.

To obtain a better understanding in the context of
INNs, we first define coupling blocks and then study
numerical error and instability in a toy setting. Let
I1, I2 denote disjoint index sets of {1, . . . , d} to par-
tition vectors x ∈ Rd. For example, they denote a
partition of feature channels in a convolutional archi-
tecture. Additive coupling blocks (Dinh et al., 2014)
are defined as:

F (x)I1 = xI1 (3)
F (x)I2 = xI2 + t(xI1)

and affine coupling blocks (Dinh et al., 2017) as:

F (x)I1 = xI1 (4)
F (x)I2 = xI2 � g(s(xI1)) + t(xI1),

where t, s : R|I1| → R|I2| are Lipschitz continuous and
� denotes elementwise multiplication. Hence, coupling
blocks differ only in their scaling 1.

To understand how numerical error occurs in coupling
blocks, consider the following example: consider x ∈ R2

and the trivial partition I1 = 1 and I2 = 2. Further,
let t(x1) = 0.123456789 and g(s(x1)) = 0.1. Floating-
point operations introduce rounding errors when num-
bers from different scales are summed up. Figure 1 vi-
sualizes the reconstruction error introduced at various
depth for the given t(x1), g(s(x1)). In particular, the
additive coupling INN has small numerical errors when
reconstructing due to rounding errors in the summation.
The affine blocks, however, show an exploding inverse
effect since the singular values of the forward mapping
tend to zero as depth increases. Thus, while being ana-
lytically invertible, the numerical errors and instability
renders the network numerically non-invertible even in
this simple example.

To formalize the connection of numerical errors and
Lipschitz constants, consider F (x) = z as the analytical

1Affine blocks scale the input with an elementwise func-
tion g that has to be non-zero everywhere—common choices
are sigmoid or exp(·).

http://www.github.com/asteroidhouse/INN-exploding-inverses
http://www.github.com/asteroidhouse/INN-exploding-inverses

Jens Behrmann∗, Paul Vicol∗, Kuan-Chieh Wang∗, Roger Grosse, Jörn-Henrik Jacobsen

Figure 1: Numerical error and instability in coupling blocks: Consider a coupling block with t(x1) =
0.123456789 and g(s(x1)) = 0.1 (see Section 2). The input is (x1, x2) = (1, 1). From left to right, we show the: 1)
reconstruction error; 2) minimum singular value σd; 3) maximum singular value σ1; and 4) condition number,
σ1/σd, as a function of the number of INN blocks.

exact forward computation and Fδ(x) = z + δ =: zδ
as the floating-point inexact computation with error
δ. In order to bound the error in the reconstruction
due to the imprecision in the forward mapping, let
xδ1 = F−1(zδ). Now consider:

‖x− xδ1‖2 ≤ Lip(F−1)‖z − zδ‖2 = Lip(F−1)‖δ‖2,

where Lip(F−1) is used to bound the influence of the
numerical error introduced in the forward mapping.
Additionally, similarly to the forward mapping, the
inverse mapping adds numerical imprecision. Thus, we
introduce F−1δ (zδ) = xδ1 + δ2 := xδ2 . Hence, we obtain
the bound:

‖x− (xδ1 + δ2)‖2 ≤ ‖x− xδ1‖2 + ‖δ2‖2
≤ Lip(F−1)‖z − zδ‖2 + ‖δ2‖2
= Lip(F−1)‖δ‖2 + ‖δ2‖2.

While obtaining quantitative values for δ and δ2 for
a model as complex as deep INNs is hard, the above
formalization still provides insights into the role of
the inverse stability when reconstructing inputs. In
sum, INNs are designed to be analytically invertible,
but numerical errors are always present. How much
these errors are magnified is bounded by their Lipschitz
continuity (stability).

3 STABILITY OF INVERTIBLE
NEURAL NETWORKS

We first discuss bi-Lipschitz properties of common INN
building blocks, and how certain architectures suffer
from exploding inverses in Section 3.1. Then we explore
how to stabilize INNs globally (Section 3.2) and locally
(Section 3.3).

3.1 Lipschitz Properties of INN Blocks

Research on INNs has produced a large variety of ar-
chitectural building blocks. Here, we build on the work
of Behrmann et al. (2019), that proved bi-Lipschitz
bounds for invertible ResNets. In particular, we derive
Lipschitz bounds of coupling-based INNs and provide

an overview of the stability of other common building
blocks. Most importantly for our subsequent discus-
sion are the qualitative insights we can draw from this
analysis. Hence, we summarize these results in Theo-
rem 2 and provide the quantitative Lipschitz bounds
as lemmas in Appendix B.

We start with our main result on coupling blocks, which
are the most commonly used INN architectures. While
they only differ in the scaling, this difference strongly
influences stability:

Theorem 2 (Stability of additive and affine blocks).
Consider additive and affine blocks as in Eq. 3 and Eq. 4
and assume the same function t. Further, let t, s, g
Lipschitz continuous, continuously differentiable and
non-constant functions. Then the following differences
w.r.t. bi-Lipschitz continuity hold:

(i) Affine blocks have strictly larger (local) bi-Lipschitz
bounds than additive blocks.

(ii) There is a global bound on Lip(F) and Lip(F−1)
for additive blocks, but only local bounds for
affine blocks, i.e. there exist no Lip(F) > 0 and
Lip(F−1) > 0 such that Eqs. 1, 2 hold over Rd.

The proof is given in Appendix B.1, together with upper
bounds in Lemmas 5 and 6. Note that an upper bound
on Lip(F) provides a lower bound on Lip(F−1) and
vice versa. These differences offer two main insights.
First, affine blocks can have arbitrarily large singular
values in the inverse Jacobian, i.e. an exploding inverse.
Thus, they are more likely to become numerically non-
invertible than additive blocks. Second, controlling
stability in each architecture requires fundamentally
different approaches since additive blocks have global
bounds, while affine blocks are not globally bi-Lipschitz.

In addition to the Lipschitz bounds of coupling layers,
we provide an overview of known Lipschitz bounds of
other common INN building blocks in Table 3 (Ap-
pendix A). Besides coupling-based approaches we cover
free-form approaches like Neural ODEs (Chen et al.,
2018) and i-ResNets (Behrmann et al., 2019). Note

Understanding and Mitigating Exploding Inverses in Invertible Neural Networks

that the bounds provide the worst-case stability and
are primarily meant to serve as a guideline for the
design of invertible blocks.

3.2 Controlling Global Stability of INNs

As we showed in the previous section, each INN building
block has its own stability properties (see Table 3 for an
overview). The bi-Lipschitz bounds of additive coupling
blocks can be controlled using a similar strategy to
i-ResNets. Via spectral normalization (Miyato et al.,
2018), it is possible to control the Lipschitz-constant of t
in Eq. 3, which guarantees stability via the bounds from
Lemma 5. On the other hand, spectral normalization
does not provide guarantees for affine blocks, as they
are not globally bi-Lipschitz over Rd due to dependence
on the range of the inputs x (see Theorem 2).

Modified Affine Scaling. A natural way to increase
stability of affine blocks is to consider different elemen-
twise scaling functions g, see Ardizzone et al. (2019b)
for an example of such a modification. In particular,
avoiding scaling by small values strongly influences the
inverse Lipschitz bound (see Lemma 6, Appendix B).
Thus, a modification guided by Lemma 6 would be
to adapt the sigmoid scaling to output values in a
restricted range such as (0.5, 1) rather than the stan-
dard range (0, 1). As we show in our experiments
(Sections 4.1.1 & 4.1.2), this indeed improves stability.
However, it may still suffer from exploding inverses as
there is no global Lipschitz bound (see Theorem 2).

3.3 Controlling Local Stability of INNs

While the previous section aimed at controlling global
stability, in this section we discuss how penalty func-
tions and the training objective itself stabilize INNs
locally, i.e. around inputs x ∈ Rd.

3.3.1 Bi-Directional Finite Differences
Regularization

Penalty terms on the Jacobian can be used to enforce
local stability (Sokolić et al., 2017; Hoffman et al.,
2019). Their connection to Lipschitz bounds can be
understood using the identity from Federer (1969, Thm.
3.1.6): if F : Rd → Rd is Lipschitz continuous and
differentiable, then we have:

Lip(F) = sup
x∈Rd

‖JF (x)‖2

= sup
x∈Rd

sup
‖v‖2=1

‖JF (x)v‖2, (5)

where JF (x) is the Jacobian matrix of F at x and
‖JF (x)‖2 denotes its spectral norm. To approximate
the RHS of Eq. 5 from below, we obtain v ∈ Rd as
v/‖v‖2 with v ∼ N (0, I), which uniformly samples

from the unit sphere (Muller, 1959). For given x and v,
the term ‖JF (x)v‖2 can be added to the loss function
as a regularizer. However, training with such a penalty
term requires double-backpropagtion (Drucker and Le
Cun, 1992; Etmann, 2019), which makes recomputing
the pre-activations during backprop via the inverse
(Gomez et al., 2017) (memory-saving gradients) difficult.
Thus, in addition to randomization, we introduce a
second approximation using finite differences as:

sup
x∈Rd

sup
‖v‖2=1

‖JF (x)v‖2 ≈

sup
x∈Rd

sup
‖v‖2=1

1

ε
‖F (x)− F (x+ εv)‖2, (6)

with a step-size ε > 0. The approximation error can be
estimated via Taylor expansion and has to be traded off
with catastrophic cancellation due to subtracting near-
identical float values (An et al., 2011). Since we aim
at having both stable forward and inverse mappings,
we employ this penalty on both directions F and F−1,
and call it bi-directional finite differences regularization
(abbreviated FD). Details about this architecture ag-
nostic regularizer and its computational overhead are
provided in Appendix G.

3.3.2 Influence of the Normalizing Flow Loss
on Stability

In addition to the INN architecture and local regular-
ization such as bi-directional FD introduced in Sec-
tion 3.3.1, the training objective itself can impact
local stability. Here, we examine the stabilization
effect of the commonly used normalizing flow (NF)
objective (Papamakarios et al., 2019). Consider a
parametrized diffeomorphism Fθ : Rd → Rd and a
base distribution pZ . By a change-of-variables, we
have for all x ∈ Rd

log pθ(x) = log pZ(Fθ(x)) + log |det JFθ (x)| , (7)

where JFθ(x) denotes the Jacobian of Fθ at x. The
log-determinant in Eq. 7 can be expressed as:

log |det JFθ (x)| =
d∑
i=1

log σi(x), (8)

where σi(x) denotes the i-th singular value of JFθ(x).
Thus, minimizing the negative log-likelihood as
minθ − log pθ(x) involves maximizing the sum of the
log singular values (Eq. 8). Due to the slope of the
logarithmic function log(x), very small singular values
are avoided more strongly than large singular values
are favored. Thus, the inverse of Fθ is encouraged to be
more stable than the forward mapping. Furthermore
when using Z ∼ N (0, I) as the base distribution, we

Jens Behrmann∗, Paul Vicol∗, Kuan-Chieh Wang∗, Roger Grosse, Jörn-Henrik Jacobsen

Glow Glow w/ Modified Scaling Residual Flow

Figure 2: Reconstruction error on 2D checkerboard data. Left: an affine model with standard sigmoid
scaling in (0, 1); Middle: a more stable affine model with scaling in (0.5, 1); Right: a Residual Flow model (Chen
et al., 2019). The green boxes highlight the training data distribution [−4, 4]; we see that both affine models
become unstable outside this distribution, while the Residual Flow remains stable.

Figure 3: Samples from 2D checkerboard.

minimize:

− log pZ(Fθ(x)) ∝ ‖Fθ(x)‖22,

which bounds the `2-norm of the outputs of Fθ. Due
to this effect, large singular values are avoided and the
mapping Fθ is further locally stabilized.

Thus, the two terms of the normalizing flow objec-
tive have complementary effects on stability: the log-
determinant increases all singular values, but has a
stronger effect on small singular values than on large
ones, improving inverse stability, while the base term
encourages the output of the function to have small
magnitude, improving forward stability. If additional
stability is required, bounding the `2-norm of inter-
mediate activations would further avoid fluctuations,
where a subflow exhibits high magnitude that is can-
celled out by the subsequent subflow. The effect of the
NF objective, however, acts only on the training data
x ∈ Rd and is thus not able to globally stabilize INNs,
as we show in our experiments (Section 4.1).

4 EXPERIMENTS

First, we show that exploding inverses are a concern
across most application areas of INNs. Second, we aim
to provide ways to mitigate instability. For this we
conduct experiments on two tasks: generative model-
ing with normalizing flows (Section 4.1) and memory-

efficient gradient computation for supervised learning
(Section 4.2). Due to the growing body of INN ar-
chitectures we had to restrict our experimental study
to a subset of INNs: additive/ affine coupling blocks
(Dinh et al., 2014, 2017) and Residual Flows (Chen
et al., 2019). This particular choice was guided by the
simplicity of coupling blocks and by the close link of
Residual Flows to stability.

4.1 Non-Invertibility in Normalizing Flows

Here we show that INNs can become numerically
non-invertible even when trained with the normaliz-
ing flow (NF) loss (despite encouraging local stability,
see Section 3.3.2). We study this behavior on out-of-
distribution data and identify the exploding inverse
effect in the data and model distribution.

4.1.1 Instability on Out-of-Distribution Data
Because NFs allow for efficient likelihood computation,
they have been used in several likelihood-based ap-
proaches for out-of-distribution (OOD) detection (Nal-
isnick et al., 2019; Fetaya et al., 2020). Here we show,
however, that certain classes of flows can be numeri-
cally non-invertible on OOD data, implying that the
likelihoods computed on such data are not meaning-
ful because the change-of-variables formula no longer
applies.
2D Checkerboard. First we consider a 2D checker-
board distribution (see samples in Figure 3 and further
madetails in Appendix C). Despite being ill-posed due
to the discontinuous density (jumps at the edges of
the checkerboard), it is often used as a benchmark for
NFs (Chen et al., 2019; Grathwohl et al., 2019). The
discontinuity of the dataset is manifested in two main
ways in Figure 2: 1) at these jumps, the model becomes
unstable, which leads to larger reconstruction errors
(see slightly expressed grid-like pattern), 2) affine mod-
els can become non-invertible outside the data domain.
Figure 2 further shows reconstruction errors from a
modified affine model—which is more stable, but still

Understanding and Mitigating Exploding Inverses in Invertible Neural Networks

Gaussian Texture tinyImageNet
O
ri
gi
na

l
R
ec
on

st
ru
ct
ed

Glow ResFlow

Dataset % Inf Err % Inf Err

CIFAR-10 0 6.3e-5 0 2.9e-2

Uniform 100 - 0 1.7e-2
Gaussian 100 - 0 7.2e-3

Rademacher 100 - 0 1.9e-3
SVHN 0 5.5e-5 0 7.3e-2
Texture 37.0 7.8e-2 0 2.0e-2
Places 24.9 9.9e-2 0 2.9e-2

tinyImageNet 38.9 1.6e-1 0 3.5e-2

Figure 4: Left: Reconstructions of OOD data, using a CIFAR-10 pre-trained Glow model. Broken regions (NaN
or Inf) in the reconstructions are plotted in cyan. Right: Mean `2 reconstruction errors on in-distribution
(CIFAR-10) and out-of-distribution data, for a pre-trained Glow and Residual Flow. We used three synthetic
noise datasets {Uniform, Gaussian, Rademacher} as well as SVHN (Netzer et al., 2011), Texture (Cimpoi et al.,
2014), Places (Zhou et al., 2017), and tinyImageNet. We used 10,000 samples from each OOD dataset, and we
report 1) the percentage of images that yielded Inf reconstruction error; and 2) the mean reconstruction error for
the non-Inf samples, see Err column.

Additive Affine Mod. Affine
Data BPD (Train) 3.29 3.27 3.25
Data BPD (Test) 3.55 3.51 3.5

Reliable Sample BPD 3 7 3
No Visible Sample Recon Err. 3 7 3

Table 1: Flow results on CIFAR10. Bits-per-
dimension (BPDs) reported at 100k updates. The
bottom 2 rows show whether problems occur during
training. The affine model was unstable w.r.t. model
samples, and the additive and modified affine models
are stable.

suffers from exploding inverses in OOD areas—and a
Residual Flow (Chen et al., 2019), which has low recon-
struction error globally, consistent with our stability
analysis.

CIFAR-10 OOD. Next, we evaluated CIFAR-10
pre-trained Glow and Residual Flow models on a set
of OOD datasets from Hendrycks and Gimpel (2016);
Liang et al. (2017); Nalisnick et al. (2019). 2 Figure 4
shows qualitative reconstruction errors for Glow on
three OOD datasets, as well as the numerical recon-
struction errors for Glow and ResFlow models on all
OOD datasets. While the Residual Flow was always sta-
bly invertible, Glow was non-invertible on all datasets
except SVHN. This indicates that OOD detection meth-
ods based on Glow likelihoods may be unreliable. In
Appendix D, we provide additional details, as well as
a comparison of the stability of additive and affine
coupling models on OOD data during training.

2For Glow and Residual Flows, we used the pre-trained
models from https://github.com/y0ast/Glow-PyTorch
and https://github.com/rtqichen/residual-flows, re-
spectively.

Figure 5: Instability in model-distribution. The
top row shows data from CelebA64 and the two bottom
rows show samples from an affine model during training
at epoch 20. NaN pixels are visualized in cyan.

4.1.2 Instability in the Data Distribution and
further Failures

In this section, we further identify failures within the
model and data distributions. In particular, we study
the stability of the inverse on the model distribution
by sampling z from the base distribution (rather than
obtaining z via a forward pass on some data). For
this, we trained both additive/affine models on CIFAR-
10, and an affine model on CelebA64 (see details in
Appendix D). We report quantitative results during
training on CIFAR-10 in Table 1. The affine model
was unstable w.r.t. model samples. Furthermore in
Figure 5, we show samples from the affine CelebA64
model, which has NaN values in multiple samples.

Non-Invertible Inputs within the Dequantiza-
tion Region. We can further expose non-invertibility
even in the data distribution. By optimizing within

https://github.com/y0ast/Glow-PyTorch
https://github.com/rtqichen/residual-flows

Jens Behrmann∗, Paul Vicol∗, Kuan-Chieh Wang∗, Roger Grosse, Jörn-Henrik Jacobsen

Unregularized Regularized

Figure 6: Exploding inverses on a 2D regression task. A Glow model is trained to map between two 2D
Gaussian distributions (x1, x2)→ (y1, y2), where y2 has low variance, so that we are essentially mapping from 2D
space onto a 1D subspace. Left: An unregularized model exhibits exploding inverses, illustrated by the points
that are mapped far outside the original data distribution by the inverse mapping. Right: Regularizing the
model by adding the normalizing flow objective with a small coefficient (1e-8) stabilizes the mapping.

the dequantization distribution of a datapoint we are
able to find regions that are poorly reconstructed by
the model. Note that the inputs found this way are
valid samples from the training data distribution. See
Appendix E for details.

Instability beyond the NF loss. In Appendix H
we provide results on bi-directional training with INNs
in the Flow-GAN setting (Grover et al., 2018). While
additive models did not show instabilities thus far,
they exhibit exploding inverses when trained solely
adversarially. Lastly, this exploration demonstrates
how our analysis can be leveraged to choose appropriate
tools for stabilizing INNs, and in this case improve
model samples while retaining competitive bits-per-
dimension (BPDs).

4.2 Supervised Learning with Memory
Efficient Gradients

For supervised learning, INNs enable memory-efficient
training by re-computing intermediate activations in
the backward pass, rather than storing them in memory
during the forward pass (Gomez et al., 2017). This
enables efficient large-scale generative modeling (Don-
ahue and Simonyan, 2019) and high-resolution medical
image analysis (Etmann et al., 2020). Re-computing
the activations during the backward pass, however, re-
lies on the inverse being numerically precise locally
around the training data. This is a weaker requirement
than the global stability we desire for NFs such that
they can be applied to OOD data. However, in this
section we show that even this weaker requirement can
be violated, and how to mitigate these failures by local
regularization as discussed in Section 3.3.

Toy 2D Regression. In contrast to NFs, where the
likelihood objective encourages local stability, there is
no default mechanism to avoid unstable inverses in su-
pervised learning (e.g., classification or regression). As
an example, consider a simple 2D regression problem

visualized in Figure 6. Here, the targets y lie almost
on a 1D subspace, which requires the learned mapping
to contract from 2D to 1D. Even in such a simple task,
a Glow regression model becomes non-invertible, as
shown by the misplaced reconstructions for the un-
regularized model. Additional details are provided in
Appendix F. This illustrates the importance of adding
regularization terms to supervised objectives to main-
tain invertibility, as we do next for memory-efficient
training on CIFAR-10.

CIFAR-10 Classification. Here we show that INN
classifiers on CIFAR-10 can become non-invertible—
making it impossible to compute accurate memory-
saving gradients—and that local regularization by
adding either the finite differences (FD) penalty or
the normalizing flow (NF) objective with a small coeffi-
cient stabilizes these models, enabling memory-efficient
training. We focused on additive and affine models
with architectures similar to Glow (Kingma and Dhari-
wal, 2018), with either 1 × 1 convolutions or shuffle
permutations and ActNorm between building blocks.
We used only coupling approaches, because i-ResNets
(Behrmann et al., 2019) are not suited for memory-
efficient gradients due to their use of an expensive
iterative inverse. Experimental details and extended
results are provided in Appendix G.

In Table 2, we compare the performance and stability
properties of unregularized additive and affine mod-
els, as well as regularized versions using either FD
or NF penalties (Appendix G shows the effects of
different regularization strengths). Note that we do
not aim to achieve SOTA accuracy, and these accura-
cies match those reported for a similar Glow classifier
by Behrmann et al. (2019). In particular, we observe
how affine models suffer from exploding inverses and
are thus not suited for computing memory-efficient gra-
dients. Both the NF and FD regularizers mitigate the
instability, yielding similar test accuracies to the un-
regularized model, while maintaining small reconstruc-

Understanding and Mitigating Exploding Inverses in Invertible Neural Networks

Model Regularizer Inv? Test Acc Recons. Err. Cond. Num. Min SV Max SV

Additive Conv
None 3 89.73 4.3e-2 7.2e+4 6.1e-2 4.4e+3
FD 3 89.71 1.1e-3 3.0e+2 8.7e-2 2.6e+1
NF 3 89.52 9.9e-4 1.7e+3 3.9e-2 6.6e+1

Affine Conv
None 7 89.07 Inf 8.6e14 1.9e-12 1.7e+3
FD 3 89.47 9.6e-4 1.6e+2 9.6e-2 1.5e+1
NF 3 89.71 1.3e-3 2.2e+3 3.5e-2 7.7e+1

Table 2: Effect of the finite differences (FD) and normalizing flow (NF) regularizers when training
additive and affine INN Glow architectures using 1 × 1 convolutions for CIFAR-10 classification. For each
setting, we report the test accuracy, the numerical reconstruction error, and the condition number and min/max
singular values (SVs) of the Jacobian of the forward mapping. While the additive model was always stable, the
unregularized affine model became highly unstable, with Inf reconstruction error; we observe that instability
arises from the inverse mapping, as the min SV is 1.9e-12.

tion errors and condition numbers.3 In Appendix G,
we show that regularization keeps the angle between
the true gradient and memory-saving gradient small
throughout training. The computational overhead of
the FD regularizer is only 1.26× that of unregularized
training (Table 11 in App. G). We also experimented
with applying the FD regularizer only to the inverse
mapping, and while this can also stabilize the inverse
and achieve similar accuracies, we found bi-directional
FD to be more reliable across architectures. Applying
regularization once every 10 iterations, bi-FD is only
1.06× slower than inverse-FD. As the FD regularizer is
architecture agnostic and conceptually simple, we envi-
sion a wide-spread use for memory-efficient training.

5 RELATED WORK
Invertibility and Stability of Deep Networks.
The inversion from activations in standard neural net-
works to inputs has been studied via optimization in
input space (Mahendran and Vedaldi, 2014) or by link-
ing invertibility and inverse stability for ReLU-networks
(Behrmann et al., 2018). However, few works have stud-
ied the stability of INNs: Gomez et al. (2017) examined
the numerical errors in the gradient computation when
using memory-efficient backprop. Similarly to our em-
pirical analysis, Jacobsen et al. (2018) computed the
SVD of the Jacobian of an i-RevNet and found it to
be ill-conditioned. Furthermore, i-ResNets (Behrmann
et al., 2019) yield bi-Lipschitz bounds by design. Lastly,
Chang et al. (2018) studied the stability of reversible
INN dynamics in a continuous framework. In contrast,
the stability of neural networks has been of major
interest due to the problem of exploding/vanishing
gradients as well as for training Wasserstein GANs (Ar-
jovsky et al., 2017). Furthermore, adversarial examples
(Szegedy et al., 2013) are strongly tied to stability and
inspired our invertibility attack (Section 4.1.2).

3Note that the training with FD was performed memory-
efficiently, while the None and NF settings were trained
using standard backprop.

Improving Stability of Invertible Networks. In-
stability in INNs has been noticed in other works, yet
without a detailed treatment. For example, Putzky and
Welling (2019) proposed to employ orthogonal 1×1 con-
volutions to obtain accurate memory-efficient gradients
and Etmann et al. (2020) used weight normalization for
stabilization. Our finite differences regularizer, on the
other hand, is architecture agnostic and could be used
in the settings above. Furthermore, Ardizzone et al.
(2019b) considered modified scaling in affine models
to improve their stability. Neural ODEs (Chen et al.,
2018) are another way to design INNs, and research
their stability. Finlay et al. (2020); Yan et al. (2020);
Massaroli et al. (2020) provide further insights into
designing principled and stable INNs.

Fixed-Point Arithmetic in INNs. Maclaurin
et al. (2015); MacKay et al. (2018) implement invertible
computations using fixed-point numbers, with custom
schemes to store information that is lost when bits
are shifted, enabling exact invertibility at the cost of
memory usage. As Gomez et al. (2017) point out, this
allows exact numerical inversion when using additive
coupling independent of stability. However, our stabil-
ity analysis aims for a broadly applicable methodology
beyond the special case of additive coupling.

Invertible Building Blocks. Besides the invertible
building blocks listed in Table 3 (Appendix A), sev-
eral other approaches like in Karami et al. (2019) have
been proposed. Most prominently, autogressive models
like IAF (Kingma et al., 2016), MAF (Papamakarios
et al., 2017) or NAF (Huang et al., 2018) provide in-
vertible models that are not studied in our analysis.
Furthermore, several newer coupling layers that require
numerical inversion have been introduced by Ho et al.
(2019); Jaini et al. (2019); Durkan et al. (2019). In
addition to the coupling-based approaches, multiple
approaches (Chen et al., 2018; Behrmann et al., 2019;
Chen et al., 2019; Grathwohl et al., 2019; Song et al.,
2019) use numerical inversion schemes, where the in-
terplay of numerical error due to stability and error

Jens Behrmann∗, Paul Vicol∗, Kuan-Chieh Wang∗, Roger Grosse, Jörn-Henrik Jacobsen

due to the approximation of the inverse adds another
dimension to the study of invertibility.

Stability-Expressivity Tradeoff. While Lipschitz
constrained INNs like i-ResNets (Behrmann et al., 2019)
allow to overcome many failures we observed with affine
coupling blocks (Dinh et al., 2017), this constrains
the flexibility of INNs. Hence, there is a tradeoff be-
tween stability and expressivity as studied in Jaini et al.
(2020); Cornish et al. (2020). While numerical invert-
ibility is necessary for a safe usage of INNs, mixtures of
Lipschitz constrained INNs could be used for improved
flexibility as suggested in Cornish et al. (2020).

6 CONCLUSION
Invertible Neural Networks (INNs) are an increas-
ingly popular component of the modern deep learning
toolkit. However, if analytical invertibility does not
carry through to the numerical computation, their un-
derlying assumptions break. When applying INNs, it
is important to consider how the inverse is used. If
local stability is sufficient, like for memory-efficient
gradients, our finite difference penalty is sufficient as
an architecture agnostic stabilizer. For global stabil-
ity requirements e.g. when using INNs as normalizing
flows, the focus should be on architectures that enable
stable mappings like Residual Flows (Chen et al., 2019).
Altogether we have shown that studying stability prop-
erties of both forward and inverse is a key step towards
a complete understanding of INNs.

Acknowledgements

Resources used in preparing this research were pro-
vided, in part, by the Province of Ontario, the Gov-
ernment of Canada through CIFAR, and companies
sponsoring the Vector Institute www.vectorinstitute.
ai/#partners. Jens Behrmann acknowledges the sup-
port by the Deutsche Forschungsgemeinschaft (DFG)
within the framework of GRK 2224/1 “π3: Parameter
Identification – Analysis, Algorithms, Applications”.
Paul Vicol was supported by a JP Morgan AI Fellow-
ship. We also would like to thank Joost van Amersfoort
for insightful discussions, and members on the Vector’s
Ops team (George Mihaiescu, Relu Patrascu, and Xin
Li) for their computation/infrastructure support.

References

Heng-Bin An, Ju Wen, and Tao Feng. On finite dif-
ference approximation of a matrix-vector product in
the Jacobian-free Newton–Krylov method. Journal
of Computational and Applied Mathematics, 236(6):
1399 – 1409, 2011.

Lynton Ardizzone, Jakob Kruse, Sebastian Wirkert,

Daniel Rahner, Eric W Pellegrini, Ralf S Klessen,
Lena Maier-Hein, Carsten Rother, and Ullrich Köthe.
Analyzing inverse problems with invertible neural
networks. In International Conference on Learning
Representations, 2019a.

Lynton Ardizzone, Carsten Lüth, Jakob Kruse, Carsten
Rother, and Ullrich Köthe. Guided image generation
with conditional invertible neural networks. arXiv
preprint arXiv:1907.02392, 2019b.

Martin Arjovsky, Soumith Chintala, and Léon Bot-
tou. Wasserstein generative adversarial networks.
In International Conference on Machine Learning,
2017.

Uri M. Ascher. Numerical methods for evolutionary
differential equations. Computational Science and En-
gineering. Society for Industrial and Applied Mathe-
matics, 2008.

Jens Behrmann, Sören Dittmer, Pascal Fernsel, and
Peter Maaß. Analysis of invariance and robustness
via invertibility of ReLU-networks. arXiv preprint
arXiv:1806.09730, 2018.

Jens Behrmann, Will Grathwohl, Ricky T. Q. Chen,
David Duvenaud, and Jörn-Henrik Jacobsen. Invert-
ible residual networks. In International Conference
on Machine Learning, 2019.

Bo Chang, Lili Meng, Eldad Haber, Lars Ruthotto,
David Begert, and Elliot Holtham. Reversible archi-
tectures for arbitrarily deep residual neural networks.
In AAAI Conference on Artificial Intelligence, 2018.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt,
and David Duvenaud. Neural ordinary differential
equations. In Advances in Neural Information Pro-
cessing Systems, 2018.

Ricky T. Q. Chen, Jens Behrmann, David Duvenaud,
and Jörn-Henrik Jacobsen. Residual flows for in-
vertible generative modeling. In Advances in Neural
Information Processing Systems, 2019.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos,
Sammy Mohamed, and Andrea Vedaldi. Describing
textures in the wild. In Conference on Computer
Vision and Pattern Recognition, 2014.

Rob Cornish, Anthony Caterini, George Deligiannidis,
and Arnaud Doucet. Relaxing bijectivity constraints
with continuously indexed normalising flows. In In-
ternational Conference on Machine Learning, 2020.

Laurent Dinh, David Krueger, and Yoshua Bengio.
NICE: Non-linear independent components estima-
tion. arXiv preprint arXiv:1410.8516, 2014.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio.
Density estimation using real NVP. In International
Conference on Learning Representations, 2017.

www.vectorinstitute.ai/#partners
www.vectorinstitute.ai/#partners

Understanding and Mitigating Exploding Inverses in Invertible Neural Networks

Jeff Donahue and Karen Simonyan. Large scale adver-
sarial representation learning. In Advances in Neural
Information Processing Systems, 2019.

Harris Drucker and Yann Le Cun. Improving general-
ization performance using double backpropagation.
IEEE Transactions on Neural Networks, 3(6):991–
997, 1992.

Conor Durkan, Artur Bekasov, Ian Murray, and George
Papamakarios. Neural spline flows. In Advances in
Neural Information Processing Systems, 2019.

Christian Etmann. A closer look at double backpropa-
gation. arXiv preprint arXiv:1906.06637, 2019.

Christian Etmann, Rihuan Ke, and Carola-Bibiane
Schönlieb. iUNets: Fully invertible U-Nets with
learnable up- and downsampling. arXiv preprint
arXiv:2005.05220, 2020.

Herbert Federer. Geometric Measure Theory.
Grundlehren der Mathematischen Wissenschaften.
Springer, 1969.

Ethan Fetaya, Jörn-Henrik Jacobsen, Will Grathwohl,
and Richard Zemel. Understanding the limitations
of conditional generative models. In International
Conference on Learning Representations, 2020.

Chris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan,
and Adam M Oberman. How to train your neural
ODE: The world of Jacobian and kinetic regulariza-
tion. arXiv preprint arXiv:2002.02798, 2020.

Aidan N Gomez, Mengye Ren, Raquel Urtasun, and
Roger B Grosse. The reversible residual network:
Backpropagation without storing activations. In
Advances in Neural Information Processing Systems,
pages 2214–2224, 2017.

Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt,
Ilya Sutskever, and David Duvenaud. FFJORD:
Free-form continuous dynamics for scalable reversible
generative models. In International Conference on
Learning Representations, 2019.

Aditya Grover, Manik Dhar, and Stefano Ermon. Flow-
GAN: Combining maximum likelihood and adversar-
ial learning in generative models. In Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vin-
cent Dumoulin, and Aaron C Courville. Improved
training of Wasserstein GANs. In Advances in Neural
Information Processing Systems, pages 5767–5777,
2017.

Dan Hendrycks and Kevin Gimpel. A baseline for de-
tecting misclassified and out-of-distribution examples
in neural networks. arXiv preprint arXiv:1610.02136,
2016.

Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan,
and Pieter Abbeel. Flow++: Improving flow-based

generative models with variational dequantization
and architecture design. In International Conference
on Machine Learning, 2019.

Judy Hoffman, Daniel A. Roberts, and Sho Yaida.
Robust learning with Jacobian regularization. arXiv
preprint arXiv:1908.02729, 2019.

Chin-Wei Huang, David Krueger, Alexandre Lacoste,
and Aaron Courville. Neural autoregressive flows.
In International Conference on Machine Learning,
2018.

Jörn-Henrik Jacobsen, Arnold Smeulders, and Edouard
Oyallon. i-RevNet: Deep invertible networks. In In-
ternational Conference on Learning Representations,
2018.

Jörn-Henrik Jacobsen, Jens Behrmann, Richard Zemel,
and Matthias Bethge. Excessive invariance causes
adversarial vulnerability. In International Conference
on Learning Representations, 2019.

Priyank Jaini, Kira A. Selby, and Yaoliang Yu. Sum-of-
squares polynomial flow. In International Conference
on Machine Learning, 2019.

Priyank Jaini, Ivan Kobyzev, Yaoliang Yu, and Marcus
Brubaker. Tails of Lipschitz triangular flows. In
International Conference on Machine Learning, 2020.

Mahdi Karami, Dale Schuurmans, Jascha Sohl-
Dickstein, Laurent Dinh, and Daniel Duckworth. In-
vertible convolutional flow. In Advances in Neural
Information Processing Systems. 2019.

Durk P Kingma and Prafulla Dhariwal. Glow: Gen-
erative flow with invertible 1x1 convolutions. In
Advances in Neural Information Processing Systems,
pages 10215–10224, 2018.

Durk P Kingma, Tim Salimans, Rafal Jozefowicz,
Xi Chen, Ilya Sutskever, and Max Welling. Improved
variational inference with inverse autoregressive flow.
In Advances in Neural Information Processing Sys-
tems, pages 4743–4751, 2016.

Shiyu Liang, Yixuan Li, and Rayadurgam Srikant.
Enhancing the reliability of out-of-distribution im-
age detection in neural networks. arXiv preprint
arXiv:1706.02690, 2017.

Matthew MacKay, Paul Vicol, Jimmy Ba, and Roger B
Grosse. Reversible recurrent neural networks. In
Advances in Neural Information Processing Systems,
pages 9029–9040, 2018.

Dougal Maclaurin, David Duvenaud, and Ryan
Adams. Gradient-based hyperparameter optimiza-
tion through reversible learning. In International
Conference on Machine Learning, pages 2113–2122,
2015.

Jens Behrmann∗, Paul Vicol∗, Kuan-Chieh Wang∗, Roger Grosse, Jörn-Henrik Jacobsen

Aleksander Madry, Aleksandar Makelov, Ludwig
Schmidt, Dimitris Tsipras, and Adrian Vladu. To-
wards deep learning models resistant to adversarial
attacks. In International Conference on Learning
Representations, 2018.

Aravindh Mahendran and Andrea Vedaldi. Understand-
ing deep image representations by inverting them. In
Conference on Computer Vision and Pattern Recog-
nition, 2014.

Stefano Massaroli, Michael Poli, Michelangelo Bin,
Jinkyoo Park, Atsushi Yamashita, and Hajime
Asama. Stable neural flows. arXiv preprint
arXiv:2003.08063, 2020.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama,
and Yuichi Yoshida. Spectral normalization for gen-
erative adversarial networks. In International Con-
ference on Learning Representations, 2018.

Mervin E. Muller. A note on a method for generating
points uniformly on n-dimensional spheres. Commun.
ACM, 2(4):19–20, 1959.

Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Di-
lan Gorur, and Balaji Lakshminarayanan. Do deep
generative models know what they don’t know? In
International Conference on Learning Representa-
tions, 2019.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro
Bissacco, Bo Wu, and Andrew Y Ng. Reading digits
in natural images with unsupervised feature learning.
In NIPS Workshop on Deep Learning and Unsuper-
vised Feature Learning, 2011.

George Papamakarios, Theo Pavlakou, and Iain Murray.
Masked autoregressive flow for density estimation. In
Advances in Neural Information Processing Systems,
pages 2338–2347, 2017.

George Papamakarios, Eric Nalisnick, Danilo Jimenez
Rezende, Shakir Mohamed, and Balaji Lakshmi-
narayanan. Normalizing flows for probabilistic mod-
eling and inference. arXiv preprint arXiv:1912.02762,
2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. PyTorch: An imperative style, high-
performance deep learning library. In Advances in
Neural Information Processing Systems, pages 8024–
8035, 2019.

Patrick Putzky and Max Welling. Invert to learn to
invert. In Advances in Neural Information Processing
Systems, 2019.

Danilo Rezende and Shakir Mohamed. Variational
inference with normalizing flows. In International
Conference on Machine Learning, pages 1530–1538,
2015.

Jure Sokolić, Raja Giryes, Guillermo Sapiro, and
Miguel R. D. Rodrigues. Robust large margin deep
neural networks. IEEE Transactions on Signal Pro-
cessing, 65(16):4265–4280, 2017.

Jiaming Song, Shengjia Zhao, and Stefano Ermon. A-
NICE-MC: Adversarial training for MCMC. In Ad-
vances in Neural Information Processing Systems,
pages 5140–5150, 2017.

Yang Song, Chenlin Meng, and Stefano Ermon. Mint-
Net: Building invertible neural networks with
masked convolutions. In Advances in Neural In-
formation Processing Systems, 2019.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. Intriguing properties of neural networks.
arXiv preprint arXiv:1312.6199, 2013.

Hanshu Yan, Jiawei Du, Vincent Tan, and Jiashi Feng.
On robustness of neural ordinary differential equa-
tions. In International Conference on Learning Rep-
resentations, 2020.

Guodong Zhang, Chaoqi Wang, Bowen Xu, and Roger
Grosse. Three mechanisms of weight decay regular-
ization. In International Conference on Learning
Representations, 2019.

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude
Oliva, and Antonio Torralba. Places: A 10 million
image database for scene recognition. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
2017.

	INTRODUCTION
	INVERTIBLE NETWORKS
	STABILITY OF INVERTIBLE NEURAL NETWORKS
	Lipschitz Properties of INN Blocks
	Controlling Global Stability of INNs
	Controlling Local Stability of INNs
	Bi-Directional Finite Differences Regularization
	Influence of the Normalizing Flow Loss on Stability

	EXPERIMENTS
	Non-Invertibility in Normalizing Flows
	Instability on Out-of-Distribution Data
	Instability in the Data Distribution and further Failures

	Supervised Learning with Memory Efficient Gradients

	RELATED WORK
	CONCLUSION

