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A Technical Results and Proofs

A.1 Proofs of Results in Section 3

Proof of Theorem 3.1. The result can be derived as:

PP̃∼f
[
ρ̂ ≤ ρ(π̂, P̃ )

]
(a)
= PP̃∼f

[
ρ(π̂, P̃ ) ≥ max

π∈Π
min
P∈P̂

ρ(π, P )

]
(b)
= PP̃∼f

[
ρ(π̂, P̃ ) ≥ min

P∈P̂
ρ(π̂, P )

]
(c)

≥ PP̃∼f
[
P̃ ∈ P̂

] (d)

≥ 1− δ .

The equality (a) follows from the definition of ρ̂, the inequality (b) follows from π̂ ∈ Π and is optimal, (c) follows
because ρ(π̂, P̃ ) ≥ minP∈P̂ ρ(π̂, P ) whenever P̃ ∈ P̂, and (d) follows from the theorem’s hypothesis.

Proof of Theorem 3.2. Let P̂ = P(www,ψ) and let ρ̂ and π̂ be the optimal return and policy for P̂ respectively. We
start by establishing the following bound:

ρ̂ ≥ max
π∈Π

ρ(π, P̃ )− βẑzz(www,ψ)

1− γ
,

where
βẑzz(www,ψ) = max

s∈S
max
a∈A

βs,aẑzz (www,ψ) .

Let v̂vv ∈ RS be the optimal robust value function that satisfied v̂vv = Lv̂vv for the ambiguity set P̂ = P(www,ψ). We
use P̂ as a shorthand for P(www,ψ) throughout the proof. Recall that ρ̂ = pppT0v̂vv. We also use TPπ to represent the
Bellman evaluation operator for a policy π ∈ Π and a transition function P defined for each s ∈ S as:

(TPπ v)s = P (s, π(s))T(rrrs,a + γ · vvv) .

It is well known that TPπ v is a contraction, is monotone, and has a unique fixed point. Let ṽ be the unique fixed

point of TP̃π̃ :

ṽvv = TP̃π̃ ṽvv ,

where π̃ ∈ arg maxπ∈Π ρ(π, P̃ ). Note that it is well known that:

pppT0ṽvv = ρ(π̃, P̃ ) .

Now suppose that P̃ ∈ P̂, which holds with probability 1− δ according to Assumption 1. Then it is easy to see
that:

pppT0v̂vv = min
P∈P̂

ρ(π, P ) ≤ ρ(π, P̃ ) ≤ pppT0ṽvv .

Therefore:
0 ≤ pppT0ṽvv − pppT0v̂vv ≤ ‖ṽvv − v̂vv‖∞ .

We are now ready to establish the probabilistic bound which is based on bounding the Bellman residual as
follows:

(TP̃π̃ v̂vv − v̂vv)s
(a)
= (TP̃π̃ v̂vv − Lv̂vv)s

(def)
= P̃ (s, π̃(a))Tẑzzs,π̃(s) − min

P∈P̂
P (s, π̂(a))Tẑzzs,π̂(a)

(b)

≤ P̃ (s, π̃(a))Tẑzzs,π̃(s) − min
P∈P̂

P (s, π̃(a))Tẑzzs,π̃(a)

≤ max
a∈A

(
P̃ (s, a)Tẑzzs,a − min

P∈P̂
P (s, a)Tẑzzs,a

)
(c)

≤ max
a∈A

(
max
P∈P̂

P (s, a)Tẑzzs,a − min
P∈P̂

P (s, a)Tẑzzs,a

)
≤ max

a∈A
βs,aẑzz (www,ψ) .
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(a) follows from v̂vv being the fixed point of L, (b) follows from the optimality of π̂: π̂(s) ∈
arg maxa∈Aminppp∈P̂s,a

pppTzzzs,a, and (c) follows from P̃ ∈ P̂. The rest follows by algebraic manipulation. Ap-

plying the inequality above to all states, we get:

TP̃π̃ v̂vv − v̂vv ≤ βẑzz(www,ψ) · 1 . (12)

We can now use the standard dynamic programming bounding technique to bound ‖ṽvv − v̂vv‖∞ as follows:

0
(a)

≤ ṽvv − v̂vv (b)
= ṽvv − TP̃π̃ v̂vv + TP̃π̃ v̂vv − v̂vv

(12)

≤ ṽvv − TP̃π̃ v̂vv + βẑzz(www,ψ) · 1
(c)

≤ TP̃π̃ ṽvv − TP̃π̃ v̂vv + βẑzz(www,ψ) · 1 .

We have (a) because v̂vv ≤ ṽvv because Lṽvv ≤ ṽvv and thus ṽvv ≥ LLṽvv ≥ . . . ≥ L . . .Lṽvv ≥ v̂vv because v̂vv is the fixed point

of L and L is monotone. (b) we add 0, (c) ṽvv is the fixed point of TP̃π̃ .

Next, apply L∞ norm to all sides, which is possible because the values are non-negative:

‖ṽvv − v̂vv‖∞ ≤
∥∥∥TP̃π̃ ṽvv − TP̃π̃ v̂vv + βẑzz(www,ψ) · 1

∥∥∥
∞

‖ṽvv − v̂vv‖∞ ≤ γ · ‖ṽvv − v̂vv‖∞ + βẑzz(www,ψ)

‖ṽvv − v̂vv‖∞ ≤ βẑzz(www,ψ)/(1− γ) .

The first step follows by triangle inequality, and the second step follows from TP̃π̃ being a γ contraction in the
L∞ norm.

To prove the bound on y? and v̂, we show that y? ≤ ζ where ζ = ρ̂+ βẑzz(www,ψ)/(1− γ). Suppose to the contrary
that y? > ζ. Realize that y? optimal in (1) must satisfy:

PP̃∼f

[
max
π∈Π

ρ(π, P̃ ) ≥ y?
]
≥ 1− δ , (13)

because maxπ∈Π ρ(π, P̃ ) ≥ ρ(π?, P̃ ) for π? optimal in (1). Recall also that from the first part of the theorem:

PP̃∼f

[
max
π∈Π

ρ(π, P̃ ) ≥ ζ
]
≤ δ . (14)

We now derive a contradiction as follows:

δ
(14)

≥ PP̃∼f

[
max
π∈Π

ρ(π, P̃ ) ≥ ζ
]

(a)

≥ PP̃∼f

[
max
π∈Π

ρ(π, P̃ ) ≥ y?
]

(13)

≥ 1− δ .

Here (a) follows from the assumption y? > ζ. Then δ ≥ 1− δ is a contradiction with δ < 0.5. Finally, 0 ≤ y?− ρ̂
follows directly from the optimality of y? and Theorem 3.1, which proves the theorem.

A.2 Proof of Results in Section 4

Proof of Lemma 4.1. We omit the s, a subscripts to simplify the notation. By relaxing the non-negativity con-
straints on ppp and using substitution qqq1 = ppp1 − p̄pp and qqq2 = ppp2 − p̄pp, we get the following upper bound:

βs,azzz (www,ψ) = max
ppp1,ppp2

{
(ppp1 − ppp2)Tzzz | ppp1, ppp2 ∈ Ps,a(www,ψ)

}
= max
ppp1,ppp2

{
(ppp1 − ppp2)Tzzz | ‖ppp1 − p̄pp‖www ≤ ψ, ‖ppp2 − p̄pp‖www ≤ ψ, ppp1 ∈ ∆S , ppp2 ∈ ∆S

}
≤ max
ppp1,ppp2∈RS

{
(ppp1 − ppp2)Tzzz | ‖ppp1 − p̄pp‖www ≤ ψ, ‖ppp2 − p̄pp‖www ≤ ψ, 1

Tppp1 = 1, 1Tppp2 = 1
}

= max
qqq1,qqq2∈RS

{
(qqq1 − qqq2)Tzzz | ‖qqq1‖www ≤ ψ, ‖qqq2‖www ≤ ψ, 1

Tqqq1 = 0, 1Tqqq2 = 0
}

= max
qqq1∈RS

{
qqqT1zzz | ‖qqq1‖www ≤ ψ, 1

Tqqq1 = 0
}

+ max
qqq2∈RS

{
qqqT2(−zzz) | ‖qqq2‖www ≤ ψ, 1

Tqqq2 = 0
}
.



Bahram Behzadian1?, Reazul Hasan Russel1?, Marek Petrik1, Chin Pang Ho2

The last equality follows because the the optimization problems over qqq1 and qqq2 are independent. From the
absolute homogeneity of the ‖·‖www we have that:

max
qqq2∈RS

{
qqqT2(−zzz) | ‖qqq2‖www ≤ ψ, 1

Tqqq2 = 0
}

= max
qqq2∈RS

{
qqqT2zzz | ‖qqq2‖www ≤ ψ, 1

Tqqq2 = 0
}
,

and therefore:
βs,azzz (www,ψ) ≤ 2 · max

qqq∈RS

{
qqqTzzz | ‖qqq‖www ≤ ψ, 1

Tqqq = 0
}
.

Substituting qqq = ppp− p̄pp we get:

βs,azzz (www,ψ) ≤ 2 · max
ppp∈RS

{
pppTzzz | ‖ppp− p̄pp‖www ≤ ψ, 1

Tppp = 1
}
− 2 · zzzTp̄pp . (15)

We can reformulate the optimization problem on the right-hand side of (15), again using variable substitution
qqq = ppp− p̄pp:

max
qqq∈RS

2 · (qqq + p̄pp)Tzzz − 2 · zzzTp̄pp

s.t. ‖qqq‖www ≤ ψ
111T(qqq + p̄pp) = 1 =⇒ 111Tqqq = 0 .

Canceling out p̄ppTzzz, we continue with:
2 · max

qqq∈RS
qqqTzzz

s.t. ‖qqq‖www ≤ ψ
111Tqqq = 0 .

By applying the method of Lagrange multipliers, we obtain:

min
λ∈R

max
qqq∈RS

qqqTzzz − λ · (qqqT111) = qqqT(zzz − λ · 111)

s.t. ‖qqq‖www ≤ ψ .

Letting xxx = qqq
ψ , we get:

min
λ∈R

max
xxx∈RS

ψ · xxxT(zzz − λ · 111)

s.t. ‖xxx‖www ≤ 1 .

Given the definition of the dual norm, ‖zzz‖? = sup{zzzᵀxxx | ‖xxx‖ ≤ 1}, we have:

βs,azzz (www,ψ) ≤ 2 ·min
λ∈R

ψ · ‖zzz − λ · 111‖?

≤ 2 · ψ · ‖zzz − λ · 111‖? .

Proof of Lemma 4.2. Assume we are given a set of positive weights www ∈ Rn++ for the following weighted L1

optimization problem:
max
xxx∈RS

zzzTxxx

s.t. ‖xxx‖1,www ≤ 1 .
(16)

We have:

xxxTzzz =

n∑
i=1

xi · zi ≤
n∑
i=1

|xi · zi|

(a)

≤
n∑
i=1

|xi| · |zi| =
n∑
i=1

wi · |xi| ·
1

wi
· |zi|

≤ max
i=1,...,n

{
1

wi
· |zi|

}
·
n∑
i=1

wi|xi| = max
i=1,...,n

{
1

wi
· |zi|

}
· ‖xxx‖1,www

(b)

≤ max
i=1,...,n

{
1

wi
|zi|
}

= ‖zzz‖∞, 1
www
.
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Here, (a) follows from the Cauchy-Schwarz inequality, and (b) follows from the constraint ‖xxx‖1,www ≤ 1 of (16).

Proof of Proposition 4.3. We use the notation 1/www to denote an elementwise inverse of www such that (1/www)i =
1/wi, i ∈ S. Note that for weighted L1-constrained sets q = ∞, and for the L∞-constrained sets q = 1. The

value λ̄ in (7) is fixed ahead of time and does not change with www. Recall that the constraint
∑S
i=1 w

2
i = 1 serves

to normalize www in order to preserve the desired robustness guarantees with the same ψ. This is because scaling
both www and ψ simultaneously by an identical factor leaves the ambiguity set unchanged. We adopt the constraint
from an approximation of the guarantee by linearization of the upper bound using Jensen’s inequality. Next,
omitting terms that are constant with respect to www simplifies the optimization to:

www? ∈ argmin
www∈RS

++

{∥∥zzz − λ̄111
∥∥
q, 1

www

:

S∑
i=1

w2
i = 1

}
. (17)

For q =∞, the nonlinear optimization problem in (17) is convex and can be solved analytically. Let bi =
∣∣zi − λ̄∣∣

for i = 1, . . . , S, then (17) turns to:

min
t,www∈RS

++

{
t : t ≥ bi/wi,

S∑
i=1

w2
i = 1

}
. (18)

The constraints www > 0 cannot be active since otherwise 1/wi results in undefined division by zero and can be
safely ignored. Then, the convex optimization problem in Equation (18) has a linear objective, S + 1 variables
(www’s and t), and S + 1 constraints. All constraints are active, therefore, in the optimal solution www? (Bertsekas,
2003) which must satisfy:

w?i = bi/
√∑S

j=1 b
2
j . (19)

Since
∑
i w

2
i = 1 implies

∑
i b

2
i /t

2 = 1, we conclude that t =
√∑

i b
2
i . For q = 1, the equivalent optimization of

(18) becomes:

min
www>0

{
S∑
i=1

bi/wi :

S∑
i=1

w2
i = 1

}
. (20)

Again, the inequality constraints on weights www > 0 can be relaxed. Using the necessary optimality conditions
(and a Lagrange multiplier), one solution for the optimal weights www are:

w?i = b
1/3
i /

√∑S
j=1 b

2/3
j . (21)

A.3 Proof of Results in Section 5

Proof of Proposition 5.2. The algorithm is an instance of the Sample Average Approximation (SAA) scheme.
The result, therefore, is a direct consequence of Theorem 4.2 in (Petrik and Russel, 2019) and Theorem 5.3 in
(Shapiro et al., 2014).

A.4 Proof of Results in Section 6

We need several auxiliary results before proving the results.

Theorem A.1 (Weighted L∞ error bound (Hoeffding)). Suppose that p̄pps,a is the empirical estimate of the
transition probability obtained from ns,a samples for some s ∈ S and a ∈ A. Then:

Pp̄pps,a
[∥∥p̄pps,a − ppp?s,a∥∥∞,www ≥ ψs,a] ≤ 2

S∑
i=1

exp

(
−2

ψ2
s,ans,a

w2
i

)
. (22)

Proof. First, we will express the weighted L∞ distance between two distributions p̄pp and ppp? in terms of an
optimization problem. Let 111i ∈ RS be the indicator vector for an index i ∈ S:∥∥p̄pps,a − ppp?s,a∥∥∞,www = max

zzz

{
zzzTW (p̄pps,a − ppp?s,a) : ‖zzz‖1 ≤ 1

}
= max

i∈S

{
111iW (p̄pps,a − ppp?s,a),−111iW (p̄pps,a − ppp?s,a)

}
.
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Here, weights are on the diagonal entries of W . Using the expression above, we can bound the probability in the
lemma as follows:

P
[∥∥p̄pps,a − ppp?s,a∥∥∞,www ≥ ψ] = P

[
max
i∈S

{
111iW (p̄pps,a − ppp?s,a),−111iW (p̄pps,a − ppp?s,a)

}
≥ ψs,a

]
(a)

≤ Smax
i∈S

P
[
111iW (p̄pps,a − ppp?s,a) ≥ ψs,a

]
+ Smax

i∈S
P
[
−111iW (p̄pps,a − ppp?s,a) ≥ ψs,a

]
(b)

≤ 2

S∑
i=1

exp

(
−2

ψ2
s,an

w2
i

)
.

Here, (a) follows from union bound, and (b) follows from Hoeffding’s inequality since 111Ti p̄pp ∈ [0, 1] for any i ∈ S
and its mean is 111Ti ppp

?.

Now we describe a proof of error bound in (23) on the weighted L1 distance between the estimated transition
probabilities p̄pp and the true one ppp? over each state s ∈ S = {1, . . . , S} and action a ∈ A = {1, . . . , A}. The proof
is an extension to Lemma C.1 (L1 error bound) in (Petrik and Russel, 2019).

Theorem A.2 (Weighted L1 error bound (Hoeffding)). Suppose that p̄pps,a is the empirical estimate of the tran-

sition probability obtained from ns,a samples for some s ∈ S and a ∈ A. If the weights www ∈ RS++ are sorted in a
non-increasing order wi ≥ wi+1, then:

Pp̄pps,a
[∥∥p̄pps,a − ppp?s,a∥∥1,www

≥ ψs,a
]
≤ 2

S−1∑
i=1

2S−i exp

(
−
ψ2
s,ans,a

2w2
i

)
. (23)

Proof. Let qqqs,a = p̄pps,a − ppp?s,a. To shorten notation in the proof, we omit the s, a indexes when there is no
ambiguity. We assume that all weights are non-negative. First, we will express the L1,www norm of qqq in terms of
an optimization problem. It is worth noting that 111Tqqq = 0. Let 111Q1

,111Q2
∈ RS be the indicator vectors for some

subsets Q1,Q2 ⊂ S where Q2 = S \ Q1. According to Lemma 4.2 we have:

‖qqq‖1,w = max
zzz

{
zzzTqqq : ‖zzz‖∞, 1

w
≤ 1
}

= max
Q1,Q2∈2S

{
111TQ1

Wqqq + 111TQ2
W (−qqq) : Q2 = S \ Q1

}
.

Here weights are on the diagonal entries of W . Using the expression above, we can bound the probability as
follows:

P
[

max
Q1,Q2∈2S

{
111TQ1

Wqqq + 111TQ2
W (−qqq)

}
≥ ψ

]
(a)

≤ P
[

max
Q1∈2S

{
111TQ1

Wqqq
}
≥ ψ

2

]
+ P

[
max
Q2∈2S

{
111TQ2

W (−qqq)
}
≥ ψ

2

]
≤

∑
Q1∈2S

P
[
111TQ1

Wqqq ≥ ψ

2

]
+
∑
Q2∈2S

P
[
111TQ2

W (−qqq) ≥ ψ

2

]

=
∑
Q1∈2S

P
[
111TQ1

W (p̄pp− ppp?) ≥ ψ

2

]
+
∑
Q2∈2S

P
[
111TQ2

W (−p̄pp+ ppp?) ≥ ψ

2

]
(b)

≤
∑
Q1∈2S

exp

(
− ψ2n

2
∥∥111TQ1

W
∥∥2

∞

)
+
∑
Q2∈2S

exp

(
− ψ2n

2
∥∥111TQ2

W
∥∥2

∞

)

(c)
= 2

S−1∑
i=1

2S−i exp

(
−ψ

2n

2w2
i

)
.

(a) follows from union bound, and (b) follows from Hoeffding’s inequality. (c) follows by Qc1 = Q2 and sorting
weights www = {w1, . . . , wn} in non-increasing order.

Proof of Theorem 6.1. The result follows from Lemma A.1 in (Petrik and Russel, 2019) and Theorem A.1 by
algebraic manipulation.

Proof of Theorem 6.2. The result follows from Lemma A.1 in (Petrik and Russel, 2019) and Theorem A.2 by
algebraic manipulation.
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A.5 Bernstein Concentration Inequalities

Theorem A.3 (Weighted L1 error bound (Bernstein)). Suppose that p̄pps,a is the empirical estimate of the tran-

sition probability obtained from ns,a samples for some s ∈ S and a ∈ A. If the weights www ∈ RS++ are sorted in
non-increasing order wi ≥ wi+1, then the following holds when using Bernstein’s inequality:

P
[∥∥p̄pps,a − ppp?s,a∥∥1,www

≥ ψs,a
]
≤ 2

S−1∑
i=1

2S−i exp

(
− 3ψ2n

6w2
i + 4ψwi

)

where www ∈ RS++ is the vector of weights. The weights are sorted in non-increasing order.

Proof. The proof is similar to the proof of Theorem A.2 until section b. The proof continues from section (b) as
follows:

(b)

≤
∑
Q1∈2S

exp

(
− 3ψ2n

24σ2 + 4cψ

)
+
∑
Q2∈2S

exp

(
− 3ψ2n

24σ2 + 4cψ

)
(c)

≤
∑
Q1∈2S

exp

(
− 3ψ2n

6
∥∥111TQ1

W
∥∥2

∞ + 4ψ
∥∥111TQ1

W
∥∥
∞

)
+
∑
Q2∈2S

exp

(
− 3ψ2n

6
∥∥111TQ2

W
∥∥2

∞ + 4ψ
∥∥111TQ2

W
∥∥
∞

)

(d)
= 2

S−1∑
i=1

2S−i exp

(
− 3ψ2n

6w2
i + 4ψwi

)
.

Here (b) follows from Bernstein’s inequality where σ2 is the mean of variance of random variables, and c is
their upper bound (Devroye et al., 2013). In the weighted case, with conservative estimate of variance σ2 =∥∥111TQ1

W
∥∥2

∞/4, and c =
∥∥111TQ1

W
∥∥
∞, because the random variables are drawn from Bernoulli distribution with the

maximum possible variance of 1/4. (d) follows by sorting weights www in non-increasing order.

B Detailed Experimental Results

B.1 Experimental Setup

We assess L1− and L∞-bounded ambiguity sets, both with weights and without weights. We compare Bayesian
credible regions with frequentist Hoeffding- and Bernstein-style sets. We start by assuming a true underlying
model that produces simulated datasets containing 20 samples for each state and action. The frequentist methods
construct ambiguity sets directly from the datasets. Bayesian methods combine the data with a prior to compute a
posterior distribution and then draw 20 samples from the posterior distribution to construct a Bayesian ambiguity
set.

B.2 RiverSwim MDP Graph

s0 s1 · · · s4 s5

(1, r = 5)

0.7 0.6

0.3

0.1

1

0.6

0.3

0.1

1

0.6

0.3

0.1

1

(0.3, r = 10000)

0.3

0.7

1

Figure 2: RiverSwim problem with six states and two actions (left-dashed arrow, right-solid arrow). The agent
starts in either states s1 or s2.
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B.3 Full Empirical Results

Tables 3 to 6 report the high-confidence lower bound on the return for the domains that we investigate. The
column denotes the confidence 1 − δ and the algorithm used to compute the weights www for the ambiguity set:
“Unif.w” corresponds to www = 1, “Analyt.w” corresponds to weights computed by Algorithm 2, and “SOCP.w”
corresponds to weights computed by solving (8). The rows indicate which norm was used to define the ambiguity
set (L1 or L∞) and whether Bayesian (B) or frequentist (H) guarantees were used. Note that the SOCP
formulation is limited to the L1 ambiguity sets.

Method

δ = 0.5 δ = 0.05

Unif.w Analyt.w SOCP.w Unif.w Analyt.w SOCP.w

L1B 33887 51470 48620 25252 47284 43504
L∞B 33887 48258 - 25252 43247 -

L1 H 16354 33116 30268 12555 29472 26398
L∞ H 20055 40166 - 15184 35955 -

Table 3: The return with performance guarantees for the RiverSwim experiment. The return of the nominal
MDP is 63080.

Method

δ = 0.5 δ = 0.05

Unif.w Analyt.w SOCP.w Unif.w Analyt.w SOCP.w

L1B -38.1 -22.7 -26.8 -42.0 -23.7 -28.4
L∞B -38.1 -22.6 - -42.0 -23.5 -

L1 H -86.8 -33.2 -47.9 -115.0 -34.5 -53.1
L∞ H -62.9 -29.5 - -74.8 -32.6 -

Table 4: The return with performance guarantees for the Machine Replacement experiment. The return of the
nominal MDP is -16.79.

Method

δ = 0.5 δ = 0.05

Unif.w Analyt.w SOCP.w Unif.w Analyt.w SOCP.w

L1B -25706 -12151 -12668 -25741 -12200 -12704
L∞B -26782 -15468 - -26795 -15623 -

L1 H -27499 -27034 -27409 -27501 -27047 -27421
L∞ H -27465 -27143 - -27473 -27184 -

Table 5: The return with performance guarantees for the Population experiment. The return of the nominal
MDP is -4127.

Method

δ = 0.5 δ = 0.05

Unif.w Analyt.w SOCP.w Unif.w Analyt.w SOCP.w

L1B 3.75 15.7 10.9 3.64 15.0 10.6
L∞B 3.04 20.2 - 2.87 19.8 -

L1 H -8.91 1.58 -6.18 -8.94 0.89 -7.74
L∞ H -8.37 5.83 - -8.63 4.90 -

Table 6: The return with performance guarantees for the Inventory Management experiment. The return of the
nominal MDP is 163.1.



Optimizing Percentile Criterion Using Robust MDPs

Method

δ = 0.5 δ = 0.05

Unif.w Analyt.w SOCP.w Unif.w Analyt.w SOCP.w

L1B 3.83 8.28 4.21 3.82 8.25 4.20
L∞B 3.81 7.78 - 3.78 7.71 -

L1 H 2.81 3.44 2.87 2.80 3.42 2.85
L∞ H 3.18 3.94 - 3.15 3.92 -

Table 7: The return with performance guarantees for the Cart-Pole experiment. The return of the nominal MDP
is 11.11.


