
Supplementary Material For: Interpretable Random
Forests via Rule Extraction

Clément Bénard∗ Gérard Biau† Sébastien Da Veiga‡ Erwan Scornet§

1 Proof of Theorem 1: Asymptotic Stability

Proof of Theorem 1. We recall that stability is assessed by the Dice-Sorensen index as

ŜM,n,p0 =
2
∣∣P̂M,n,p0 ∩ P̂ ′

M,n,p0

∣∣∣∣P̂M,n,p0

∣∣+
∣∣P̂ ′

M,n,p0

∣∣ ,
where P̂ ′

M,n,p0
stands for the list of rules output by SIRUS fit with an independent sample D ′n and where the

random forest is parameterized by independent copies Θ′1, . . . ,Θ
′
M .

We consider p0 ∈ [0, 1] \ U? and λ > 0. There are two sources of randomness in the estimation of the final set of
selected paths: (i) the path extraction from the random forest based on p̂M,n(P) for P ∈ Π, and (ii) the final
sparse linear aggregation of the rules through the estimate β̂n,p0 . To show that the stability converges to 1, these
estimates have to converge towards theoretical quantities that are independent of Dn. Note that, throughout
the paper, the final set of selected paths is denoted P̂Mn,n,p0 . Here, for the sake of clarity, P̂Mn,n,p0 is now the
post-treated set of paths extracted from the random forest, and P̂Mn,n,p0,λ the final set of selected paths in the
ridge regression.

(i) Path extraction. The first step of the proof is to show that the post-treated path extraction from the
forest is consistent, i.e., in probability

lim
n→∞

P(P̂Mn,n,p0 = P?
p0) = 1. (1.1)

Using the continuous mapping theorem, it is easy to see that this result is a consequence of the consistency of
p̂M,n(P), i.e.,

lim
n→∞

p̂Mn,n(P) = p?(P) in probability.

Since the output Y is bounded (by Assumption (A2)), the consistency of p̂M,n(P) can be easily adapted from
Theorem 1 of Bénard et al. (2021) using Assumptions (A1) and (A2). Finally, the result still holds for the
post-treated rule set because the post-treatment is a deterministic procedure.

(ii) Sparse linear aggregation. Recall that the estimate (β̂n,p0 , β̂0) is defined as

(β̂n,p0 , β̂0) = argmin
β≥0,β0

`n(β, β0), (1.2)

where `n(β, β0) = 1
n ||Y − β01n − Γn,p0β||22 + λ||β||22. The dimension of β is stochastic since it is equal to the

number of extracted rules. To get rid of this technical issue in the following of the proof, we rewrite `n(β, β0) to
have β a parameter of fixed dimension |Π|, the total number of possible rules:

`n(β, β0) =
1

n

n∑
i=1

(
Yi − β0 −

∑
P∈Π

βPgn,P(Xi)1P∈P̂Mn,n,p0

)2
+ λ||β||22.

∗Safran Tech, Sorbonne Université
†Sorbonne Université
‡Safran Tech
§Ecole Polytechnique

1

By the law of large numbers and the previous result (1.1), we have in probability

lim
n→∞

`n(β, β0) =E
[(
Y − β0 −

∑
P∈P?

p0

βPg?P(X)
)2]

+ λ||β||22
def
= `?(β, β0),

where g?P is the theoretical rule based on the path P and the theoretical quantiles. Since Y is bounded, it is
easy to see that each component of β̂n,p0 is bounded from the following inequalities:

λ||β̂n,p0 ||
2
2 ≤ `n(β̂n,p0 , β̂0) ≤ `n(0, 0) ≤ ||Y ||

2
2

n
≤ max

i
Y 2
i .

Consequently, the optimization problem (1.2) can be equivalently written with (β, β0) constrained to belong to
a compact and convex set K. Since `n is convex and converges pointwise to `? according to (1.3), the uniform
convergence over the compact set K also holds, i.e., in probability

lim
n→∞

sup
(β,β0)∈K

|`n(β, β0)− `?(β, β0)| = 0. (1.3)

Additionnally, since `? is a quadratic convex function and the constraint domain K is convex, `? has a unique
minimum that we denote β?p0,λ. Finally, since the maximum of `? is unique and `n uniformly converges to `?, we
can apply theorem 5.7 from Van der Vaart (2000, page 45) to deduce that (β̂n,p0 , β̂0) is a consistent estimate of
β?p0,λ. We can conclude that, in probability,

lim
n→∞

P
(
P̂Mn,n,p0,λ = {P ∈P?

p0 : β?P,p0,λ > 0}
)

= 1,

and the final stability result follows from the continuous mapping theorem.

2 Computational Complexity

The computational cost to fit SIRUS is similar to standard random forests, and its competitors: RuleFit, and
Node harvest. The full tuning procedure costs about 10 SIRUS fits.

SIRUS. SIRUS algorithm has several steps in its construction phase. We derive the computational complexity
of each of them. Recall that M is the number of trees, p the number of input variables, and n the sample size.

1. Forest growing: O(Mpnlog(n))

The forest growing is the most expensive step of SIRUS. The average computational complexity of a standard
forest fit is O(Mpnlog(n)2) (Louppe, 2014). Since the depth of trees is fixed in SIRUS—see Section 3, it
reduces to O(Mpnlog(n)).
A standard forest is grown so that its accuracy cannot be significantly improved with additional trees, which
typically results in about 500 trees. In SIRUS, the stopping criterion of the number of trees enforces that
95% of the rules are identical over multiple runs with the same dataset (see Section 7). This is critical to
have the forest structure converged and stabilize the final rule list. This leads to forests with a large number
of trees, typically 10 times the number for standard forests. On the other hand, shallow trees are grown and
the computational complexity is proportional to the tree depth, which is about log(n) for fully grown forests.
Overall, the modified forest used in SIRUS is about the same computational cost as a standard forest, and
has a slightly better computational complexity thanks to the fixed tree depth.

2. Rule extraction: O(M)

Extracting the rules in a tree requires a number of operations proportional to the number of nodes, i.e. O(1)
since tree depth is fixed. With the appropriate data structure (a map), updating the forest count of the
number of occurrences of the rules of a tree is also O(1). Overall, the rule extraction is proportional to the
number of trees in the forest, i.e., O(M).

3. Rule post-treatment: O(1)

The post-treatment algorithm is only based on the rules and not on the sample. Since the number of extracted
rules is bounded by a fixed limit of 25, this step has a computational complexity of O(1).

4. Rule aggregation: O(n)

Efficient algorithms (Friedman et al., 2010) enable to fit a ridge regression and find the optimal penalization
λ with a linear complexity in the sample size n. In SIRUS, the predictors are the rules, whose number is
upper bounded by 25, and then the complexity of the rule aggregation is independent of p. Therefore the
computational complexity of this step is O(n).

Overall, the computational complexity of SIRUS is O(Mpnlog(n)), which is slightly better than standard random
forests thanks to the use of shallow trees. Because of the large number of trees and the final ridge regression, the
computational cost of SIRUS is comparable to standard forests in practice.

RuleFit/Node harvest Comparison. In both RuleFit and Node harvest, the first two steps of the procedure
are also to grow a tree ensemble with limited tree depth and extract all possible rules. The complexity of this
first phase is then similar to SIRUS: O(Mpnlog(n)). However, in the last step of the linear rule aggregation, all
rules are combined in a sparse linear model, which is of linear complexity with n, but grows at faster rate than
linear with the number of rules, i.e., the number of trees M (Friedman et al., 2010).

As the tree ensemble growing is the computational costly step, SIRUS, RuleFit and Node harvest have a very
comparable complexity. On one hand, SIRUS requires to grow more trees than its competitors. On the other
hand, the final linear rule aggregation is done with few predictors in SIRUS, while it includes thousands of rules
in RuleFit and Node harvest, which has a complexity faster than linear with M .

Tuning Procedure. The only parameter of SIRUS which requires fine tuning is p0, which controls model
sparsity. The optimal value is estimated by 10-fold cross validation using a standard bi-objective optimization
procedure to maximize both stability and predictivity. For a fine grid of p0 values, the unexplained variance and
stability metric are computed for the associated SIRUS model through a cross-validation. Recall that the bounds
of the p0 grid are set to get the model size between 1 and 25 rules. Next, we obtain a Pareto front, as illustrated
in Figure 1, where each point corresponds to a p0 value of the tuning grid. To find the optimal p0, we compute
the euclidean distance between each point and the ideal point of 0 unexplained variance and 90% stability. Notice
that this ideal point is chosen for its empirical efficiency: the unexplained variance can be arbitrary close to 0
depending on the data, whereas we do not observe a stability (with respect to data perturbation) higher than
90% accross many datasets. Finally, the optimal p0 is the one minimizing the euclidean distance distance to the
ideal point. Thus, the two objectives, stability and predictivity, are equally weighted. For a robust estimation of
p0, the cross-validation is repeated 10 times and the median p0 value is selected.

Figure 1: Pareto front of stability versus error (unexplained variance) when p0 varies, with the optimal value in
green for the “Ozone” dataset. The optimal point is the closest one to the ideal point (0, 0.1) of 0 unexplained
variance and 90% stability.

Dataset Breiman Random
Forest

Random Forest
10-Quantile Cuts

Ozone 0.25 (0.007) 0.25 (0.006)
Mpg 0.13 (0.003) 0.13 (0.003)

Prostate 0.46 (0.01) 0.47 (0.02)
Housing 0.13 (0.006) 0.16 (0.004)
Diabetes 0.55 (0.006) 0.55 (0.007)
Machine 0.13 (0.03) 0.24 (0.02)
Abalone 0.44 (0.002) 0.49 (0.003)
Bones 0.67 (0.01) 0.68 (0.01)

Table 1: Proportion of unexplained variance (estimated over a 10-fold cross-validation) for various public datasets
to compare two algorithms: Breiman’s random forest and the forest where split values are limited to the 10-
empirical quantiles. Standard deviations are computed over multiple repetitions of the cross-validation and
displayed in brackets.

Tuning Complexity. The optimal p0 value is estimated by a 10-fold cross validation. The costly computational
step of SIRUS is the forest growing. However, this step has to be done only once per fold. Then, p0 can vary
along a fine grid to extract more or less rules from each forest, and thus, get the accuracy associated to each p0 at
a total cost of about 10 SIRUS fits.

3 Random Forest Modifications

As explained in Section 1 of the article, SIRUS uses random forests at its core. In order to stabilize the forest
structure, we slightly modify the original algorithm from Breiman (Breiman, 2001): cut values at each tree node
are limited to the 10-empirical quantiles. In the first paragraph, we show how this restriction have a small impact
on predictive accuracy, but is critical to stabilize the rule extraction. On the other hand, the rule selection
mechanism naturally only keeps rules with one or two splits. Therefore, tree depth is fixed to 2 to optimize the
computational efficiency. In the second paragraph, this phenomenon is thoroughly explained.

Quantile discretization. In a typical setting where the number of predictors is p = 100, limiting cut values
to the 10-quantiles splits the input space in a fine grid of 10100 hyperrectangles. Therefore, restricting cuts to
quantiles still leaves a high flexibility to the forest and enables to identify local patterns (it is still true in small
dimension). To illustrate this, we run the following experiment: for each of the 8 datasets, we compute the
unexplained variance of respectively the standard forest and the forest where cuts are limited to the 10-quantiles.
Results are presented in Table 1, and we see that there is almost no decrease of accuracy except for one dataset.
Besides, notice that setting q = n is equivalent as using original forests.

On the other hand, such discretization is critical for the stability of the rule selection. Recall that the importance
of each rule p̂M,n(P) is defined as the proportion of trees which contain its associated path P, and that the rule
selection is based on p̂M,n(P) > p0. In the forest growing, data is bootstrapped prior to the construction of each
tree. Without the quantile discretization, this data perturbation results in small variation between the cut values
across different nodes, and then the dilution of p̂M,n(P) between highly similar rules. Thus, the rule selection
procedure becomes inefficient. More formally, p̂M,n(P) is defined by

p̂M,n(P) =
1

M

M∑
`=1

1P∈T (Θ`,Dn),

where T (Θ`,Dn) is the list of paths extracted from the `-th tree of the forest. The expected value of the importance
of a given rule is

E[p̂M,n(P)] =
1

M

M∑
`=1

E[1P∈T (Θ`,Dn)] = P(P ∈ T (Θ,Dn)).

Dataset Random
Forest CART RuleFit Node

harvest SIRUS SIRUS
sparse

SIRUS
50 rules

SIRUS
50 rules & d=3

Ozone 0.25 0.36 0.27 0.31 0.32 0.32 0.26 0.27
Mpg 0.13 0.20 0.15 0.20 0.20 0.20 0.15 0.15

Prostate 0.48 0.60 0.53 0.52 0.55 0.51 0.54 0.55
Housing 0.13 0.28 0.16 0.24 0.30 0.31 0.20 0.21
Diabetes 0.55 0.67 0.55 0.58 0.56 0.56 0.55 0.55
Machine 0.13 0.39 0.26 0.29 0.29 0.32 0.27 0.26
Abalone 0.44 0.56 0.46 0.61 0.66 0.64 0.64 0.65
Bones 0.67 0.67 0.70 0.70 0.73 0.77 0.73 0.75

Table 3: Proportion of unexplained variance estimated over a 10-fold cross-validation for various public datasets.
For rule algorithms only, i.e., RuleFit, Node harvest, and SIRUS, minimum values are displayed in bold, as well
as values within 10% of the minimum for each dataset (“SIRUS sparse” put aside).

Without the discretization, T (Θ,Dn) is a random set that takes value in an uncountable space, and consequently

E[p̂M,n(P)] = P(P ∈ T (Θ`,Dn)) = 0,

and all rules are equally not important in average. In practice, since Dn is of finite size and the random forest cuts
at mid distance between two points, it is still possible to compute p̂M,n(P) and select rules for a given dataset.
However, such procedure is highly unstable with respect to data perturbation since we have E[p̂M,n(P)] = 0 for
all possible paths.

Tree depth. When SIRUS is fit using fully grown trees, the final set of rules P̂M,n,p0 contains almost exclusively
rules made of one or two splits, and very rarely of three splits. Although this may appear surprising at first
glance, this phenomenon is in fact expected. Indeed, rules made of multiple splits are extracted from deeper tree
levels and are thus more sensitive to data perturbation by construction. This results in much smaller values of
p̂M,n(P) for rules with a high number of splits, and then deletion from the final set of path through the threshold
p0: P̂M,n,p0 = {P ∈ Π : p̂M,n(P) > p0}. To illustrate this, let us consider the following typical example with
p = 100 input variables and q = 10 quantiles. There are 2qp = 2× 100× 10 = 2× 103 distinct rules of one split,
about (2qp)2 ≈ 106 distinct rules of two splits, and about (2qp)3 ≈ 1010 distinct rules of three splits. Using only
rules of one split is too restrictive since it generates a small model class (a thousand rules for 100 input variables)
and does not handle variable interactions. On the other hand, rules of two splits are numerous (a million) and
thus provide a large flexibility to SIRUS. More importantly, since there are 10 billion rules of three splits, a stable
selection of a few of them is clearly an impossible task, and such complex rules are naturally discarded by SIRUS.

In SIRUS, tree depth is set to 2 to reduce the computational cost while leaving the output list of rules untouched
as previously explained. We augment the experiments of Section 3 of the article with an additional column
in Table 3: “SIRUS 50 rules & d= 3”. Recall that, in the column “SIRUS 50 rules”, p0 is set manually to
extract 100 rules from the forest leading to final lists of about 50 rules (similar size as RuleFit and Node harvest
models), an improved accuracy (reaching RuleFit performance), while stability drops to around 50% (70− 80%
when p0 is tuned). In the last column, tree depth is set to 3 with the same augmented model size. We observe no
accuracy improvement over a tree depth of 2.

This analysis of tree depth is not new. Indeed, both RuleFit (Friedman and Popescu, 2008) and Node harvest
(Meinshausen, 2010) articles discuss the optimal tree depth for the rule extraction from a tree ensemble in their
experiments. They both conclude that the optimal depth is 2. Hence, the same hard limit of 2 is used in Node
harvest. RuleFit is slightly less restrictive: for each tree, its depth is randomly sampled with an exponential
distribution concentrated on 2, but allowing few trees of depth 1, 3 and 4. We insist that they both reach such
conclusion without considering stability issues, but only focusing on accuracy.

4 Post-treatment Illustration

We illustrate the post-treatment procedure with the “Machine” dataset. Table 3 provides the initial raw list of 17
rules on the left, and the final post-treated 9-rule list on the right, using p0 = 0.072. The rules removed from the

1 if MMAX < 32000 then Ŷ = 61 else Ŷ = 408

2 if MMAX ≥ 32000 then Ŷ = 408 else Ŷ = 61

3 if MMIN < 8000 then Ŷ = 62 else Ŷ = 386

4 if MMIN ≥ 8000 then Ŷ = 386 else Ŷ = 62

5 if CACH < 64 then Ŷ = 56 else Ŷ = 334

6 if CACH ≥ 64 then Ŷ = 334 else Ŷ = 56

7 if
{
MMAX ≥ 32000
& CACH ≥ 64

then Ŷ = 517 else Ŷ = 67

8 if CHMIN < 8 then Ŷ = 50 else Ŷ = 312

9 if CHMIN ≥ 8 then Ŷ = 312 else Ŷ = 50

10 if MYCT < 50 then Ŷ = 335 else Ŷ = 58

11 if MYCT ≥ 50 then Ŷ = 58 else Ŷ = 335

12 if
{
MMAX ≥ 32000
& CACH < 64

then Ŷ = 192 else Ŷ = 102

13 if
{
MMAX < 32000
& CHMIN ≥ 8

then Ŷ = 157 else Ŷ = 100

14 if
{
MMAX < 32000
& CHMIN ≥ 12

then Ŷ = 554 else Ŷ = 73

15 if
{
MMAX ≥ 32000
& CHMIN < 12

then Ŷ = 252 else Ŷ = 96

16 if
{

MMIN ≥ 8000
& CHMIN ≥ 12

then Ŷ = 586 else Ŷ = 76

17 if
{

MMIN ≥ 8000
& CHMIN < 12

then Ŷ = 236 else Ŷ = 94

1 if MMAX < 32000 then Ŷ = 61 else Ŷ = 408

3 if MMIN < 8000 then Ŷ = 62 else Ŷ = 386

5 if CACH < 64 then Ŷ = 56 else Ŷ = 334

7 if
{
MMAX ≥ 32000
& CACH ≥ 64

then Ŷ = 517 else Ŷ = 67

8 if CHMIN < 8 then Ŷ = 50 else Ŷ = 312

10 if MYCT < 50 then Ŷ = 335 else Ŷ = 58

13 if
{
MMAX < 32000
& CHMIN ≥ 8

then Ŷ = 157 else Ŷ = 100

14 if
{
MMAX < 32000
& CHMIN ≥ 12

then Ŷ = 554 else Ŷ = 73

16 if
{

MMIN ≥ 8000
& CHMIN ≥ 12

then Ŷ = 586 else Ŷ = 76

Table 3: SIRUS post-treatment of the extracted raw list of rules for the “Machine” dataset: the raw list of rules on the
left, and the final post-treated rule list on the right (removed rules are highlighted in red for one constraint rules and in
orange for two constraint rules).

raw list are highlighted in red and orange. Red rules have one constraint and are identical to a previous rule with
the constraint sign reversed. Notice that two such rules (e.g. rules 1 and 2) correspond to the left and right child
nodes at the first level of a tree. Thus, they belong to the same trees of the forest and their associated occurrence
frequencies p̂(P) are equal. We always keep the rule with the sign “<”: this choice is somewhat arbitrary and of
minor importance since the two rules are identical. Orange rules have two constraints and are linearly dependent
on other previous rules. For example for rule 12, there exist 3 real numbers α1, α5, and α7 such that, for all
x ∈ Rp

gP12
(x) = α1gP1

(x) + α5gP5
(x) + α7gP7

(x).

Observe that rules 12 and 7 involve the same variables and thresholds, but one of the sign constraints is
reversed. The estimated rule outputs Ŷ are of course different between rules 12 and 7 because they identify
two different quarters of the input space. The outputs of rule 7 have a wider gap than the ones of rule 12, and
consequently the CART-splitting criterion of rule 12 is smaller, which also implies a smaller occurrence frequency,
i.e., p̂(P12) < p̂(P7). Therefore rule 12 is removed rather than rule 7. The same reasoning applies to rules 15
and 17.

5 Rule Format

The format of the rules with an else clause for the uncovered data points differs from the standard format in
the rule learning literature. Indeed, in classical algorithms, a prediction is generated for a given query point by
aggregating the outputs of the rules satisfied by the point. A default rule usually provides predictions for all
query points which satisfy no rule. First, observe that the intercept in the final linear aggregation of rules in
SIRUS can play the role of a default rule. Secondly, removing the else clause of the rules selected by SIRUS

results in an equivalent formulation of the linear regression problem up to the intercept. More importantly, the
format with an else clause is required for the stability and modularity (Murdoch et al., 2019) properties of SIRUS.

Equivalent Formulation. Rules are originally defined in SIRUS as

ĝn,P(x) =

{
Ȳ

(1)
P if x ∈P

Ȳ
(0)
P otherwise,

where if x ∈P indicates whether the query point x satisfies the rule associated with path P or not, Ȳ (1)
P is the

output average of the training points which satisfy the rule, and symmetrically Ȳ (0)
P is the output average of the

training point not covered by the rule. The original linear aggregation of the rules is

m̂M,n,p0(x) = β̂0 +
∑

P∈P̂M,n,p0

β̂n,P ĝn,P(x).

Now we define the rules without the else clause by ĥn,P(x) = (Ȳ
(1)
P − Ȳ (0)

P)1x∈P , and we can rewrite SIRUS
estimate as

m̂M,n,p0(x) =
(
β̂0 +

∑
P∈P̂M,n,p0

β̂n,P Ȳ
(0)
P

)
+

∑
P∈P̂M,n,p0

β̂n,P ĥn,P(x)

=β̃0 +
∑

P∈P̂M,n,p0

β̂n,P ĥn,P(x).

Therefore the two models with or without the else clause are equivalent up to the intercept.

Stability. The problem of defining rules without the else clause lies in the rule selection. Indeed, rules associated
with left (L) and right (R) nodes at the first level of a tree are identical:

ĝn,L(x) = ĝn,R(x) = ȲL1x∈L + ȲR1x∈R.

Without the else clause, these two rules become different estimates:

ĥn,L(x) = (ȲL − ȲR)1x∈L,

ĥn,R(x) = (ȲR − ȲL)1x∈R.

However, ĥn,L and ĥn,R are linearly dependent, since ĥn,L(x)− ĥn,R(x) = ȲL − ȲR, which does not depend on
the query point x. This linear dependence between predictors makes the linear aggregation of the rules ill-defined.
One of two rule could be removed randomly, but this would strongly hurt stability.

Modularity. Murdoch et al. (2019) specify different properties to assess model simplicity: sparsity, simulatability,
and modularity. A model is sparse when it uses only a small fraction of the input variables, e.g. the lasso. A
model is simulatable if it is possible for humans to perform predictions by hands, e.g. shallow decision trees.
A model is modular when it is possible to analyze a meaningful portion of it alone. Typically, rule models are
modular since one can analyze the rules one by one. In that case, the average of the output values for instances
not covered by the rule is an interesting insight.

6 Dataset Descriptions

Dataset Sample Size Total Number
of Variables

Number of
Categorical
Variables

Ozone 330 9 0
Mpg 398 7 0

Prostate 97 8 0
Housing 506 13 0
Diabetes 442 10 0
Machine 209 6 0
Abalone 4177 8 1
Bones 485 3 2

Table 4: Description of datasets

7 Number of Trees

The stability, predictivity, and computation time of SIRUS increase with the number of trees. Thus a stopping
criterion is designed to grow the minimum number of trees that ensures stability and predictivity to be close to
their maximum. It happens in practice that stabilizing the rule list is computationally more demanding in the
number of trees than reaching a high predictivity. Therefore the stopping criterion is only based on stability, and
defined as the minimum number of trees such that when SIRUS is fit twice on the same given dataset, 95% of the
rules are shared by the two models in average.

To this aim, we introduce 1− εM,n,p0 , an estimate of the mean stability E[ŜMn,n,p0 |Dn] when SIRUS is fit twice
on the same dataset Dn. εM,n,p0 is defined by

εM,n,p0 =

∑
P∈Π zM,n,p0(P)(1− zM,n,p0(P))∑

P∈Π(1− zM,n,p0(P))
,

where zM,n,p0(P) = Φ(Mp0,M, pn(P)), the cdf of a binomial distribution with parameter pn(P) =
E[p̂Mn,n(P)|Dn], M trials, evaluated at Mp0. It happens that εM,n,p0 is quite insensitive to p0. Consequently
it is simply averaged over a grid V̂M,n of many possible values of p0. Therefore, the number of trees is set, for
α = 0.05, by

argmin
M

{ 1

|V̂M,n|

∑
p0∈V̂M,n

εM,n,p0 < α
}
,

to ensure that 95% of the rules are shared by the two models in average. See Section 4 from Bénard et al. (2021)
for a thorough explanation of this stopping criterion.

References
Bénard, C., Biau, G., Da Veiga, S., and Scornet, E. (2021). Sirus: Stable and interpretable rule set for classification.

Electronic Journal of Statistics, 15:427–505.

Breiman, L. (2001). Random forests. Machine Learning, 45:5–32.

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized linear models via
coordinate descent. Journal of statistical software, 33:1.

Friedman, J. and Popescu, B. (2008). Predictive learning via rule ensembles. The Annals of Applied Statistics,
2:916–954.

Louppe, G. (2014). Understanding random forests: From theory to practice. arXiv preprint arXiv:1407.7502.

Meinshausen, N. (2010). Node harvest. The Annals of Applied Statistics, 4:2049–2072.

Murdoch, W., Singh, C., Kumbier, K., Abbasi-Asl, R., and Yu, B. (2019). Interpretable machine learning:
Definitions, methods, and applications. arXiv:1901.04592.

Van der Vaart, A. (2000). Asymptotic Statistics, volume 3. Cambridge University Press, Cambridge.

	Proof of Theorem 1: Asymptotic Stability
	Computational Complexity
	Random Forest Modifications
	Post-treatment Illustration
	Rule Format
	Dataset Descriptions
	Number of Trees

