
Interpretable Random Forests via Rule Extraction

Clément Bénard1,2 Gérard Biau2 Sébastien Da Veiga1 Erwan Scornet3

1Safran Tech, Modeling & Simulation, 78114 Magny-Les-Hameaux, France
2Sorbonne Université, CNRS, LPSM, 75005 Paris, France

3Ecole Polytechnique, IP Paris, CMAP, 91128 Palaiseau, France

Abstract

We introduce SIRUS (Stable and
Interpretable RUle Set) for regression,
a stable rule learning algorithm, which takes
the form of a short and simple list of rules.
State-of-the-art learning algorithms are often
referred to as “black boxes” because of the
high number of operations involved in their
prediction process. Despite their powerful
predictivity, this lack of interpretability may
be highly restrictive for applications with
critical decisions at stake. On the other hand,
algorithms with a simple structure—typically
decision trees, rule algorithms, or sparse
linear models—are well known for their
instability. This undesirable feature makes
the conclusions of the data analysis unreliable
and turns out to be a strong operational
limitation. This motivates the design of
SIRUS, based on random forests, which
combines a simple structure, a remarkable
stable behavior when data is perturbed, and
an accuracy comparable to its competitors.
We demonstrate the efficiency of the method
both empirically (through experiments) and
theoretically (with the proof of its asymptotic
stability). A R/C++ software implementation
sirus is available from CRAN.

1 Introduction

State-of-the-art learning algorithms, such as random
forests or neural networks, are often criticized for their
“black-box" nature. This criticism essentially results
from the high number of operations involved in their

Proceedings of the 24th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2021, San Diego,
California, USA. PMLR: Volume 130. Copyright 2021 by
the author(s).

prediction mechanism, as it prevents to grasp how
inputs are combined to generate predictions. Inter-
pretability of machine learning algorithms is receiving
an increasing amount of attention since the lack of
transparency is a strong limitation for many applica-
tions, in particular those involving critical decisions.
The analysis of production processes in the manufactur-
ing industry typically falls into this category. Indeed,
such processes involve complex physical and chemical
phenomena that can often be successfully modeled by
black-box learning algorithms. However, any modifica-
tion of a production process has deep and long-term
consequences, and therefore cannot simply result from a
blind stochastic modelling. In this domain, algorithms
have to be interpretable, i.e., provide a sound under-
standing of the relation between inputs and outputs,
in order to leverage insights to guide physical analysis
and improve efficiency of the production.

Although there is no agreement in the machine learning
litterature about a precise definition of interpretability
(Lipton, 2016; Murdoch et al., 2019), it is yet possible
to define simplicity, stability, and predictivity as min-
imum requirements for interpretable models (Bénard
et al., 2021; Yu and Kumbier, 2019). Simplicity of
the model structure can be assessed by the number
of operations performed in the prediction mechanism.
In particular, Murdoch et al. (2019) introduce the no-
tion of simulatable models when a human is able to
reproduce the prediction process by hand. Secondly,
Yu (2013) argues that “interpretability needs stability”,
as the conclusions of a statistical analysis have to be
robust to small data perturbations to be meaningful.
Instability is the symptom of a partial and arbitrary
modelling of the data, also known as the Rashomon
effect (Breiman, 2001b). Finally, as also explained in
Breiman (2001b), if the decrease of predictive accuracy
is significant compared to a state-of-the-art black-box
algorithm, the interpretable model misses some pat-
terns in the data and is therefore misleading.

Decision trees (Breiman et al., 1984) can model non-
linear patterns while having a simple structure. They

Interpretable Random Forests via Rule Extraction

are therefore often presented as interpretable. How-
ever, the structure of trees is highly sensitive to small
data perturbation (Breiman, 2001b), which violates
the stability principle and is thus a strong limitation to
their practical use. Rule algorithms are another type
of nonlinear methods with a simple structure, defined
as a collection of elementary rules. An elementary rule
is a set of constraints on input variables, which forms
a hyperrectangle in the input space and on which the
associated prediction is constant. As an example, such
a rule typically takes the following simple form:

If
{
X(1) < 1.12
& X(3) ≥ 0.7

then Ŷ = 0.18 else Ŷ = 4.1 .

A large number of rule algorithms have been devel-
oped, among which the most influential are Decision
List (Rivest, 1987), CN2 (Clark and Niblett, 1989),
C4.5 (Quinlan, 1992), IREP (Incremental Reduced Er-
ror Pruning, Fürnkranz and Widmer, 1994), RIPPER
(Repeated Incremental Pruning to Produce Error Re-
duction, Cohen, 1995), PART (Partial Decision Trees,
Frank and Witten, 1998), SLIPPER (Simple Learner
with Iterative Pruning to Produce Error Reduction, Co-
hen and Singer, 1999), LRI (Leightweight Rule Induc-
tion, Weiss and Indurkhya, 2000), RuleFit (Friedman
and Popescu, 2008), Node harvest (Meinshausen, 2010),
ENDER (Ensemble of Decision Rules, Dembczyński
et al., 2010), BRL (Bayesian Rule Lists, Letham et al.,
2015), RIPE (Rule Induction Partitioning Estimator,
Margot et al., 2018, 2019), and Wei et al. (2019, Gener-
alized Linear Rule Models). It turns out, however, that
despite their simplicity and high predictivity (close
to the accuracy of tree ensembles), rule learning al-
gorithms share the same limitation as decision trees:
instability. Furthermore, among the hundreds of ex-
isting rule algorithms, most of them are designed for
supervised classification and few have the ability to
handle regression problems.

The purpose of this article is to propose a new sta-
ble rule algorithm for regression, SIRUS (Stable and
Interpretable RUle Set), and therefore demonstrate
that rule methods can address regression problems effi-
ciently while producing compact and stable list of rules.
To this aim, we build on Bénard et al. (2021), who have
introduced SIRUS for classification problems. Our al-
gorithm is based on random forests (Breiman, 2001a),
and its general principle is as follows: since each node
of each tree of a random forest can be turned into an
elementary rule, the core idea is to extract rules from a
tree ensemble based on their frequency of appearance.
The most frequent rules, which represent robust and
strong patterns in the data, are ultimately linearly com-
bined to form predictions. The main competitors of
SIRUS are RuleFit (Friedman and Popescu, 2008) and

Node harvest (Meinshausen, 2010). Both methods also
extract large collection of rules from tree ensembles:
RuleFit uses a boosted tree ensemble (ISLE, Friedman
and Popescu, 2003) whereas Node harvest is based on
random forests. The rule selection is performed by a
sparse linear aggregation, respectively the Lasso (Tib-
shirani, 1996) for RuleFit and a constrained quadratic
program for Node harvest. Yet, despite their powerful
predictive skills, these two methods tend to produce
long, complex, and unstable lists of rules (typically of
the order of 30−50), which makes their interpretability
questionable. Because of the randomness in the tree
ensemble, running these algorithms multiple times on
the same dataset outputs different rule lists. As we will
see, SIRUS considerably improves stability and simplic-
ity over its competitors, while preserving a comparable
predictive accuracy and computational complexity—
see Section 2 of the Supplementary Material for the
complexity analysis.

We present SIRUS algorithm in Section 2. In Section
3, experiments illustrate the good performance of our
algorithm in various settings. Section 4 is devoted to
studying the theoretical properties of the method, with,
in particular, a proof of its asymptotic stability. Finally,
Section 5 summarizes the main results and discusses
research directions for future work. Additional details
are gathered in the Supplementary Material.

2 SIRUS Algorithm

We consider a standard regression setting where we
observe an i.i.d. sample Dn = {(Xi, Yi), i = 1, . . . , n},
with each (Xi, Yi) distributed as a generic pair (X, Y)
independent of Dn. The p-tuple X = (X(1), . . . , X(p))
is a random vector taking values in Rp, and Y ∈ R is
the response. Our objective is to estimate the regression
function m(x) = E[Y |X = x] with a small and stable
set of rules.

Rule generation. The first step of SIRUS is to
grow a random forest with a large number M of trees
based on the available sample Dn. The critical feature
of our approach to stabilize the forest structure is to
restrict node splits to the q-empirical quantiles of the
marginals X(1), . . . , X(p), with typically q = 10. This
modification to Breiman’s original algorithm has a
small impact on predictive accuracy, but is essential
for stability, as it is extensively discussed in Section
3 of the Supplementary Material. Next, the obtained
forest is broken down in a large collection of rules in the
following process. First, observe that each node of each
tree of the resulting ensemble defines a hyperrectangle
in the input space Rp. Such a node can therefore be
turned into an elementary regression rule, by defining a
piecewise constant estimate whose value only depends

C. Bénard, G. Biau, S. Da Veiga, E. Scornet

on whether the query point falls in the hyperrectangle
or not. Formally, a (inner or terminal) node of the tree
is represented by a path, say P, which describes the
sequence of splits to reach the node from the root of
the tree. In the sequel, we denote by Π the finite list
of all possible paths, and insist that each path P ∈ Π
defines a regression rule. Based on this principle, in the
first step of the algorithm, both internal and external
nodes are extracted from the trees of the random forest
to generate a large collection of rules, typically 104.

Rule selection. The second step of SIRUS is to
select the relevant rules from this large collection. De-
spite the tree randomization in the forest construction,
there are some redundancy in the extracted rules. In-
deed those with a high frequency of appearance repre-
sent strong and robust patterns in the data, and are
therefore good candidates to be included in a compact,
stable, and predictive rule ensemble. This occurrence
frequency is denoted by p̂M,n(P) for each possible path
P ∈ Π. Then a threshold p0 ∈ (0, 1) is simply used to
select the relevant rules, that is

P̂M,n,p0 = {P ∈ Π : p̂M,n(P) > p0}.

The threshold p0 is a tuning parameter, whose influence
and optimal setting are discussed and illustrated later
in the experiments (Figures 2 and 3). Optimal p0

values essentially select rules made of one or two splits.
Indeed, rules with a higher number of splits are more
sensitive to data perturbation, and thus associated to
smaller values of p̂M,n(P). Therefore, SIRUS grows
shallow trees to reduce the computational cost while
leaving the rule selection untouched—see Section 3 of
the Supplementary Material. In a word, SIRUS uses
the principle of randomized bagging, but aggregates
the forest structure itself instead of predictions in order
to stabilize the rule selection.

Rule set post-treatment. The rules associated
with the set of distinct paths P̂M,n,p0 are dependent
by definition of the path extraction mechanism. As
an example, let us consider the 6 rules extracted from
a random tree of depth 2. Since the tree structure
is recursive, 2 rules are made of one split and 4 rules
of two splits. Those 6 rules are linearly dependent
because their associated hyperrectangles overlap. Con-
sequently, to properly settle a linear aggregation of the
rules, the third step of SIRUS filters P̂M,n,p0 with the
following post-treatment procedure: if the rule induced
by the path P ∈ P̂M,n,p0 is a linear combination of
rules associated with paths with a higher frequency of
appearance, then P is simply removed from P̂M,n,p0 .
We refer to Section 4 of the Supplementary Material for
a detailed illustration of the post-treatment procedure
on real data.

Rule aggregation. By following the previous steps,
we finally obtain a small set of regression rules. As such,
a rule ĝn,P associated with a path P is a piecewise
constant estimate: if a query point x falls into the cor-
responding hyperrectangle HP ⊂ Rp, the rule returns
the average of the Yi’s for the training points Xi’s that
belong to HP ; symmetrically, if x falls outside of HP ,
the average of the Yi’s for training points outside of
HP is returned. Next, a non-negative weight is as-
signed to each of the selected rule, in order to combine
them into a single estimate of m(x). These weights are
defined as the ridge regression solution, where each pre-
dictor is a rule ĝn,P for P ∈ P̂M,n,p0 and weights are
constrained to be non-negative. Thus, the aggregated
estimate m̂M,n,p0(x) of m(x) computed in the fourth
step of SIRUS has the form

m̂M,n,p0(x) = β̂0 +
∑

P∈P̂M,n,p0

β̂n,P ĝn,P(x), (2.1)

where β̂0 and β̂n,P are the solutions of the ridge regres-
sion problem. More precisely, denoting by β̂n,p0 the
column vector whose components are the coefficients
β̂n,P for P ∈ P̂M,n,p0 , and letting Y = (Y1, . . . , Yn)T

and Γn,p0 the matrix whose rows are the rule values
ĝn,P(Xi) for i ∈ {1, . . . , n}, we have

(β̂n,p0 , β̂0) = argmin
β≥0,β0

1

n
||Y − β01n − Γn,p0β||22
+ λ||β||22,

where 1n = (1, . . . , 1)T is the n-vector with all compo-
nents equal to 1, and λ is a positive parameter tuned by
cross-validation that controls the penalization severity.
The mininum is taken over β0 ∈ R and all the vectors
β = {β1, . . . , βcn} ∈ R

cn
+ where cn = |P̂M,n,p0 | is the

number of selected rules. Besides, notice that the rule
format with an else clause differs from the standard
format in the rule learning literature. This modification
provides good properties of stability and modularity
(investigation of the rules one by one (Murdoch et al.,
2019)) to SIRUS—see Section 5 of the Supplementary
Material.

This linear rule aggregation is a critical step and de-
serves additional comments. Indeed, in RuleFit, the
rules are also extracted from a tree ensemble, but ag-
gregated using the Lasso. However, the extracted rules
are strongly correlated by construction, and the Lasso
selection is known to be highly unstable in such corre-
lated setting. This is the main reason of the instability
of RuleFit, as the experiments will show. On the other
hand, the sparsity of SIRUS is controlled by the pa-
rameter p0, and the ridge regression enables a stable
aggregation of the rules. Furthermore, the constraint
β ≥ 0 is added to ensure that all coefficients are non-
negative, as in Node harvest (Meinshausen, 2010). Also

Interpretable Random Forests via Rule Extraction

because of the rule correlation, an unconstrained re-
gression would lead to negative values for some of the
coefficients β̂n,P , and such behavior drastically under-
mines the interpretability of the algorithm.

Interpretability. As stated in the introduction, de-
spite the lack of a precise definition of interpretable
models, there are three minimum requirements to be
taken into account: simplicity, stability, and predic-
tivity. These notions need to be formally defined and
quantified to enable comparison between algorithms.
Simplicity refers to the model complexity, in particu-
lar the number of operations involved in the prediction
mechanism. In the case of rule algorithms, a measure
of simplicity is naturally given by the number of rules.
Intuitively, a rule algorithm is stable when two inde-
pendent estimations based on two independent samples
return similar lists of rules. Formally, let P̂ ′

M,n,p0
be

the list of rules output by SIRUS fit on an independent
sample D ′n. Then the proportion of rules shared by
P̂M,n,p0 and P̂ ′

M,n,p0
gives a stability measure. Such

a metric is known as the Dice-Sorensen index, and
is often used to assess variable selection procedures
(Chao et al., 2006; Zucknick et al., 2008; Boulesteix
and Slawski, 2009; He and Yu, 2010; Alelyani et al.,
2011). In our case, the Dice-Sorensen index is then
defined as

ŜM,n,p0 =
2
∣∣P̂M,n,p0 ∩ P̂ ′

M,n,p0

∣∣∣∣P̂M,n,p0

∣∣+
∣∣P̂ ′

M,n,p0

∣∣ .
However, in practice one rarely has access to an addi-
tional sample D ′n. Therefore, to circumvent this prob-
lem, we use a 10-fold cross-validation to simulate data
perturbation. The stability metric is thus empirically
defined as the average proportion of rules shared by
two models of two distinct folds of the cross-validation.
A stability of 1 means that the exact same list of rules
is selected over the 10 folds, whereas a stability of 0
means that all rules are distinct between any 2 folds.
For predictivity in regression problems, the propor-
tion of unexplained variance is a natural measure of
the prediction error. The estimation is performed by
10-fold cross-validation.

3 Experiments

Experiments are run over 8 diverse public datasets to
demonstrate the improvement of SIRUS over state-of-
the-art methods. Table 1 in Section 6 of the Supple-
mentary Material provides dataset details.

SIRUS rule set. Our algorithm is illustrated on the
“LA Ozone” dataset from Friedman et al. (2001), which
records the level of atmospheric ozone concentration

from eight daily meteorological measurements made
in Los Angeles in 1976: wind speed (“wind”), humid-
ity (“humidity”), temperature (“temp”), inversion base
height (“ibh”), daggot pressure gradient (“dpg”), inver-
sion base temperature (“ibt”), visibility (“vis”), and day
of the year (“doy”). The response “Ozone” is the log of
the daily maximum of ozone concentration. The list
of rules output for this dataset is presented in Table
1. The column “Frequency” refers to p̂M,n(P), the
occurrence frequency of each rule in the forest, used for
rule selection. It enables to grasp how weather condi-
tions impact the ozone concentration. In particular, a
temperature larger than 65°F or a high inversion base
temperature result in high ozone concentrations. The
third rule tells us that the interaction of a high temper-
ature with a visibility lower than 150 miles generates
even higher levels of ozone concentration. Interestingly,
according to the ninth rule, especially low ozone con-
centrations are reached when a low temperature and
and a low inversion base temperature are combined.
Recall that to generate a prediction for a given query
point x, for each rule the corresponding ozone concen-
tration is retrieved depending on whether x satisfies
the rule conditions. Then all rule outputs for x are
multiplied by their associated weight and added to-
gether. One can observe that rule importances and
weights are not related. For example, the third rule
has a higher weight than the most two important ones.
It is clear that rule 3 has multiple constraints and is
therefore more sensitive to data perturbation—hence a
smaller frequency of appearance in the forest. On the
other hand, its associated variance decrease in CART
is more important than for the first two rules, leading
to a higher weight in the linear combination. Since
rules 5 and 6 are strongly correlated, their weights are
diluted.

Tuning. SIRUS has only one hyperparameter which
requires fine tuning: the threshold p0 to control the
model size by selecting the most frequent rules in the
forest. First, the range of possible values of p0 is set so
that the model size varies between 1 and 25 rules. This
arbitrary upper bound is a safeguard to avoid long and
complex list of rules that are difficult to interpret. In
practice, this limit of 25 rules is rarely hit, since the
following tuning of p0 naturally leads to compact rule
lists. Thus, p0 is tuned within that range by cross-
validation to maximize both stability and predictivity.
To find a tradeoff between these two properties, we
follow a standard bi-objective optimization procedure
as illustrated in Figure 1, and described in Section 2 of
the Supplementary Material: p0 is chosen to be as close
as possible to the ideal case of 0 unexplained variance
and 90% stability. This tuning procedure is computa-
tionally fast: the cost of about 10 fits of SIRUS. For a

C. Bénard, G. Biau, S. Da Veiga, E. Scornet

Average Ozone = 12 Intercept = −7.8

Frequency Rule Weight
0.29 if temp < 65 then Ozone = 7 else Ozone = 19 0.12
0.17 if ibt < 189 then Ozone = 7 else Ozone = 18 0.07

0.063 if
{

temp ≥ 65
& vis < 150

then Ozone = 20 else Ozone = 7 0.31

0.061 if vh < 5840 then Ozone = 10 else Ozone = 20 0.072
0.060 if ibh < 2110 then Ozone = 16 else Ozone = 7 0.14
0.058 if ibh < 2960 then Ozone = 15 else Ozone = 6 0.10

0.051 if
{

temp ≥ 65
& ibh < 2110

then Ozone = 21 else Ozone = 8 0.16

0.048 if vis < 150 then Ozone = 14 else Ozone = 7 0.18

0.043 if
{

temp < 65
& ibt < 120

then Ozone = 5 else Ozone = 15 0.15

0.040 if temp < 70 then Ozone = 8 else Ozone = 20 0.14
0.039 if ibt < 227 then Ozone = 9 else Ozone = 22 0.21

Table 1: SIRUS rule list for the “LA Ozone” dataset (about 9000 trees are grown to reach convergence).

Figure 1: Pareto front of stability versus error when p0

varies for the “Ozone” dataset (optimal value in green).

robust estimation of p0, the cross-validation is repeated
10 times and the median p0 value is selected. Besides,
the optimal number of trees M is set automatically by
SIRUS: as stability, predictivity, and computation time
increase with the number of trees, no fine tuning is
required for M . Thus, a stopping criterion is designed
to grow the minimum number of trees which enforces
that stability and predictivity are greater than 95% of
their maximum values (reached when M → ∞)—see
Section 7 of the Supplementary Material for a detailed
definition of this criterion. Finally, we use the stan-
dard settings of random forests (well-known for their
excellent performance, in particular mtry is bp/3c and
at least 2), and set q = 10 quantiles, while categorical
variables are handled as natively defined in trees.

Performance. We compare SIRUS with its two main
competitors RuleFit (with rule predictors only) and

Node harvest. For predictive accuracy, we ran random
forests and (pruned) CART to provide the baseline.
Only to compute stability metrics, data is binned using
10 quantiles to fit Rulefit and Node harvest. Our R/C++
package sirus (available from CRAN) is adapted from
ranger, a fast random forests implementation (Wright
and Ziegler, 2017). We also use available R implementa-
tions pre (Fokkema, 2017, RuleFit) and nodeharvest
(Meinshausen, 2015). While the predictive accuracy
of SIRUS is comparable to Node harvest and slightly
below RuleFit, the stability is considerably improved
with much smaller rule lists. Experimental results are
gathered in Table 2a for model sizes, Table 2b for sta-
bility, and Table 3 for predictive accuracy. All results
are averaged over 10 repetitions of the cross-validation
procedure. Since standard deviations are negligible,
they are not displayed to increase readability. Besides,
in the last column of Table 3, p0 is set to increase the
number of rules in SIRUS to reach RuleFit and Node
harvest model size (about 50 rules): predictivity is then
as good as RuleFit. Finally, the column “SIRUS sparse”
of Tables 2 and 3 shows the excellent behavior of SIRUS
in a sparse setting: for each dataset, 3 randomly per-
muted copies of each variable are added to the data,
leaving SIRUS performance almost untouched.

To illustrate the typical behavior of our method, we
comment the results for two specific datasets: “Dia-
betes” (Efron et al., 2004) and “Machine” (Dua and
Graff, 2017). The “Diabetes” data contains n = 442
diabetic patients and the response of interest Y is a
measure of disease progression over one year. A total
of 10 variables are collected for each patient: age, sex,
body mass index, average blood pressure, and six blood
serum measurements s1, s2, . . . , s6. For this dataset,
SIRUS is as predictive as a random forest, with only 12

Interpretable Random Forests via Rule Extraction
(a) Model Size

Dataset CARTRuleFit Node
harvest SIRUS SIRUS

sparse
Ozone 15 21 46 11 10
Mpg 15 40 43 10 10

Prostate 11 14 41 9 12
Housing 15 54 40 6 6
Diabetes 12 25 42 12 15
Machine 8 44 42 9 7
Abalone 20 58 35 8 13
Bones 17 5 13 1 1

(b) Stability

Dataset RuleFit Node harvest SIRUS SIRUS
sparse

Ozone 0.22 0.30 0.62 0.63
Mpg 0.25 0.43 0.77 0.76

Prostate 0.32 0.23 0.58 0.59
Housing 0.19 0.40 0.82 0.82
Diabetes 0.18 0.39 0.69 0.65
Machine 0.23 0.29 0.86 0.84
Abalone 0.31 0.38 0.75 0.74
Bones 0.59 0.52 0.96 0.78

Table 2: Mean model size and stability over a 10-fold cross-
validation for various public datasets. Minimum size and
maximum stability are in bold (“SIRUS sparse” put aside).

rules when the forest performs about 104 operations:
the unexplained variance is 0.56 for SIRUS and 0.55
for random forest. Notice that CART performs con-
siderably worse with 0.67 unexplained variance. For
the second dataset, “Machine”, the output Y of inter-
est is the CPU performance of computer hardware.
For n = 209 machines, 6 variables are collected about
the machine characteristics. For this dataset, SIRUS,
RuleFit, and Node harvest have a similar predictivity,
in-between CART and random forests. Our algorithm
achieves such performance with a readable list of only
9 rules stable at 86%, while RuleFit and Node harvest
incorporate respectively 44 and 42 rules with stability
levels of 23% and 29%. Stability and predictivity are
represented as p0 varies for “Diabetes” and “Machine”
datasets in Figures 2 and 3, respectively.

4 Theoretical Analysis

Among the three minimum requirements for inter-
pretable models, stability is the critical one. In SIRUS,
simplicity is explicitly controlled by the hyperparame-
ter p0. The wide literature on rule learning provides
many experiments to show that rule algorithms have an
accuracy comparable to tree ensembles. On the other
hand, designing a stable rule procedure is more chal-
lenging (Letham et al., 2015; Murdoch et al., 2019). For

Figure 2: For the dataset “Diabetes”, unexplained vari-
ance (top panel) and stability (bottom panel) versus the
number of rules when p0 varies, estimated via 10-fold cross-
validation (results are averaged over 10 repetitions).

C. Bénard, G. Biau, S. Da Veiga, E. Scornet

Dataset Random
Forest CART RuleFit Node

harvest SIRUS SIRUS
sparse

SIRUS
50 rules

Ozone 0.25 0.36 0.27 0.31 0.32 0.32 0.26
Mpg 0.13 0.20 0.15 0.20 0.20 0.20 0.15

Prostate 0.48 0.60 0.53 0.52 0.55 0.51 0.54
Housing 0.13 0.28 0.16 0.24 0.30 0.31 0.20
Diabetes 0.55 0.67 0.55 0.58 0.56 0.56 0.55
Machine 0.13 0.39 0.26 0.29 0.29 0.32 0.27
Abalone 0.44 0.56 0.46 0.61 0.66 0.64 0.64
Bones 0.67 0.67 0.70 0.70 0.73 0.77 0.73

Table 3: Proportion of unexplained variance estimated over a 10-fold cross-validation for various public datasets. For rule
algorithms only, i.e., RuleFit, Node harvest, and SIRUS, minimum values are displayed in bold, as well as values within
10% of the minimum for each dataset (“SIRUS sparse” put aside).

Figure 3: For the dataset “Machine”, unexplained vari-
ance (top panel) and stability (bottom panel) versus the
number of rules when p0 varies, estimated via 10-fold cross-
validation (results are averaged over 10 repetitions).

this reason, we therefore focus our theoretical analysis
on the asymptotic stability of SIRUS.

To get started, we need a rigorous definition of the
rule extraction procedure. To this aim, we introduce
a symbolic representation of a path in a tree, which
describes the sequence of splits to reach a given (inner
or terminal) node from the root. We insist that such
path encoding can be used in both the empirical and
theoretical algorithms to define rules. A path P is
defined as

P = {(jk, rk, sk), k = 1, . . . , d},

where d is the tree depth, and for k ∈ {1, . . . , d}, the
triplet (jk, rk, sk) describes how to move from level
(k − 1) to level k, with a split using the coordinate
jk ∈ {1, . . . , p}, the index rk ∈ {1, . . . , q − 1} of the
corresponding quantile, and a side sk = L if we go to the
left and sk = R if we go to the right—see Figure 4. The
set of all possible such paths is denoted by Π. Each tree
of the forest is randomized in two ways: (i) the sample
Dn is bootstrapped prior to the construction of the tree,
and (ii) a subset of coordinates is randomly selected to
find the best split at each node. This randomization
mechanism is governed by a random variable that we
call Θ. We define T (Θ,Dn), a random subset of Π, as
the collection of the extracted paths from the random
tree built with Θ and Dn. Now, let Θ1, . . . ,Θ`, . . . ,ΘM

be the independent randomizations of the M trees of
the forest. With this notation, the empirical frequency
of occurrence of a path P ∈ Π in the forest takes the
form

p̂M,n(P) =
1

M

M∑
`=1

1P∈T (Θ`,Dn),

which is simply the proportion of trees that contain P.
By definition, p̂M,n(P) is the Monte Carlo estimate of
the probability pn(P) that a Θ-random tree contains
a particular path P ∈ Π, that is,

pn(P) = P(P ∈ T (Θ,Dn)|Dn).

Interpretable Random Forests via Rule Extraction

x(1)

x(2)

q̂
(1)
n,7q̂

(1)
n,5

q̂
(2)
n,4

P5 = {(2, 4, R),
(1, 7, L)}

P6 = {(2, 4, R),
(1, 7, R)}

P3 = {(2, 4, L),
(1, 5, L)}

P4 = {(2, 4, L),
(1, 5, R)}

X
(2)
i < q̂

(2)
n,4 X

(2)
i ≥ q̂(2)

n,4

P1 P2

X
(1)
i < q̂

(1)
n,7

X
(1)
i ≥ q̂(1)

n,7

P5 P6

X
(1)
i < q̂

(1)
n,5

X
(1)
i ≥ q̂(1)

n,5

P3 P4

Figure 4: Example of a root node R2 partitioned by a randomized tree of depth 2: the tree on the right, the associated
paths and hyperrectangles of length d = 2 on the left.

Next, we introduce all theoretical counterparts of the
empirical quantities involved in SIRUS, which do not
depend on the sample Dn but only on the unknown
distribution of (X, Y). We let T ?(Θ) be the list of
all paths contained in the theoretical tree built with
randomness Θ, in which splits are chosen to maximize
the theoretical CART-splitting criterion instead of the
empirical one. The probability p?(P) that a given
path P belongs to a theoretical randomized tree (the
theoretical counterpart of pn(P)) is

p?(P) = P(P ∈ T ?(Θ)).

We finally define the theoretical set of selected paths
P?
p0 = {P ∈ Π : p?(P) > p0} (with the same post-

treatment as for the data-based procedure—see Section
2—to remove linear dependence between rules, and dis-
carding paths with a null coefficient in the rule aggrega-
tion). As it is often the case in the theoretical analysis
of random forests, (Scornet et al., 2015; Mentch and
Hooker, 2016), we assume throughout this section that
the subsampling of an observations prior to each tree
construction is done without replacement to alleviate
the mathematical analysis. Our stability result holds
under the following mild assumptions:

(A1) The subsampling rate an satisfies lim
n→∞

an = ∞
and lim

n→∞
an
n = 0, and the number of trees Mn

satisfies lim
n→∞

Mn =∞.

(A2) The random variable X has a strictly positive den-
sity f with respect to the Lebesgue measure on Rp.
Furthermore, for all j ∈ {1, . . . , p}, the marginal
density f (j) of X(j) is continuous, bounded, and
strictly positive. Finally, the random variable Y
is bounded.

Theorem 1. Assume that Assumptions (A1) and (A2)
are satisfied, and let U? = {p?(P) : P ∈ Π} be the

set of all theoretical probabilities of appearance for each
path P. Then, provided p0 ∈ [0, 1] \ U? and λ > 0, we
have

lim
n→∞

ŜMn,n,p0 = 1 in probability.

Theorem 1 states that SIRUS is stable: provided that
the sample size is large enough, the same list of rules
is systematically output across several fits on indepen-
dent samples. The analysis conducted in the proof—
Section 1 of the Supplementary Material—highlights
that the cut discretization (performed at quantile val-
ues only), as well as considering random forests (instead
of boosted tree ensembles as in RuleFit) are the cor-
nerstones to stabilize rule models extracted from tree
ensembles. Furthermore, the experiments in Section
3 show the high empirical stability of SIRUS in finite-
sample regimes.

5 Conclusion

Interpretability of machine learning algorithms is re-
quired whenever the targeted applications involve criti-
cal decisions. Although interpretability does not have
a precise definition, we argued that simplicity, stability,
and predictivity are minimum requirements for inter-
pretable models. In this context, rule algorithms are
well known for their good predictivity and simple struc-
tures, but also to be often highly unstable. Therefore,
we proposed a new regression rule algorithm called
SIRUS, whose general principle is to extract rules from
random forests. Our algorithm exhibits an accuracy
comparable to state-of-the-art rule algorithms, while
producing much more stable and shorter lists of rules.
This remarkably stable behavior is theoretically under-
stood since the rule selection is consistent. A R/C++
software sirus is available from CRAN.

C. Bénard, G. Biau, S. Da Veiga, E. Scornet

Acknowledgements

We thank the reviewers for their insightful comments
and suggestions.

References

Alelyani, S., Zhao, Z., and Liu, H. (2011). A dilemma in
assessing stability of feature selection algorithms. In
13th IEEE International Conference on High Perfor-
mance Computing & Communication, pages 701–707,
Piscataway. IEEE.

Bénard, C., Biau, G., Da Veiga, S., and Scornet, E.
(2021). Sirus: Stable and interpretable rule set for
classification. Electronic Journal of Statistics, 15:427–
505.

Boulesteix, A.-L. and Slawski, M. (2009). Stability
and aggregation of ranked gene lists. Briefings in
Bioinformatics, 10:556–568.

Breiman, L. (2001a). Random forests. Machine Learn-
ing, 45:5–32.

Breiman, L. (2001b). Statistical modeling: The two cul-
tures (with comments and a rejoinder by the author).
Statistical Science, 16:199–231.

Breiman, L., Friedman, J., Olshen, R., and Stone, C.
(1984). Classification and Regression Trees. Chap-
man & Hall/CRC, Boca Raton.

Chao, A., Chazdon, R., Colwell, R., and Shen, T.-J.
(2006). Abundance-based similarity indices and their
estimation when there are unseen species in samples.
Biometrics, 62:361–371.

Clark, P. and Niblett, T. (1989). The CN2 induction
algorithm. Machine Learning, 3:261–283.

Cohen, W. (1995). Fast effective rule induction. In
Proceedings of the 12th International Conference on
Machine Learning, pages 115–123, San Francisco.
Morgan Kaufmann Publishers Inc.

Cohen, W. and Singer, Y. (1999). A simple, fast, and
effective rule learner. In Proceedings of the 16th Na-
tional Conference on Artificial Intelligence and 11th
Conference on Innovative Applications of Artificial
Intelligence, pages 335–342, Palo Alto. AAAI Press.

Dembczyński, K., Kotłowski, W., and Słowiński, R.
(2010). ENDER: A statistical framework for boosting
decision rules. Data Mining and Knowledge Discov-
ery, 21:52–90.

Dua, D. and Graff, C. (2017). UCI machine learning
repository.

Efron, B., Hastie, T., Johnstone, I., and Tibshirani,
R. (2004). Least angle regression. The Annals of
statistics, 32:407–499.

Fokkema, M. (2017). PRE: An R package for fitting
prediction rule ensembles. arXiv:1707.07149.

Frank, E. and Witten, I. H. (1998). Generating accurate
rule sets without global optimization. In Proceedings
of the 15th International Conference on Machine
Learning, pages 144–151, San Francisco. Morgan
Kaufmann Publishers Inc.

Friedman, J., Hastie, T., and Tibshirani, R. (2001). The
Elements of Statistical Learning, volume 1. Springer,
New York.

Friedman, J. and Popescu, B. (2003). Importance
sampled learning ensembles. Journal of Machine
Learning Research, 94305:1–32.

Friedman, J. and Popescu, B. (2008). Predictive learn-
ing via rule ensembles. The Annals of Applied Statis-
tics, 2:916–954.

Fürnkranz, J. and Widmer, G. (1994). Incremental
reduced error pruning. In Proceedings of the 11th In-
ternational Conference on Machine Learning, pages
70–77, San Francisco. Morgan Kaufmann Publishers
Inc.

He, Z. and Yu, W. (2010). Stable feature selection
for biomarker discovery. Computational Biology and
Chemistry, 34:215–225.

Letham, B., Rudin, C., McCormick, T., and Madigan,
D. (2015). Interpretable classifiers using rules and
Bayesian analysis: Building a better stroke prediction
model. The Annals of Applied Statistics, 9:1350–
1371.

Lipton, Z. (2016). The mythos of model interpretability.
arXiv:1606.03490.

Margot, V., Baudry, J.-P., Guilloux, F., and Win-
tenberger, O. (2018). Rule induction partitioning
estimator. In Proceedings of the 14th International
Conference on Machine Learning and Data Mining
in Pattern Recognition, pages 288–301, New York.
Springer.

Margot, V., Baudry, J.-P., Guilloux, F., and Win-
tenberger, O. (2019). Consistent regression using
data-dependent coverings. arXiv:1907.02306.

Meinshausen, N. (2010). Node harvest. The Annals of
Applied Statistics, 4:2049–2072.

Meinshausen, N. (2015). Package ‘nodeharvest’.

Mentch, L. and Hooker, G. (2016). Quantifying un-
certainty in random forests via confidence intervals
and hypothesis tests. Journal of Machine Learning
Research, 17:841–881.

Murdoch, W., Singh, C., Kumbier, K., Abbasi-Asl,
R., and Yu, B. (2019). Interpretable machine
learning: Definitions, methods, and applications.
arXiv:1901.04592.

Interpretable Random Forests via Rule Extraction

Quinlan, J. (1992). C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann, San Mateo.

Rivest, R. (1987). Learning decision lists. Machine
Learning, 2:229–246.

Scornet, E., Biau, G., and Vert, J.-P. (2015). Consis-
tency of random forests. The Annals of Statistics,
43(4):1716–1741.

Tibshirani, R. (1996). Regression shrinkage and selec-
tion via the lasso. Journal of the Royal Statistical
Society. Series B, pages 267–288.

Wei, D., Dash, S., Gao, T., and Günlük, O. (2019).
Generalized linear rule models. arXiv preprint
arXiv:1906.01761.

Weiss, S. and Indurkhya, N. (2000). Lightweight rule
induction. In Proceedings of the 17th International
Conference on Machine Learning, pages 1135–1142,
San Francisco. Morgan Kaufmann Publishers Inc.

Wright, M. and Ziegler, A. (2017). ranger: A fast im-
plementation of random forests for high dimensional
data in C++ and R. Journal of Statistical Software,
77:1–17.

Yu, B. (2013). Stability. Bernoulli, 19:1484–1500.

Yu, B. and Kumbier, K. (2019). Three principles of data
science: Predictability, computability, and stability
(PCS). arXiv:1901.08152.

Zucknick, M., Richardson, S., and Stronach, E. (2008).
Comparing the characteristics of gene expression
profiles derived by univariate and multivariate classi-
fication methods. Statistical Applications in Genetics
and Molecular Biology, 7:1–34.

	Introduction
	SIRUS Algorithm
	Experiments
	Theoretical Analysis
	Conclusion

