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A Additional Lemmas

Lemma 4. Let assumption 1 be given, and define

V =

(
1

n

n∑
i=1

f(Xi)

)2

,

where E[f(X)] = 0, and ‖f(X)‖∞ <∞. Then E[V ] = O(1/n).

Proof. Given the assumption that E[f(X)] = 0, it is clear that

E[V ] =
1

n2

n∑
i=1

V[f(Xi)] +
2

n2

n∑
i=1

i−1∑
j=1

Cov[f(Xi), f(Xj)].

Now by assumption ‖f(X)‖∞ <∞, thus V[f(X)] is finite so the first term in the above expression is in O(1/n). Thus
it remains to bound the second term. Next we note that the X values are independent between trajectories, thus we can
partition this term according to

2

n2

N∑
t=1

Tt∑
i=1

i−1∑
j=1

Cov[f(X
(t)
i ), f(X

(t)
j )],

where X(t)
i denotes the i’th observation of the t’th trajectory. Therefore if we can show that the t’th term in the outer sum is

in O(Tt) we are done, so without loss of generality we consider the case of a single trajectory of length n and show that the
corresponding sum of covariances is in O(n).

Now let α(k) denote the kth α-mixing coefficient. Since X1:n is a Markov chain we have that α(Xi, Xj) = α(|i− j|). In
addition, given any random variablesU andW , it follows from Rio (2013, 1.12b) that Cov[X,Y ] ≤ 2α(U,W )‖U‖∞‖W‖∞.
Applying this result to our setting we obtain

Cov[f(Xi), f(Xj)] ≤ 2α(|i− j|)‖f(X)‖2∞
≤ 4β(|i− j|)‖f(X)‖2∞,

where the second inequality follows from the fact that β-mixing coefficients are larger than α-mixing coefficients (up to a
factor of 2). Thus we can obtain the bound

n∑
i=1

i−1∑
j=1

Cov[f(Xi), f(Xj)] ≤ 4‖f(X)‖2∞
n∑
i=1

i−1∑
j=0

β(j)

≤ 4n‖f(X)‖2∞
∞∑
j=1

β(j)

≤ 4n‖f(X)‖2∞
∞∑
j=1

j2/(p−2)β(j)

≤ O(n),

where 2 < p ≤ ∞ is the constant referenced in assumption 1, and the final inequality follows from assumption 1.

Thus we have
∑n
i=1

∑i−1
j=1 Cov[f(Xi), f(Xj)] = O(n), which lets us conclude that E[V ] = O(1/n).

Lemma 5. Assume that G is p-balancing-regular. Then for every constant M ≥ 0 we have

inf
W

sup
g∈G

Jλ(W, g) ≤ sup
g∈G

inf
‖W‖≤M

B(W, g)2 +
λ

n2
M2.

Proof of lemma 5. By assumption G is compact, and g 7→ Jλ(W, g) is continuous for every W . This means that by the
Extreme Value theorem we can replace the supremum over G with a maximum over G in the quantity we are bounding.



Andrew Bennett, Nathan Kallus, Lihong Li, Ali Mousavi

Given this, we will proceed by bounding minW maxg∈G B(W,µ) using von Neumann’s minimax theorem to swap the
minimum and the maximum, and then use this to establish the overall bound for Jλ(W,µ).

First, we can observe thatB(W, g) is linear, and therefore both convex and concave, in each ofW and g. Next, by assumption
G is convex and compact, and as argued already g 7→ B(W, g) is continuous for every W . In addition, B(W, g) is also
clearly continuous in W for fixed g, and the set {W : ‖W‖ ≤M} is obviously compact and convex for any non-negative
M . Thus by von Neumann’s minimax theorem we have the following for every M ≥ 0:

min
‖W‖≤M

max
g∈G

B(W, g) = max
µ∈G

min
‖W‖≤M

B(W, g) (3)

Given this, we can bound minW maxµ∈F J(W,µ) as follows, which is valid for any M :

min
W

max
g∈G

Jλ(W, g) = min
W

max
g∈G

B(W, g)2 +
λ

n2
‖W‖2

≤ min
‖W‖≤M

max
g∈G

B(W, g)2 +
λ

n2
‖W‖2

≤ min
‖W‖≤M

max
g∈G

B(W, g)2 +
λ

n2
M2

= ( min
‖W‖≤M

max
g∈G
|B(W, g)|)2 +

λ

n2
M2

= (max
g∈G

min
‖W‖≤M

B(W, g))2 +
λ

n2
M2

≤ (max
g∈G

min
‖W‖≤M

|B(W, g)|)2 +
λ

n2
M2

= max
g∈G

min
‖W‖≤M

B(W, g)2 +
λ

n2
M2

In these inequalities we use the fact that minW maxg B(W, g) = minW maxg |B(W, g)|, which follows becauseB(W, g) =
−B(W,−g), and that g ∈ G ⇐⇒ −g ∈ G. In addition we use the fact that x 7→ x2 is a monotonic function on R+.

Lemma 6. Let some g ∈ G be given. Then as long as there exists i ∈ [n] such that hg(Zi) 6= 0, there exists W ∈ Rn
satisfying

B(W, g) = 0

and

‖W‖2 =
(
∑n
i=1 kg(Zi)hg(Zi))

2

4
∑n
i=1 hg(Zi)

2

.

Proof of lemma 6. We will prove this non-constructively by considering the value of the solution to the constrained
optimization problem

min
W

n∑
i=1

W 2
i

s.t.
1

n

n∑
i=1

hg(Zi)Wi − kg(Zi) = 0

The Lagrangian corresponding to this problem is

L(W ;λ) =

n∑
i=1

W 2
i + λ(hg(Zi)Wi − kg(Zi))
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It can easily be verified by taking derivatives that for fixed λ this is minimized by setting Wi = − 1
2λhg(Zi). Plugging in

this W , we obtain the dual problem

D = max
λ∈R

n∑
i=1

−1

4
hg(Zi)

2λ2 +
kg(Zi)hg(Zi)

2
λ

= max
λ∈R
−1

4

(
n∑
i=1

hg(Zi)
2

)
λ2 +

1

2

(
n∑
i=1

kg(Zi)hg(Zi)

)
λ

Again taking derivatives, it is clear that this objective is maximized by

λ =

∑n
i=1 kg(Zi)hg(Zi)∑n

i=1 hg(Zi)
2

.

Plugging in this solution we have that the maximum dual value objective is given by

D∗ =
(
∑n
i=1 kg(Zi)hg(Zi))

2

4
∑n
i=1 hg(Zi)

2

Finally we note that the original constrained optimization problem had only linear equality constraints, and under the
assumption that hg(Zi) 6= 0 for some i we can construct a feasible solution, so Slater’s condition applies. Thus we can
conclude that the minimum euclidean norm of W satisfying B(W, g) = 0 is given by D∗, and therefore a W satisfying our
conditions must exist.

Lemma 7. Let assumption 1 be given, and assume that G is p-balancing-regular. Then we have

sup
g∈G∗

∣∣∣∣∣ 1n
n∑
i=1

h(Zi)
2 − E[h(Z)2]

∣∣∣∣∣ = op(1),

where
h(Z) = E[gA(S,U) | Z].

Proof of lemma 7. Let 2 < p ≤ ∞ be the fixed value of p from assumption 1, and let N(ε) = maxa∈[n]N[](ε,G∗a ,Lp). It
follows easily from our assumptions that

∫∞
0

√
logN(ε)dε <∞.

Now, let F = {f : f(z) = E[gA(S,U) | Z = z]}. Given any f ∈ F indexed by some g = (g1, . . . , gm) ∈ G∗,
we let (l1, r1), . . . , (lm, rm) be ε/m-brackets for g1, . . . , gm respectively in Lp. Now clearly by linearity (fl, fr) =
(E[lA(S,U) | Z = z],E[rA(S,U) | Z = z]) is a bracket for f , and we have

E[|fl(Z)− fr(Z)|p]1/p = E[|E[rA(S,U)− lA(S,U) | Z]|p]1/p

≤ E[E[|rA(S,U)− lA(S,U)|p | Z]]1/p

= E[|rA(S,U)− lA(S,U)|p]1/p

≤ E

[
m∑
a=1

|ra(S,U)− la(S,U)|p
]1/p

≤
m∑
a=1

E [|ra(S,U)− la(S,U)|p]1/p

≤
m∑
a=1

ε

m

= ε.

Thus the Lp-bracketing number for F must be at most N(ε/m)m, since we can ensure that every f ∈ F is in an ε-bracket
by constructing ε/m-brackets for each class G∗a , and then contstructing an ε-bracket for F from each possible combinatorial
choice of selecting one G∗a bracket for each a ∈ [m] and combining these.



Andrew Bennett, Nathan Kallus, Lihong Li, Ali Mousavi

Next, consider the function class F2 = {f : f(z) = f̃(z)2, f̃ ∈ F}. Now, given a bracket (l, r) for f ∈ F we can construct
a bracket (l2, r2) for the corresponding element f2 of F2, where

l2(z) = 1{sign(l(z)) = sign(r(z))}min(l(z)2, r(z)2)

r2(z) = max(l(z)2, r(z)2).

In the case that 1{sign(l(z)) = sign(r(z))} we have r2(z) − l2(z) = (r(z) − l(z))(r(z) + l(z)) ≤ C(r(z) − l(z)) for
some constant C, which follows because uniformly bounded property of G implies that F must be uniformly bounded also.
Also in the other case we have r2(z)− l2(z) = r2(z) ≤ (r(z)− l(z))2 ≤ C(r(z)− l(z)). Thus we have

E[|r2(Z)− l2(Z)|p]1/p ≤ E[Cp|r(Z)− l(Z)|p]1/p

= CE[|r(Z)− l(Z)|p]1/p.

Thus any ε/C-bracketing ofF gives a ε-bracketing ofF2, so theLp-bracketing number ofF2 must be at mostN(ε/(mC))m.
Therefore we have that the function class F2 satisfies∫ ∞

0

√
logN[](ε,F2,Lp)dε ≤

∫ ∞
0

√
m logN(ε/(mC))dε

= m3/2C

∫ ∞
0

√
logN(α)dα

<∞.

This finite uniform-entropy integral combined the β-mixing part of assumption 1 implies that the stochastic process over F2

defined by

Gn(f) =
√
n

(
1

n

n∑
i=1

f(Zi)
2 − E[f(Z)2]

)
converges tightly to a limiting Gaussian process, by Kosorok (2007, Theorem 11.24). Thus the stochastic process Gn/

√
n

converges tightly to the zero random variable, meaning that supf∈F2 Gn(f)/
√
n = op(1). Finally we can observe that by

construction

sup
g∈G∗

∣∣∣∣∣ 1n
n∑
i=1

h(Zi)
2 − E[h(Z)2]

∣∣∣∣∣ = sup
f∈F2

Gn(f)/
√
n,

which gives us our final result.

B Omitted Proofs

Proof of theorem 1. We begin by providing a bound for the conditional MSE, E[(τ̂W − v(πe))
2 | Z1:n]. Define the sample

average policy effect:

SAPE(πe) =
1

n

n∑
i=1

m∑
a=1

d(Si)πe(a | Si, Ui)µa(Si, Ui).

We note that following the derivation in section 4 we have E[SAPE(πe)] = v(πe). Given this and assumptions 1 to 3, it is
clear that the conditions of lemma 4 apply to Eb[(SAPE(πe)− v(πe))

2], so this term must be O(1/n). Thus by Markov’s
inequality and the law of total expectation we have E[(SAPE(πe)− v(πe))

2 | Z1:n] = Op(1/n). Then, using the fact that
(x+ y)2 ≤ 2x2 + 2y2, we have

E[(τ̂W − v(πe))
2 | Z1:n] ≤ 2E[(τ̂W − SAPE(πe))

2 | Z1:n] +Op(1/n).

Next, we perform a bias variance decomposition of the RHS of this bound as follows:

E[(τ̂W − SAPE(πe))
2 | Z1:n] = E[E[(τ̂W − SAPE(πe))

2 | Z1:n, U1:n] | Z1:n]

= E[E[τ̂W − SAPE(πe) | Z1:n, U1:n]2 | Z1:n]

+ E[V[τ̂W − SAPE(πe) | Z1:n, U1:n] | Z1:n]

= ξ1 + ξ2,



Andrew Bennett, Nathan Kallus, Lihong Li, Ali Mousavi

and we additionally define

ζia = WiδAiaRi − d(Si)πe(a | Si, Ui)µa(Si, Ui)

ζi =

m∑
a=1

ζia = WiRi − d(Si)

m∑
a=1

πe(a | Si, Ui)µa(Si, Ui).

We note that our MDPUC structure implies that Ri and Ui are conditionally independent of all other states, actions, rewards,
and confounders given Zi, and therefore that E[ζia | Z1:n] = E[fiaµa(Si, Ui) | Zi]. Given this, the first term of the above
bias variance decomposition can be broken down as:

ξ1 = E

( 1

n

n∑
i=1

m∑
a=1

ζia

)2 ∣∣∣ Z1:n


= E

[
1

n

n∑
i=1

m∑
a=1

ζia

∣∣∣ Z1:n

]2
+ V

[
1

n

n∑
i=1

m∑
a=1

ζia

∣∣∣ Z1:n

]

=

(
1

n

n∑
i=1

m∑
a=1

E[fiaµa(Si, Ui) | Zi]

)2

+ V

[
1

n

n∑
i=1

ζi | Z1:n

]

≤

(
1

n

n∑
i=1

m∑
a=1

E[fiaµa(Si, Ui) | Zi]

)2

+
2σ2

n2

n∑
i=1

W 2
i

+ 2V

[
1

n

n∑
1=1

d(Si)

m∑
a=1

πe(a | Si, Ui)µa(Si, Ui) | Z1:n

]

= B(W,µ)2 +
2σ2

n2
‖W‖2 + 2V

[
1

n

n∑
1=1

d(Si)

m∑
a=1

πe(a | Si, Ui)µa(Si, Ui) | Z1:n

]
,

where the inequality step follows from assumption 3 and the identity (x+ y)2 ≤ 2x2 + 2y2. Similarly, we bound the the
second error term ξ2 as:

ξ2 = E

[
V

[
1

n

n∑
i=1

ζi

∣∣∣ Z1:n, U1:n

] ∣∣∣ Z1:n

]

≤ E

[
2σ2

n2

n∑
i=1

W 2
i + 2V

[
1

n

n∑
i=1

d(Si)

m∑
a=1

πe(a | Si, Ui)µa(Si, Ui)
∣∣∣ Z1:n, U1:n

] ∣∣∣ Z1:n

]

≤ 2σ2

n2
‖W‖2 + 2V

[
1

n

n∑
1=1

d(Si)

m∑
a=1

πe(a | Si, Ui)µa(Si, Ui)
∣∣∣ Z1:n

]
,

where in the first inequality step follows again from assumption 3 and the identity (x+ y)2 ≤ 2x2 + 2y2, and the second
inequality step follows from the law of total variance.

Next, by assumptions 1 to 3, it follows from lemma 4 that

V

[
1

n

n∑
1=1

d(Si)

m∑
a=1

πe(a | Si, Ui)µa(Si, Ui)

]
= O(1/n),

and therefore it follows from Markov’s inequality that the conditional variance version is Op(1/n).

Next, putting the above bounds together we get

E[(τ̂W − v(πe))
2 | Z1:n)] ≤ 2

(
B(W,µ)2 +

4σ2

n2
‖W‖2

)
+Op(1/n).

It follows from this that if λ ≥ 4σ2 and Jλ(W,µ) = Op(rn), then E[(τ̂W − v(πe))
2 | Z1:n] = Op(max(1/n, rn)).

Finally, it follows from Kallus (2016, Lemma 31) that (τ̂W − v(πe))
2 = Op(max(1/n, rn)), and thus τ̂W = v(πe) +

Op(max(n−1/2, r
1/2
n )).
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Proof of theorem 2. We first note that by lemma 5 we have for every M ≥ 0:

inf
W∈Rn

sup
g∈G

Jλ(W, g) ≤ sup
g∈G

inf
‖W‖≤M

B(W, g)2 +
λ

n2
M2.

Therefore it is sufficient to ensure that, for each g ∈ G, that we can find W (g) in response such that B(W (g), g) = 0 and
supg∈G ‖W (g)‖2 = Op(n). In the case that ‖g‖ = 0 we trivially have B(0, g) = 0, so we can restrict our attention to
non-zero g.

Next, define

hg(z) = E[gA(S,U) | Z = z]

kg(z) = E[d(S)
∑
a

πe(a | S,U)ga(S,U) | Z = z] .

Given the decomposition B(W, g) = 1
n

∑n
i=1Wihg(Zi)− kg(Zi), as long as h(Zi) 6= 0 for some i ∈ [n] it follows from

lemma 6 that we can find W (g) satisfying

B(W (g), g) = 0

‖W (g)‖2 =
(
∑n
i=1 h(Zi)k(Zi))

2

4
∑n
i=1 h(Zi)2

= n
( 1
n

∑n
i=1 h(Zi)k(Zi))

2

4 1
n

∑n
i=1 h(Zi)2

= n
( 1
n

∑n
i=1 h(Zi)k(Zi))

2

4(E[h(Z)2] + ( 1
n

∑n
i=1 h(Zi)2 − E[h(Z)2]))

.

We note that this equation clearly satisfies ‖W (g)‖2 = ‖W (λg)‖2 for any ‖g‖ 6= 0 and λ > 0. Thus it follows that
supg∈G ‖W (g)‖2 = supg∈G∗ ‖W (g)‖. Furthermore, by assumption 4 we have that P (hg(Z) > 0) for every g ∈ G∗,
and thus E[hg(Z)2] > 0. Now let α = infg∈G∗ E[h(Z)2]. Given the compactness of continuity properties of G the
extreme value theorem applies and we have α > 0. Next, it follows easily from the uniform boundedness of G that
( 1
n

∑n
i=1 h(Zi)k(Zi))

2 ≤ β( 1
n

∑n
i=1 d(Si)) for some 0 < β < ∞. Furthermore assumption 1 gives us that d(Si) is

stationary, it follows from the Markov chain law of large numbers that β( 1
n

∑n
i=1 d(Si)) = Op(1). Thus for any g ∈ G∗ we

have

‖W (g)‖2 ≤
(n

4

) Op(1)

α+ ε(g) + 1
n

∑n
i=1 h(Zi)2 − E[h(Z)2]

,

where α > 0, and ε(g) ≥ 0. Next, lemma 7 implies that the stochastic equicontinuity term (1/n)
∑n
i=1 h(Zi)

2 − E[h(Z)2]
converges in probability to 0 uniformly over G. Thus by the continuous mapping theorem we have that the RHS of the
previous bound converges in probability to Op(n)/(α+ ε(g)) ≤ Op(n) uniformly over g ∈ G∗.

Now, recall that this bound was valid in the event that at least one h(Zi) is non-zero, which must occur with probability
1 − δn(g), where δn(g) = Op(p(g)−n), and p(g) = P (h(Z) = 0). Furthermore, given assumption 4 and applying the
extreme value theorem as above, we have supg∈G∗ δn(g) = Op(p

−n), for some p < 1. In the event that for some g every
h(Zi) is zero, we can instead chooseW (g) = 0, giving a bound of Jλ(W (g), g) ≤ (

∑n
i=1 k(Zi))

2 = Op(1) uniformly over
g ∈ G∗, since 1

n

∑n
i=1 k(Zi) can be bounded uniformly over G∗ by applying assumption 2 and the uniform boundedness of

G.

Therefore, we can conclude by putting the above bounds together, which gives us

inf
W∈Rn

sup
g∈G

Jλ(W, g) ≤ (1−Op(p−n))Op(1/n) +Op(p
−n)Op(1) = Op(1/n).
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Proof of lemma 2. Recall that for this lemma we have made the assumption that πe is measurable with respect to S only.
That is, πe(a | s, u) = πe(a | s). Let b be some constant such that ga(s, u) ≤ b for every g ∈ G, a ∈ [m], s ∈ S, and
u ∈ U , and let c be some constant such that d(s) ≤ c for every s ∈ S. We note that both these constants must exist given
assumption 2 and the uniform boundedness of G. In addition we define the estimated versions of the quantities in our
analysis as follows.

f̂ia = WiδAia− d̂(Si)πe(a | Si)

B̂(W, g) =
1

n

n∑
i=1

m∑
a=1

f̂iaEϕ̂[ga(Si, Ui) | Zi]

Ĵλ(W, g) = B̂(W, g)2 +
λ

n2
‖W‖2.

Given this, for any W measurable in Z1:n, we can obtain the bound

| sup
g∈G

B(W, g)− sup
g∈G

B̂(W, g)|

≤ sup
g∈G
|B(W, g)− B̂(W, g)|

≤ sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

m∑
a=1

fia(E− Ê)[ga(Si, Ui) | Zi]

∣∣∣∣∣
+ sup
g∈G

∣∣∣∣∣ 1n
n∑
i=1

(d(Si)− d̂(Si))Ê

[
m∑
a=1

πe(a | Si)ga(Si, Ui)
∣∣∣ Zi]

∣∣∣∣∣
≤ F

n

n∑
i=1

m∑
a=1

|fia|DF (ϕ(Zi), ϕ̂(Zi)) +
b

n

n∑
i=1

|d(Si)− d̂(Si)|

≤ F

n

n∑
i=1

(|Wi|+ c)DF (ϕ(Zi), ϕ̂(Zi)) +
b

n

n∑
i=1

|d(Si)− d̂(Si)|

≤ cF

n

n∑
i=1

DF (ϕ(Zi), ϕ̂(Zi)) +
F‖W‖√

n

(
1

n

n∑
i=1

DF (ϕ(Zi), ϕ̂(Zi))
2

)1/2

+
b

n

n∑
i=1

|d(Si)− d̂(Si)|

≤ Op(rn) +
‖W‖√
n
Op(rn) +Op(rn),

where in the second last inequality we apply Cauchy Schwartz, and in the final inequality we apply the assumptions that
DF (ϕ(Zi), ϕ̂(Zi)) = Op(rn) and |d(Si)− d̂(Si)| = Op(rn) for every i ∈ [n]. Now, let W̃ = arg minW supg∈G Jλ(W, g).
It easily follows from theorem 2 that ‖W̃‖ = Op(

√
n), so from the above we have supg∈G B̂(W̃ , g) = supg∈G B(W̃ , g) +

Op(rn). In addition it also follows from theorem 2 that supg∈G B(W̃ , g) = Op(1/
√
n). Putting all of the above together we

get supg∈G Ĵλ(W̃ , g) = Op(max(1/n, r2n)), and therefore supg∈G Ĵλ(W ∗, g) = Op(max(1/n, r2n)). Given this, it follows
that ‖W ∗‖ = Op(max(

√
n, nrn)), and therefore applying the bound above again we get

sup
g∈G

B(W ∗, g) = Op(max(
√
nr2n, rn))

=⇒ sup
g∈G

Jλ(W ∗, g) = Op(max(1/n, r2n, nr
4
n)) = Op(max(1/n, nr4n)),

where the final equality follows since it is always the case that either 1 ≤ nr2n ≤ n2r4n, or 1 ≥ nr2n ≥ n2r4n (depending on
whether nr2n ≥ 1 or not). It immediately follows that Jλ(W ∗, µ) = Op(max(1/n, nr4n)). Therefore plugging in λ = 4σ2,
the required result immediately follows by applying theorem 1.
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Proof of theorem 4. First, following exactly the same argument as in the proof of lemma 2, we can obtain the bound

sup
g∈G

Jλ(W ∗, g) = Op(max(1/n, nr4n)).

We note that none of the arguments or theorems used in the derivation of the above bound, or theorem 2 which is used in the
argument, depend on the assumption that the confounders are independent, and therefore this bound still holds in the case
that U1:n are distributed according to a Markov chain.

Next, we define the following terms similar to those in our core theory, recalling that for this lemma we have assumed that
pie is measurable with respect to the observed state only (that is, πe(s, u) = πe(s)).

f∗ia = W ∗i δAia − d(Si, Ui)πe(a | Si)

B∗(W ∗, g) =
1

n

n∑
i=1

m∑
a=1

f∗iaE[ga(Si, Ui) | Z1:n].

In addition, we define the error term

ε(W ∗, µ) = |B∗(W ∗, µ)2 −B(W ∗, µ)2|1/2.

Then it follows from lemma 8 (described and proved in appendix C) that

E[(τ̂W∗ − v(πe))
2 | Z1:n] ≤ 2J4σ2(W ∗, µ) + ε(W ∗, µ)2.

Given this, the assumption that λ ≥ 4σ2, and the bound supg∈G Jλ(W ∗, g) = Op(max(1/n, nr4n)), it follows from Kallus
(2016, Lemma 31) that

(τ̂W∗ − v(πe))
2 = ε(W ∗, µ)2 +Op(max(1/n, nr4n))

That is, by bounding ε(W ∗, µ) we can bound the irreducible MSE from our balanced policy evaluation in the non-iid setting.

Next, we let b be a constant such that |µa(s, u)| ≤ b ∀a, s, u (which must exist given assumption 3). Given our assumption
that πe is measurable with respect to S, it follows from the conditions of this lemma that the assumptions of lemma 9 are
satisfied (described and proved in appendix C). Then, applying the fact that Jλ(W ∗, g) = Op(max(1/n, nr4n)) implies
that |B(W ∗, µ)| = Op(max(n−1/2, n1/2r2n)), as well as Cauchy Schwartz and the inequality (x+ y)2 ≤ 2x2 + 2y2, this
lemma gives us

ε(W ∗, µ) ≤ Fc

(
1

n

n∑
i=1

DF (ϕ1:n, ϕi)
2

)1/2

+ b‖d(S,U)− d(S)‖2 +Op(max(n−1/2, n1/2r2n)),

where c =
√

2(‖W ∗‖2/n+ 1)1/2, which gives us our final result.

Proof of Lemma 3. First, note that for any ε′ > 0, then for sufficiently large i we have Jλ(W,µ) ≤ supg∈Gi Jλ(W, g) +
ε′‖W‖21/n2 for all W , which follows from the definition of universal approximation and the fact that by assumption d and
g are universally bounded. This implies that Jλ(W ∗, µ) ≤ infW supg∈Gi Jλ(W ) + ε′‖W ∗‖21/n2. In addition, under our
assumptions we have minW supg∈Gi Jλ(W, g)→ 0 in probability for each class Gi.

The above observations immediately suggest that we can obtain our required result by being careful of choosing the
sequence in. Specifically, let some arbitrary sequence {εi} be given, such that εi → 0. Then first, we choose some
non-decreasing sequence ji such that the error term ε′‖W ∗‖21/n2 above is bounded by εi when using Gji . This can
be ensured given that ‖W ∗‖21/n2 is well behaved. Next, choose a second non-decreasing sequence ni such that
infW supg∈Gji

J
(ni)
λ (W, g) → 0 in probability as i → ∞, where J (ni)

λ is the adversarial objective for n = ni. Note
that this can be ensured given that infW supg∈Gi Jλ(W, g) → 0 for each Gi. Finally, we can choose in to be any non-
decreasing sequence such that ini

= jni
for each i, from which it immediately follows that Jλ(W ∗, µ)→ 0 in probability,

where W ∗ = arg minW supg∈Gin Jλ(W, g).
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Proof of theorem 5. We first note that E[d(S)] = 1 follows trivially for any stationary density ratio, by the definition of d
and the fact that all probability measures have total measure 1.

Next, let U ′ denote the successor of U (analogously to S′), and let fb and fe refer to measures (or conditional measures)
with respect to the stationary distributions of πb and πe. Then we have

Eb[d(S,U,A) | S′, U ′] =

∫
d(s, u, a)fb(s, u, a | S′, U ′)ds du da

=

∫
fe(s, u, a)

fb(s, u, a)
fb(s, u, a | S′, U ′)ds du da

=

∫
fe(s, u, a)

fb(s, u, a)

fb(S
′, U ′ | s, u, a)fb(s, u, a)

fb(S′, U ′)
ds du da

=

∫
fe(s, u, a)fe(S

′, U ′ | s, u, a)

fb(S′, U ′)
ds du da

= d(S′, U ′).

In the second last step we appeal to the fact that the conditional density of S′, U ′ given S,U,A is the same under both
πb and πe given our MDPUC assumptions. Note also that the fractions in the above derivation should be interpreted as
Radon–Nikodym derivatives where appropriate, in the case that the random variables are not continuous.

Next, we note that d(S,U,A) = d(S,U)πe(A | S,U)/πb(A | S,U), and that by our MDPUC assumtions we have that
d(S,U) = d(S). Therefore we have

Eb
[
d(S)

πe(A | S,U)

πb(A | S,U)
− d(S′)

∣∣∣ S′, U ′] = 0.

Next we note that from our MDPUC indepdence assumptions (S,A,U) are indepdendent of U ′ given S′, so we can
marginalize over U ′ and obtain

Eb
[
d(S)

πe(A | S,U)

πb(A | S,U)
− d(S′)

∣∣∣ S′] = 0.

Finally we can iterate expectations on Z to obtain

Eb
[
d(S)β(Z)− d(S′)

∣∣∣ S′] = 0.

Now we have established that the true stationary density ratio must satisfy the regular and conditional moment conditions
described in theorem 5. For the reverse result, we note first that assumption 1 implies that the stationary distribution of our
Markov chain is unique. Now as argued in Liu et al. (2018), it is clear given ergodicity that any d satisfying this conditional
moment restriction must correspond to a scalar multiple of the true stationary density ratio, since the construction of the
conditional moment restriction is exactly identical to that of Liu et al. (2018) if we consider (S,U) to be the state. Thus the
additional restriction that E[d(S)] = 1 ensures that any d satisfying both moment conditions must the true stationary density
ratio.

Proof of lemma 1. First we observe that by construction GK = G∗K , so we will only discuss the former. Define

Bs = sup
s∈S,u∈U

√
K((s, u), (s, u)).

By our bounded kernel assumption we have that 0 < Bs < ∞. Now, for any g ∈ G∗a we have g((s, u)) = 〈g,Ks,u〉 ≤
Bs‖g‖, where Ks,u denotes the reproducing element for evaluation at s, u. Thus ‖g‖∞ ≤ B2‖g‖, which gives us that G is
uniformly bounded.

Next, from Cucker & Smale (2002, Theorem D) we have that the covering number under the L∞-norm of an RKHS ball of
unit radius with bounded, continuous kernel is given by√

logN(ε,G∗a ,L∞) ≤ (Cb/ε)
b,
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for some constant Cb > 0 depending only on b and any 0 < b < 1. Thus it is easy to argue by constructing separate finite
covering sets for each a ∈ [m] that we satisfy the compactness condition.

In order to deal with the bracketing entropy condition, we note that an L∞ covering number bound gives a corresponding
L∞ bracketing number bound, given our uniformly bounded condition. Concretely, given any g ∈ G∗a , we let g′ be a
function such that ‖g − g′‖∞ < ε. This implies that the bracket (g′ − ε, g′ + ε) is a valid bracket for g. Therefore
N[](ε,G∗a ,L∞) ≤ N(ε,G∗a ,L∞). Thus we have that:√

logN[](ε,G∗a ,L∞) ≤ (Cb/ε)
b,

which is sufficient to ensure the bracketing entropy condition, since
∫ C
0

(1/ε)bdε <∞ for any 0 < C <∞ when 0 < b < 1,
and from uniform boundedness we have that

√
logN[](ε,G∗a ,L∞) = 0 when ε ≥ Bs.

Finally, we note that the symmetry and convexity properties are trivial from the definition of GK , as is the continuity
condition since RKHSs are continuous with respect to function application.

Proof of Theorem 6. First, by the representer theorem we note that there must exist solutions for the interior and exterior
optimization problems respectively, given by

h(s) =

ns∑
i=1

aiKH(si, s)

d(s) =

ns∑
i=1

biKD(si, s) .

Therefore, we can re-frame the optimization problem as min-max problem over the vectors a and b, where we define
ans+1 = c. Consider the interior optimization problem first. Plugging in the above equation for h and c, we have

Un(d, d̃, h, c) =

ns∑
i=1

ai
1

n

n∑
j=1

(
KH(si, S

′
j)d(Sj)β(Zj) + ans+1(d((Sj)− 1)

)
− 1

4n

n∑
j=1

(
ns∑
i=1

aiKH(si, S
′
j)d̃(Sj)β(Zj) + ans+1(d̃(Sj)− 1)

)2

= gTa− 1

4
aTGa ,

where

gi =
1

n

n∑
j=1

KH(si, S
′
j)d(Sj)β(Zj) ∀i ∈ [ns]

gns+1 =
1

n

n∑
j=1

d(Sj)− 1

G =
1

n

n∑
j=1

qjq
T
j ,

and qj is defined as in the theorem statement for each j ∈ [n]. Now, assuming we enforce the norm constraints on h and c
by Lagrangian regularization using hyperparameters λh and λc, the interior optimization problem is given by

sup
h,c

Un(d, d̃, h, c) = sup
a
gTa− 1

4
aTQa ,

where Q is defined as in the theorem statement. Now, it easily follows by taking derivatives that this objective is maximized
by a = 2Q−1g, so it follows that

sup
h,c

Un(d, d̃, h, c) = gTQ−1g .
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Next, we consider the exterior optimization problem in b. We note that Q is constant in b, so therefore we only need to
consider the effect of b on g. Given the definition d(s) =

∑ns

i=1 biKD(si, s), we can obtain

gi =

ns∑
k=1

bkφi,k + φi,0 ∀i ∈ [ns + 1] ,

where

φi,k =
1

n

n∑
j=1

KH(si, S
′
j)KD(sk, Sj)β(Zj) ∀i ∈ [ns]

φns+1,k =
1

n

n∑
j=1

KD(sk, Sj)

φi,0 = 0 ∀i ∈ [ns]

φns+1,0 = −1 .

Plugging in these to the above, we have

sup
h,c

Un(d, d̃, h, c) = bTΩTQ−1Ωb− 2(ΩTQ−1ω)T b+ ωTQ−1ω ,

where Ωi,j = φi,k ∀ i ∈ [ns + 1], j ∈ [ns], and ωi = −φi,0 ∀ i ∈ [ns + 1]. We note that these definitions of Ω and ω
exactly match those in the theorem statement. Assuming that we enforce the constraint on d by Lagrangian regularization
using hyperparameter λd, the exterior optimization problem then is given by

inf
d

sup
h,c

Un(d, d̃, h, c) = inf
b
bT (ΩTQ−1Ω + λdkD)b− 2(ΩTQ−1ω)T b+ ωTQ−1ω .

Finally, by taking derivatives again, it follows that the b minimizing the RHS above is given by

b = (ΩTQ−1Ω + λdkD)−1ΩTQ−1ω ,

as required.

Proof of theorem 7. First we will find a closed form expression for supg∈GK ( 1
n

∑n
i=1

∑m
a=1 E[fiag(Si, Ui) | Zi])2, In this

derivation we will use the shorthand ϕi for the conditional density of Ui given Zi, and TK for the kernel intergral operator
defined according to TKf =

∫
Z K(·, z)f(z)dz. In this derivation we will make use of the fact that 〈f, g〉2 = 〈f, g〉K for

any square integrable f and g, where these inner products refer to L2 and the RKHS HK respectively. Note that in this
derivation we calculate L2 inner products with respect to the Borel measure R, rather than the measure from the stationary
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distribution of πb, which allows us to write conditional expectations as explicit inner products. Given all this we can obtain:

sup
g∈G

(
1

n

n∑
i=1

m∑
a=1

E
[
fiaga(Si, Ui)

∣∣∣ Zi])2

=

m∑
a=1

sup
g∈G

(
1

n

n∑
i=1

〈ga, ϕifia〉22

)2

=

m∑
a=1

sup
g∈G

(
〈ga, TK

1

n

n∑
i=1

ϕifia〉2K

)2

=

m∑
a=1

〈Tk 1
n

∑n
i=1 ϕifia, Tk

1
n

∑n
i=1 ϕifia〉2K

‖Tk 1
n

∑n
i=1 ϕifia‖K

=

m∑
a=1

〈Tk
1

n

n∑
i=1

ϕifia, Tk
1

n

n∑
i=1

ϕifia〉K

=

m∑
a=1

〈 1
n

n∑
i=1

ϕifia, Tk
1

n

n∑
i=1

ϕifia〉2

=
1

n2

n∑
i,j=1

m∑
a=1

∫
ϕi(u)fia

(∫
K((Si, u), (Sj , u

′))ϕj(u
′)fja du

′
)
du

=
1

n2

n∑
i,j=1

m∑
a=1

∫ ∫
ϕi(u)fiaϕj(u

′)fjaK((Si, u), (Sj , u
′)) du du′

=
1

n2

n∑
i,j=1

m∑
a=1

E[fiaf̃jaK(((Si, Ui), (Sj , Ũj)) | Zi, Zj ]

Next, we convert this into a quadratic objective in W . Recall that fia = WiδAia − d(Si)πe(a | Si, Ui), and kij =

K((Si, Ui), (Sj , Ũj)). Then given this immediately follows from basic matrix algebra that

sup
g∈GK

Jλ(W, g) = sup
g∈GK

B(W, g) +
λ

n2

n∑
i=1

W 2
i

=
1

n2

n∑
i,j=1

m∑
a=1

E[fiaf̃jakij | Zi, Zj ] +
λ

n2

n∑
i=1

W 2
i

=
1

n2

n∑
i,j=1

WiWj

(
δAiAj

E[kij | Zi, Zj ] + λδij
)

− 2
1

n2

n∑
i,j=1

Wid(Sj)E[πe(Ai | Sj , Uj)kij | Zi, Zj ]

+
1

n2

n∑
i,j=1

d(Si)d(Sj)E[

m∑
a=1

(πe(a | Si, Ui)πe(a | Sj , Uj))kij | Zi, Zj ] .

Next, for each i ∈ [nz], define W ′i = (
∑n
j=1 1{Zj = zi}Wi)/(

∑n
j=1 1{Zj = zi}). That is, W ′i measures the average W

value over all indices where Z = zi, and let N be defined as in the problem statement. Then given the above, we clearly
have supg∈GK Jλ(W, g) = (W ′)TGW ′ − 2gTW ′ + C, where G and g are defined as in the proof statement, and

C =
1

n2

n∑
i,j=1

d(Si)d(Sj)E[

m∑
a=1

(πe(a | Si, Ui)πe(a | Sj , Uj))kij | Zi, Zj ].

Therefore, we can conclude that the objective only depends on the average W value at all indices where Z = zi for each
i ∈ [nz], so it is sufficient to optimize over W ′ and just set Wi = W ′ν(i) ∀i ∈ [n]. Thus, given that C is constant in W , the
required result immediately follows from the above.
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C Sensitivity Theory

In this appendix we present some details on the sensitivity of our theory under minor violations of the iid confounders
assumption. We consider a generalization of the MDPUC model depicted in fig. 2, where we allow the unobserved
confounder values to be correlated rather than assuming them to be iid. For this analysis we define the following terms
similar to those in our core theory:

f∗ia = WiδAia − d(Si, Ui)πe(a | Si, Ui)

B∗(W, g) =
1

n

n∑
i=1

m∑
a=1

E[f∗iaga(Si, Ui) | Z1:n]

J∗λ(W, g) = B∗(W, g)2 +
λ

n2
‖W‖2.

We note that these only differ from the original terms in two respects: (1) conditioning on all observed triplets Z1:n rather
than the single observed triplet Zi in the i’th term; and (2) use of density ratio d(S,U) rather than d(S). Given this, we can
first obtain the following lemma under a mild modification of our overlap assumption.

Assumption 5. ‖d(S,U)‖q <∞, where 2 < q ≤ ∞ is the same value referred to in assumption 1.

Lemma 8. Let assumptions 1, 3 and 5 be given. Then we have

E[(τ̂W − v(πe))
2 | Z1:n] ≤ 2J∗4σ2(W,µ) +Op(1/n).

This proof of this lemma is almost identical to that of theorem 1, and is detailed in appendix C.1. Next, we define the error
term

ε(W,µ) = |B∗(W,µ)2 −B(W,µ)2|1/2.

Then it follows that
E[(τ̂W − v(πe))

2 | Z1:n] ≤ 2J4σ2(W,µ) + ε(W,µ)2,

and therefore if we choose W such that J4σ2(W,µ) = Op(rn), then applying Kallus (2016, Lemma 31) gives us

(τ̂W − v(πe))
2 = ε(W,µ)2 +Op(max(1/n, rn)).

That is, by bounding ε(W,µ) we can bound the irreducible bias from our balanced policy evaluation in the non-iid setting.
Note that our theory for providing conditions where J4σ2(W,µ) = Op(1/n) (from theorem 2, assuming no nuisance error),
or J4σ2(W,µ) = Op(max(1/n, nr4n)) (assuming Op(rn) nuisance error) does not depend on the assumption that Ui values
are iid, and therefore still applies here.

Next, we let b be a constant such that |µa(s, u)| ≤ b ∀a, s, u (which must exist given assumption 3), and we let DF be
defined as in section 4.2, and we let ϕi and ϕ∗i be defined as in theorem 4. Given these definitions, we provide the following
result on the residual bias ε(W,µ):

Lemma 9. Suppose F is some constant such that for every S ∈ S, A ∈ [m] we have ‖µA(S, ·)‖F ≤ F and ‖
∑m
a=1 πe(a |

S, ·)µa(S, ·)‖F ≤ F . Then given assumptions 1, 3 and 5, we have

ε(W,µ) ≤ F

(
1

n

n∑
i=1

(|Wi|+ 1)DF (q1:n, qi)

)
+ b‖d(S,U)− d(S)‖2 + 2|B(W,µ)|+Op(1/n).

Then given lemma 8, it follows that Lemma 9 gives a bound on the irreducible squared bias of τ̂W as n→∞.

We note that this bound is an explicit function of the difference between P (Ui | Zi) and P (Ui | Z1:n) for each i, and the
difference between d(S) and d(S,U). Furthermore in the iid confounder case this bound on the squared bias vanishes to zero
as n→∞, as long as J4σ2(W,µ) = op(1), as is ensured by our balancing theory under the assumptions in section 4. This
provides some concrete justification for our intuition that in “near-iid” settings our estimator should be close to consistent.
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Next, we observe that if one uses the supremum norm for DF then the corresponding IPM is total variation distance, and
we easily satisfy the theorem requirements with F = b given assumption 3. However the general form of the theorem
allows for alternate tighter bounds in terms of weaker IPMs under assumptions on the norm of µ. In particular if we assume
µ is contained in an RKHS, as in the case of our kernel-based algorithm, another natural choice for DF would be the
corresponding maximum mean discrepancy (MMD).

In addition we note that given some assumptions on µ, all terms in the bound can be estimated in practice for a given weighted
estimator. This means practitioners can estimate the bound under different non-iid model assumptions and assumptions on
µ, in order to perform sensitivity analysis. Furthermore given the dependence of the first term in this estimator on ‖W‖∞,
this may motivate additional regularization on W in non-iid settings. However we leave further exploration of this idea to
future work.

Finally, we provide the cautionary note that in the non-iid setting the identification assumptions for d(S) are invalid, and
therefore our proposed algorithm for learning the state density ratio may be inconsistent. Therefore the d(Si) terms in
the above theorem should be interpreted as coming from the possibly biased d function used by the optimal balancing
algorithm. The theorem then provides an explicit bound on the incurred bias due to this. Note however that in the case that
d(S) ≈ d(S,U), the estimating equations in section 5.1 are approximately correct, so we do not expect this to be a major
issue in practice. This is further justified by the strong positive results of our sensitivity experiments.

C.1 Omitted Proofs for Sensitivity Theory

Proof of lemma 8. First we define sample average policy effect slightly differently for the non-iid setting, as:

SAPE∗(πe) =
1

n

n∑
i=1

m∑
a=1

d(Si, Ui)πe(a | Si, Ui)µa(Si, Ui).

Again, following the derivation in section 4 we have E[SAPE(πe)] = v(πe). Given this and assumptions 1, 3 and 5, it is
clear that the conditions of lemma 4 apply to Eb[(SAPE∗(πe)− v(πe))

2], so this term must be O(1/n). Thus by Markov’s
inequality and the law of total expectation we have E[(SAPE∗(πe)− v(πe))

2 | Z1:n] = Op(1/n). Then, using the fact that
(x+ y)2 ≤ 2x2 + 2y2, we have

E[(τ̂W − v(πe))
2 | Z1:n] ≤ 2E[(τ̂W − SAPE∗(πe))2 | Z1:n] +Op(1/n).

Next, we perform a bias variance decomposition of the RHS of this bound as follows:

E[(τ̂W − SAPE∗(πe))2 | Z1:n] = E[E[(τ̂W − SAPE∗(πe))2 | Z1:n, U1:n] | Z1:n]

= E[E[τ̂W − SAPE∗(πe) | Z1:n, U1:n]2 | Z1:n]

+ E[V[τ̂W − SAPE∗(πe) | Z1:n, U1:n] | Z1:n]

= ξ∗1 + ξ∗2 ,

and we additionally define

ζ∗ia = WiδAiaRi − d(Si, Ui)πe(a | Si, Ui)µa(Si, Ui)

ζ∗i =

m∑
a=1

ζ∗ia = WiRi − d(Si, Ui)

m∑
a=1

πe(a | Si, Ui)µa(Si, Ui).
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Given this, the first term of the above bias variance decomposition can be broken down as:

ξ∗1 = E

( 1

n

n∑
i=1

m∑
a=1

ζ∗ia

)2 ∣∣∣ Z1:n


= E

[
1

n

n∑
i=1

m∑
a=1

ζ∗ia

∣∣∣ Z1:n

]2
+ V

[
1

n

n∑
i=1

m∑
a=1

ζ∗ia

∣∣∣ Z1:n

]

=

(
1

n

n∑
i=1

m∑
a=1

E[f∗iaµa(Si, Ui) | Z1:n]

)2

+
1

n2
V[

n∑
i=1

ζ∗i | Z1:n]

≤

(
1

n

n∑
i=1

m∑
a=1

E[f∗iaµa(Si, Ui) | Z1:n]

)2

+
2σ2

n2

n∑
i=1

W 2
i

+ 2V

[
1

n

n∑
i=1

d(Si, Ui)

m∑
a=1

πe(a | Si, Ui)µa(Si, Ui)
∣∣∣ Z1:n

]

= B∗(W,µ)2 +
2σ2

n2
‖W‖2 + 2V

[
1

n

n∑
i=1

d(Si, Ui)

m∑
a=1

πe(a | Si, Ui)µa(Si, Ui)
∣∣∣ Z1:n

]
.

Similarly, we bound the the second error term ξ22 as:

ξ∗2 = E

[
V

[
1

n

n∑
i=1

ζ∗i

∣∣∣ Z1:n, U1:n

] ∣∣∣ Z1:n

]

≤ E

[
2σ2

n2

n∑
i=1

W 2
i + 2V

[
1

n

n∑
i=1

d(Si, Ui)

m∑
a=1

πe(a | Si, Ui)µa(Si, Ui)
∣∣∣ Z1:n, U1:n

] ∣∣∣ Z1:n

]

≤ 2σ2

n2
‖W‖2 + 2V

[
1

n

n∑
i=1

d(Si, Ui)

m∑
a=1

πe(a | Si, Ui)µa(Si, Ui)
∣∣∣ Z1:n

]
,

where the final inequality follows from the law of total variance. Next, applying assumptions 1, 3 and 5, it clearly follows
from lemma 4 that

V

[
1

n

n∑
i=1

d(Si, Ui)

m∑
a=1

πe(a | Si, Ui)µa(Si, Ui)

]
= O(1/n),

and therefore by Markov’s inequality the corresponding conditional variance is Op(1/n).

Putting the above bounds together we get

E[(τ̂W − v(πe))
2 | Z1:n)] ≤ 2

(
B∗(W,µ)2 +

4σ2

n2
‖W‖2

)
+Op(1/n),

which gives us our required result immediately.

Proof of lemma 9. First we can obtain the bound

ε(W,µ)2 = |B∗(W,µ)2 −B(W,µ)2|
= |B∗(W,µ)−B(W,µ)||B∗(W,µ) +B(W,µ)|
= |B∗(W,µ)−B(W,µ)||2B(W,µ) + (B∗(W,µ)−B(W,µ))|
≤ |B∗(W,µ)−B(W,µ)|(2|B(W,µ)|+ |B∗(W,µ)−B(W,µ)|)
≤ (2|B(W,µ)|+ |B∗(W,µ)−B(W,µ)|)2.
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Next, let b be a constant such that |µa(s, u)| ≤ b ∀a, s, u, which by assumption 3 must exist, and define the notation
shorthand

ei(·) = E[· | Zi]
e1:n(·) = E[· | Z1:n].

Given this we can obtain the bound

|B∗(W,µ)−B(W,µ)| ≤

∣∣∣∣∣ 1n
n∑
i=1

(e1:n − ei)

(
m∑
a=1

f∗iaµa(Si, Ui)

)∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

ei

(
m∑
a=1

(f∗ia − fia)µa(Si, Ui)

)∣∣∣∣∣
≤ 1

n

n∑
i=1

|Wi|

∣∣∣∣∣(e1:n − ei)
m∑
a=1

δAiaµa(Si, Ui)

∣∣∣∣∣
+

1

n

n∑
i=1

∣∣∣∣∣(e1:n − ei)
m∑
a=1

πe(a | Si, Ui)µa(Si, Ui)

∣∣∣∣∣
+

∣∣∣∣∣E
[

(d(Si, Ui)− d(Si))

m∑
a=1

πe(a | Si, Ui)µa(Si, Ui)

]∣∣∣∣∣+Op(1/n)

≤ F

n

n∑
i=1

(|Wi|+ 1)DF (ϕi, ϕ
∗
i ) + bE[(d(S,U)− d(S))2]1/2 +Op(1/n)

≤ F

n

n∑
i=1

(|Wi|+ 1)DF (ϕi, ϕ
∗
i ) + b‖d(S,U)− d(S)‖2 +Op(1/n),

where in the second inequality we apply the Markov chain law of large numbers, in the third and final inequalities we apply
Cauchy Schwartz and our ‖ · ‖F bound assumptions. Putting the above together, we obtain the final bound:

ε(W,µ) ≤ F

(
1

n

n∑
i=1

(|Wi|+ 1)DF (ϕi, ϕ
∗
i )

)
+ b(‖d(S,U)− d(S)‖2 + 2‖B(W,µ)‖+Op(1/n).

D Discussion of Nuisance Estimation

We discuss here some of the existing theory regarding the estimation of the posterior distributions ϕ, and the state density
ratio d, including the assumptions neeed for identification and for the rates of convergence required by our theory.

D.1 Estimation of Confounder Posterior Distribution

We provide some discussion here for convergence rates of DF (ϕ̂(Z), ϕ(Z)) in the case where ‖f‖F = ‖f‖∞, which
corresponds to total variation distance, since this metric dominates most other integral probability metrics (IPMs) of interest.

First, for any given z we can obtain the bound

DF (ϕ(z), ϕ̂(z)) = sup
‖f‖∞

∣∣∣∣∫ fdϕ(z)−
∫
fdϕ̂(z)

∣∣∣∣
≤
∣∣∣∣∫ ϕ(z)(u)− ϕ̂(z)(u)du

∣∣∣∣
≤ sup
u∈U
|ϕ(z)(u)− ϕ̂(z)(u)|

∫
du.

Now, under the assumption that U is compact, we have
∫
du < ∞, so it is sufficient to consider the convergence rate of

supu∈U |ϕ(z)(u)− ϕ̂(z)(u)|. We analze this convergence for multiple cases below.
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D.1.1 Discrete States and Confounders

The simplest case to consider here is the case where both S and U are discrete, as in our experiments. Under this
assumption, the above bound translates to requiring that |ϕ(z)(u)− ϕ̂(z)(u)| converges sufficiently fast for each U and
Z level. Fortunately, in this case the probabilities P (U | Z) are given by parameters in some parametric latent variable
model, which can be fit using approaches such as expectation maximization (EM) (Dempster et al., 1977), Bayesian
estimators (Lehmann & Casella, 2006), or spectral methods (Hsu et al., 2009; Shaban et al., 2015). In particular, maximum
likelihood-based approaches such as the EM algorithm, are known to be efficient and achieve the Op(n−1/2)-convergence
required for Op(n−1/2) OPE consistency (Van der Vaart, 2000). Note that in the case of EM this depends on solving
the difficult non-convex optimization problem, however this challenge may be mitigated by initializing EM with some
non-local optimization method (Shaban et al., 2015). This analysis depends on the assumption that the confounder model
is well-specified (i.e. confounders are actually discrete, and we do not underestimate the number of confounder levels).
In addition it depends on standard identifiability conditions needed for latent variable models in general (Dempster et al.,
1977).

D.1.2 Continuous States and Discrete Confounders

In this next case U is still assumed to be discrete, so again it is sufficient to ensure that for any given z, we have that
|ϕ(z)(u)− ϕ̂(z)(u)| converges sufficiently fast for each u ∈ U . If we assume a parametric model such that ϕ(z) = ϕθ0(z)
for some finite-dimensional parameter space Θ and some θ0 ∈ Θ, then θ0 can be estimated using the kinds of approaches
described in the previous section. Under standard correct-specification and identifiability assumptions it easily follows that
we can obtain Op(n−1/2) consistency for estimating θ0. Then under some smoothness assumptions of ϕθ(z) (e.g. locally
Lipschitz at θ0), it follows that |ϕ(z)(u)− ϕ̂(z)(u)| = Op(n

−1/2), and therefore we can obtain the same parametric rate
for our policy value estimate. Alternatively, if we assume some kind of semi- or non-parametric model for ϕ(z), then we
may still be able to estimate ϕ(z)(u) at some rate in between Op(n−1/4) and Op(n−1/2) using machine learning methods,
under some smoothness assumptions, as is standard for flexible nuisance estimation in causal inference (see for example
discussion in Chernozhukov et al. (2016)).

D.1.3 Continuous States and Confounders

In this final most general case, we can again consider estimating ϕ(z) either by assuming a parametric model, or using
flexible machine learning methods that exploit smoothness. Again this can result in estimates of ϕ(z)(u) that are either
Op(n

−1/2)-consistent under parametric assumptions, or consistent at some slower rate under more general smoothness
assumptions. This allows us to guarantee convergence for any fixed u ∈ U , however in this case we have the additional
complexity that the space U is not finite, and therefore we need to establish the convergence of supu∈U |ϕ(z)(u)− ϕ̂(z)(u)|.
Let Qn(u) = (ϕ(z) − ϕ̂(z))/rn. Then if we assume that Qn is uniformly sub-Gaussian in U for every n ∈ N (that is
there exists some semi-metric d on U such that P (|Qn(u) − Qn(u′)| > x) ≤ 2 exp(− 1

2x
2/d(u, u′)2) for every n ∈ N,

u, u′ ∈ U), it follows easily from standard chaining arguments (Kosorok, 2007, Corollary 8.5 and Theorem 2.1) that
supu∈U |ϕ(z)(u)− ϕ̂(z)(u)| = Op(rn). Note that following standard empirical process theory arguments, this required
sub-Gaussian assumption may be justified based on compactness of U and Lipschitz continuity assumptions.

D.2 Estimation of State Density Ratio

Here we discuss the rate of convergence of the state density ratio d. First, in the case that S is discrete, as in our experiments,
the variational GMM algorithm we proposed reduces to a standard efficient GMM algorithm for a finite number of parameters
(in the case that S = [ns], these parameters are d(1), . . . , d(ns)) as discussed in appendix E. These algorithms are known
to be semi-parametrically efficient, with Op(n−1/2) consistency (Hansen, 1982), as required for Op(n−1/2)-consistent
estimation of v(πe).

In the more general case, where S is continuous, the theory on the rate of convergence of d̂ is less clear. If we replaced the
RKHS class for D used in our algorithm with a parametric class, then under an identifiability assumption on the classH
(that it is sufficiently rich to identify d), and the assumption thatH has a finite basis (such as in the case of a polynomial
kernel), then again this corresponds to a standard efficient GMM estimate and Op(n−1/2)-consistency would follow from
standard GMM theory (Hansen, 1982). On the other hand in the more general case we consider in section 5.1, where D and
H are both flexible potentially non-parametric function classes, consistency of d̂ could be established using a proof almost
identical to that in Bennett et al. (2019). However the rate of convergence in general settings where D andH can both be
arbitrary RKHSs is unclear, and we leave this problem to future work.
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E Derivation of Algorithm for State Density Ratio Estimation

We discuss here the theoretical derivation of the variational GMM algorithm presented in section 5.1 for state density ratio
estimation.

First, we observe that it follows easily from a generalization of Bennett et al. (2019, Lemma 1) (replacing the instrumental
variable regression conditional moment restrictions there with the state density ratio conditional moment restrictions) that if
H is the vector space spanned by functions {h1, . . . , hk}, and D is given by some parametric class, then the estimator

d̂ = arg min
d∈D

sup
h∈H,c∈R

Un(d, d̃, h, c)

is exactly the same as the standard optimally-weighted GMM estimator (Hansen, 1982) given by the k+ 1 standard moment
restrictions

E[hi(S
′)(d(S)β(Z)− d(S′))] = 0 ∀i ∈ [k]

E[d(S)− 1] = 0.

Given standard regularity assumptions, that d ∈ D, the k + 1 moment restrictions are sufficient to uniquely identify d,
and that the parametric class for D is sufficiently smooth, then it follows from standard theory that this estimator is root-n
consistent and asymptotically normal, and if the prior estimate d̃ is consistent then the estimator is statistically efficient
relative to all other estimators based on these k + 1 moment conditions. Note that given the above, efficiency is easily
ensured by running the adversarial optimization at least twice, starting with an initial arbitrary guess for d̃ and then each
time using the previous iterate estimate d̂ for d̃, as proposed in section 5.1.

Given this, it is natural to consider extending this standard GMM estimator by replacing D andH by sufficiently regularized
flexible function classes, such as neural networks or RKHSs. This is motivated by wanting to avoid the known curse of
dimensionality issues of seive estimators using increasingly large numbers of standard moment conditions. Previously
Bennett et al. (2019) proposed to use such an estimator for the instrumental variable regression problem using neural
networks for both function classes. On the other hand we propose to use RKHSs, which has the nice benefit that the
optimization can be performed analytically by appealing to the representor theorem (as given by theorem 6).

F Additional Experiment Details

F.1 Baseline Descriptions

Direct Method: This method works by using the approximate confounder model to directly fit an outcome model.
Specifically, first we use the confounder-imputed dataset to fit a model µ̂ for µ via regressing R on (S, Û) for each a ∈ [m].
Given that our experiments work with discrete states and confounders, this is done simply by averaging the observed reward
for each possible (s, u) pair. Then we use the estimated outcome model, stationary density ratio, and confounder model to
directly estimate v(πe), according to

τ̂
(i)
DM =

∑
u,a

ϕ̂(u | Zi)πe(a | Si, u)µ̂a(Si, u)

τ̂DM =
1

n

n∑
i=1

d̂(Si)τ̂
(i)
DM. (4)

Doubly Robust This method combines the Direct Method and our weighted estimator approach. Specifically given
weights W1:n and an outcome model µ̂ fit as above, we calculate

τ̂
(i)
DR =

∑
u

ϕ̂(u | Zi)µ̂Ai
(Si, u)

τ̂DR = τ̂DM +
1

n

n∑
i=1

Wi(Ri − τ̂ (i)DR). (5)

Inverse Propensity Score (IPS) This is a recently proposed effective approach to infinite-horizon OPE (Liu et al., 2018),
under the naive assumption of no hidden confounding. This method works by fitting both inverse propensity scores and the
state density ratio, using similar conditional moment conditions as in section 5.1.
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Black-Box This is a state-of-the-art approach to OPE Mousavi et al. (2020), which is similar in nature to IPS but works
under more general assumptions and tends to be more robust to behavior data sampling distributions than IPS . It also naively
assumes no hidden confounding.

F.2 Hyperparameter Details

Estimating State Density Ratio. We follow the algorithm described by theorem 6. In both cases, for each ofH and D
identity kernels (K(s, s′) = 1{s = s′}). Furthermore, we set the hyperparameters λh, λc, and λd all equal to 10−8 in both
cases. Finally, we initialize d̃ to be a vector of all ones, and we iterate the min-max calculation of d̂ five times, each time
using the previous iterate solution as d̃.

Calculating Optimal Balancing Weights. We use the following kernel for our RKHS for GK : k((s, u), (s′, u′)) =
0.51{s = s′}+ 0.51{u = u′}, which takes into account the tuple structure of the input of µ. In addition we use λ = 10−3

in all experiments, as we found this gave consistently good performance (as in Bennett & Kallus (2019), we find that small
values of λ perform well).

IPS and Black-Box. In general, both of these approaches use neural networks as parametric models to learn the weights
of the estimator. However, both environments that we have studied in this paper (i.e., confounded Modelwin and GridWorld)
have finite and discrete state space. Therefore, as suggested in Section 5 of Liu et al. (2018) (and similarly in Mousavi et al.
(2020)) we can optimize the weights of the estimator in the space of all possible functions. This corresponds to using a delta
kernel in terms of the RKHS used for defining the maximum mean discrepancy in both methods. Accordingly, minimizing
loss functions in both baselines (i.e., eq. (12) in Liu et al. (2018) and eq. (11) in Mousavi et al. (2020)) reduce to quadratic
optimization problems, which we solve using constrained optimization by linear approximation (COBYLA).

F.3 Environment Details

C-Modelwin. C-Modelwin has 3 states (denoted s0, s1, and s2) and 2 actions (denoted a0 and a1). The agent always
begins in s0. At time t, the agent chooses between the actions a0 and a1 with probabilities 1−π−Ut and π+Ut respectively
regardless of the current state, where π is a scalar policy parameter. In our experiments, we use a behavior policy with
π = 0.7, and an evaluation policy with π = 0.1. In addition, Ui:n are iid variables taking value 0.1 or 0.2 with probabilities
0.3 and 0.7 respectively.

Transitions and rewards occur as follows. If the agent is in state s0 at time t and takes action a0, it transitions to s1 or s2
with probabilities 0.7 + Ut and 0.3− Ut respectively. Alternatively, if it takes action a1 in state s0 then it transitions to s1
or s2 with probabilities 0.3 + Ui and 0.7− Ui respectively. In either case it receives zero reward transitioning from s0. If
the agent is in state s1 or s2 it transitions to s0, regardless of the action taken. Furthermore, when it transitions from s1 to s0
it receives a reward of 10 + 20Ui, and when it transitions from s2 to s0 it receives a reward of −10− 20Ui. In both cases
the reward doesn’t depend on the action taken.

GridWorld. The environment consists of a 10× 10 grid, and each state corresponds to the agent’s location in the grid
(meaning that there are 100 different states). The agent starts from the bottom-left of the grid, and its goal is to reach the
top-right of the grid. There are four possible actions: moving up (a0), right (a1), down (a2), and left (a3). We consider a
class of hierarchical policies that first decide whether to move towards the top-right or towards the bottom-left, and then
consider whether to move up or right (in case of moving towards top-right), or whether to move down or left (in case of
moving towards bottom-left). Specifically, we consider policies that are parameterized by a single scalar parameter π. At
time t, the agent first decides to move towards the bottom-left with probability π + Ut, or the top-right with probability
1− π − Ut. In the case of moving towards the bottom-left, the agent moves down with probability 0.5π + Ut, or left with
probability 1− 0.5π − Ut. Converseley, in the case of moving towards the top-right, the action taken depends on whether
the agent is above or below the diagonal from the bottom-left to top-right: if the agent is below this diagonal they move up
with probability π + Ut or right with probability 1− π − Ut; if they are above this diagonal they move up with probability
1− π − Ut or right with probability π + Ut; and if they are on the diagonal they move up with probability 0.5π + 0.5Ut or
right with probability 1− 0.5π − 0.5Ut. As in C-ModelWin, the confounders U1:n are iid variables taking value 0.1 or 0.2
with probabilities 0.3 and 0.7 respectively, and we use π = 0.7 for the behavior policy, and π = 0.1 for the evaluation policy.

State transitions are mostly simple and deterministic; unless the agent is at the goal position of the top-right corner of the
grid, it moves one space in the direction indicated by the action (up, right, down, or left). In the case that the agent cannot
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move in that direction because they are at the edge of the grid (for example if it is at the very right and takes the right action)
they simply do not move. On the other hand if the agent is at the top-right corner before taking the action, they transition to
the bottom-left corner regardless of the action taken.

Rewards are also simple and deterministic. At time t, if the agent is at the goal position of the top-right corner it receives a
reward of 100 + 100Ut, regardless of the action taken. Otherwise, it receives a deterministic reward based on the action
taken regardless of the state: 1 + 20Ut for up, 1 + 30Ut for right, −1− 30Ut for down, and −1− 40Ut for left. Note that
the agent still receives this reward if it is at the edge of the grid and therefore cannot move.

F.4 Model Misspecification Details

As discussed in the section 6, in our sensitivity to model misspecification experiments we assume confounders are distributed
according to αPiid + (1− α)Palt where Piid denotes the original distribution in which confounder values all independent,
Palt denotes a distribution in which the confounder value at time t depends on the confounder value at time t− 1, and α is a
model hyperparameter.

Next, as described in appendix F.3, in both environments the original model Piid is given by a simple categorical distribution,
where each confounder takes the value 0.1 or 0.2 with probabilities 0.3 and 0.7 respectively. On the other hand, in the
alternative modelPalt the confounder still takes the value 0.1 or 0.2, with probabilities that depend on the previous confounder
value. Specifically, for the initial time step the respective probabilities are 0.3 and 0.7, as in Piid, and for future time steps
the respective probabilities are 0.08 and 0.92 if the previous confounder value was 0.1, or 0.82 and 0.18 if the previous
confounder value was 0.2.

F.5 Posterior Noise Injection Details

We describe here both how we inject noise in the posterior distributions ϕ(z), and how we measure this noise. Recall that
ϕ(z) is shorthand for the posterior distribution of U given Z = z, that is ϕ(z)(u) = P (U = u | Z = z). In our experiments
all U and Z values are discrete, so we have a finite number of posterior distributions ϕ(z), each represented by a finite-length
vector. Let logits(p) denote the vector of log-odds corresponding to the vector of probabilities p. Then for each possible
value z, we independently injected noise in ϕ(z) by adding a random Gaussian vector to logits(ϕ(z)), and then converting
the perturbed logits back to probabilities (by taking the expits of the vector entries and re-normalizing). This was done for a
wide variety of different variances of the random Gaussian vectors (all with spherical covariances).

It is difficult to interpret the scale of posterior error caused by a given variance for the Gaussian vector we added to the
posterior logits, so we came up with the more interpretable metric average standard deviation (ASD). In this metric the
average is taken over the distribution of Z values and levels of U , and the standard deviation is taken over the distribution of
random noise vectors. Formally, let ns be a number of Z values to sample from the stationary distribution of πb, let ne be
a number of random Gaussian vectors to sample for each sampled Z value, and let nu be the number of levels of U . In
practice in our experiments we use ne = 50 and ns = 5. In addition, let Zi be the i’th sampled Z value, let εi,j be the j’th
sampled Gaussian vector for the i’th sampled Z value. In addition let ψ(Zi, εi,j) denote the vector of probabilities given by
perturbing logits(ϕ(Zi)) by εi,j , as described above. Then the ASD metric is given by

ASD =
1

nsnu

ns∑
i=1

nu∑
u=1

 1

ne − 1

ne∑
j=1

ψ(Zi, εi,j)u −
1

ne

ne∑
j′=1

ψ(Zi, εi,j′)u

2


1/2

F.6 Additional Plots

In this section we present sensitivity of the direct method and doubly robust estimator to model misspecification and noise in
the oracle for the posterior distribution of confounders. For the sake of visualization and clarity, we have repeated plots of
off-policy estimates and RMSEs of different methods.
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Figure 5: C-ModelWin Results. From left to right: The off-policy estimate, The log(RMSE) of different methods as we
change the number of trajectories, sensitivity of the direct method to model misspecification, and to noise in the confounders
posterior distribution.

Figure 6: Confounded GridWorld Results. From left to right: The off-policy estimate, The log(RMSE) of different methods
as we change the number of trajectories, sensitivity of the direct method to model misspecification, and to noise in the
confounders posterior distribution.

Figure 7: C-ModelWin Results. From left to right: The off-policy estimate, The log(RMSE) of different methods as we
change the number of trajectories, sensitivity of the doubly robust estimator to model misspecification, and to noise in the
confounders posterior distribution.

Figure 8: Confounded GridWorld Results. From left to right: The off-policy estimate, The log(RMSE) of different methods
as we change the number of trajectories, sensitivity of the doubly robust estimator to model misspecification, and to noise in
the confounders posterior distribution.


