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Abstract

Off-policy evaluation (OPE) in reinforcement
learning is an important problem in settings where
experimentation is limited, such as education and
healthcare. But, in these very same settings, ob-
served actions are often confounded by unob-
served variables making OPE even more difficult.
We study an OPE problem in an infinite-horizon,
ergodic Markov decision process with unobserved
confounders, where states and actions can act as
proxies for the unobserved confounders. We show
how, given only a latent variable model for states
and actions, policy value can be identified from
off-policy data. Our method involves two stages.
In the first, we show how to use proxies to esti-
mate stationary distribution ratios, extending re-
cent work on breaking the curse of horizon to the
confounded setting. In the second, we show opti-
mal balancing can be combined with such learned
ratios to obtain policy value while avoiding direct
modeling of reward functions. We establish theo-
retical guarantees of consistency, and benchmark
our method empirically.

1 Introduction

A fundamental question in offline reinforcement learning
(RL) is how to estimate the value of some target evaluation
policy, defined as the long-run average reward obtained by
following the policy, using data logged by running a different
behavior policy. This question, known as off-policy evalua-
tion (OPE), often arises in applications such as healthcare,
education, or robotics, where experimenting with running
the target policy can be expensive or even impossible, but
we have data logged following business as usual or current
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standards of care. A central concern using such passively ob-
served data is that observed actions, rewards, and transitions
may be confounded by unobserved variables, which can
bias standard OPE methods that assume no unobserved con-
founders, or equivalently that a standard Markov decision
process (MDP) model holds with fully observed state.

Consider for example evaluating a new smart-phone app to
help people living with type-1 diabetes time their insulin in-
jections by monitoring their blood glucose level using some
wearable device. Rather than risking giving bad advice that
may harm individuals, we may consider first evaluating our
injection-timing policy using existing longitudinal obser-
vations of individuals’ blood glucose levels over time and
the timing of insulin injections. The value of interest may
be the long-run average deviation from ideal glucose levels.
However, there may in fact be events not recorded in the
data, such as food intake and exercise, which may affect
both the timing of injections and blood glucose. Unfortu-
nately, most previously proposed methods for OPE in RL
setting do not account for such confounding, so if they are
used for analysis the results may be biased and misleading.

In this work, we study OPE in an infinite-horizon, ergodic
MDP with unobserved confounders, where states and ac-
tions can act as proxies for the unobserved confounders. We
show how, given only a latent variable model for states and
actions, the policy value can be identified from off-policy
data. We provide an optimal balancing (Bennett & Kallus,
2019) algorithm for estimating the policy value while avoid-
ing direct modeling of reward functions, given an estimate
of the stationary distribution ratio of states and an iden-
tified model of confounding. In addition, we provide an
algorithm for estimating the stationary distribution ratio of
states in the presence of unobserved confounders, by ex-
tending recent work on infinite-horizon OPE (Liu et al.,
2018) and efficiently solving conditional moment match-
ing problems (Bennett et al., 2019). On the theory side,
we establish statistical consistency under the assumption of
iid confounders, and provide error bounds for our method
in close-to-iid settings. Finally, we demonstrate that our
method achieves strong empirical performance compared
with several causal and non-causal baselines.
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Figure 2: Graphical representation of the MDPUC model, in
which action selection, state transition, and reward emission
are confounded at every step.

Notation We use uppercase letters such as S and X to
denote random variables, and lowercase ones to denote
nonrandom quantities. The set of positive integers is N,
and for any n ∈ N we use [n] to refer to the set {1, . . . , n}.
We denote by ‖ · ‖p the usual functional norm, defined
as ‖f‖p = E[|f(X)|p]1/p, where the measure is implicit
from context. Furthermore we denote as Lp the space of
functions with finite ‖·‖p-norm. We denote byN(ε,F , ‖·‖)
the ε-covering number of F under metric ‖ · ‖, and the
corresponding bracketing number byN[](ε,F , ‖·‖). Finally,
for any random variable sequence {Q1, Q2, . . .}, we use the
notation Ql:u as shorthand for (Ql, Ql+1, . . . , Qu).

2 Problem Setting

We consider the Markov Decision Process with Unmea-
sured Confounding, or MDPUC (Zhang & Bareinboim,
2016), which is a confounded generalization of a standard
Markov decision process (MDP). An MDPUC is specified
by a tuple (S,A,U , PT ,R, P0), where S is the finite state
space, A = [m] the action space, U the confounder space,
PT (s′ | s, a, u) the probability of transitioning to state s′

from state s given action a and confounder u,R(s, a, u) the
reward distribution given action a was taken in state s with
confounder u, and P0 the distribution over starting states.
We also define µa(s, u) = E[R(s, a, u)], where R(s, a, u)
is any random variable distributed according toR(s, a, u),
and we use S′ to refer to the state succeeding state S in
a trajectory, Z to refer to the triplet (S,A, S′), and X to
refer to the pair (Z,U). An important assumption we make
here is that the confounder values U at each time step are
iid, which differentiates the MDPUC setting from the more
general POMDP setting. An example of this setting may be
our diabetes problem from section 1, where S corresponds
to blood glucose levels, A corresponds to insulin injection
decisions, R is based on maintaining safe blood glucose
levels, and U corresponds to the exogenous unmeasured
events such as food intake or exercise.1

1Although the confounders are likely not perfectly iid, this
modelling approximation may be justified for instance if we can
approximately model the confounding events by a Poisson process.

We assume access to N ≥ 1 trajectories of off-policy data,
of lengths T1, . . . , TN . At each time step of a trajectory we
assume that we observe the state S, the action that was taken
in that state A, and the corresponding reward that was re-
ceived R. Importantly, we do not observe the corresponding
confounder value U . We assume that each trajectory was
logged from a common behavior policy πb, which depends
on the confounders, where πb(a | s, u) gives the probability
that πb takes action a given state s and confounder u. Note
that although we assume our data is collected from separate
trajectories, for brevity we will index our data by concate-
nating these trajectories together and using indices i ∈ [n],
where n =

∑N
i=1 Ti, and we denote the observed data by

D = {Zi, Ri}i∈[n].

Our task is to estimate the value of some fixed evaluation
policy πe, which follows the same semantics as πb, and
whose actions may optionally depend on the confounders
U (for simplicity, even in the case that its actions depend
on S only, we still use the notation πe(a | s, u)) We make
the following ergodicity and mixing assumptions about the
behavior and evaluation policies.

Assumption 1 (Ergodicity). For some 2 < p ≤ ∞ we have
The Markov chain of X values under each of πb and πe is
ergodic, and , the chain of X values under πb is stationary.
Furthermore,

∑∞
k=1 k

2/(p−2)β(k) < ∞, where β(k) are
the β-mixing coefficients of the Markov chain of X values
induced by πb.

Assumption 1 uses β-mixing coefficients, which quantify
how close to independent X values k steps removed are
in the Markov chain, with coefficients of zero implying
independence. In our stationary Markovian setting, these
are defined according to the expectated total variation dis-
tance between the marginal distribution of Xk+1 and its
conditional distribution given X1; that is

β(k) = E[ sup
B∈σ(Xk+1)

|P (B | X1)− P (B)|] ,

where σ(X) denotes the σ-algebra generated byX . Overall,
the assumption implies that the X values obtained from
each policy have a unique stationary distribution, where the
dependence between far removed elements is sufficiently
weak, and under πb all values follow this stationary distribu-
tion. Note that this is a very standard kind of assumption,
with similar assumptions in most prior work on OPE in
infinite-horizon settings that addresses the curse of horizon
(Liu et al., 2018; Kallus & Uehara, 2019b). Without a sim-
ilar assumption the kind of analysis we perform would be
impossible, because either stationary distributions would
not exist, or we would not be able to control the interactions
between distant data points in order to bound error terms.

We let Eb and Ee denote expectations taken with respect to
these stationary distributions, and assume that probability
statements refer to the stationary distribution under πb where
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not specified. In addition, we will use the notation d(Q) to
denote the stationary density ratio under πe versus πb, for
any random variable Q that is measurable with respect to
X .2 Given this, we define the value of πe to be

v(πe) = Ee[µA(S,U)] .

Finally, we make the following basic regularity assumptions.

Assumption 2 (State Visitation Overlap). ‖d(S)‖∞ <∞.

Assumption 3 (Bounded Reward Moments). For each a,
µa(S,U) is uniformly bounded almost surely. In addition,
V[R | Z] ≤ σ2 and V[R | Z,U ] ≤ σ2 almost surely, for
some constant σ2.

Assumption 2 is a very fundamental assumption, and is
analogous to treatment overlap assumptions that are ubiq-
uitous in treatment effect estimation (e.g., Murphy et al.,
2001). Fundamentally, in order to be able to perform causal
inference without strong structural assumptions, we require
overlap between the observed distribution of data, and the
distribution that would be obtained under intervention. As-
sumption 3 is a very simple assumption that is trivially
satisfied when rewards are bounded, as in most realistic
applications. We chose, however, to include this more com-
plex assumption rather than assuming bounded rewards, in
order to make our theory more general.

Finally, we note that the problem of OPE that we are consid-
ering is distinct from the related problem of policy learning,
where given the same kind of logged data the task is to
choose a policy π within some class of policies Π that (ap-
proximately) maximizes v(π). We do not explicitly consider
the problem of policy learning under unmeasured confound-
ing in this paper, however we note that our proposed meth-
ods for OPE could be used to construct an objective function
for policy learning. We leave additional study of this re-
lated problem, and analysis of the impact of unmeasured
confounding on it, to future work.

3 Related Work

The infinite-horizon OPE problem has received fast-growing
interest recently (Liu et al., 2018; Gelada & Bellemare,
2019; Kallus & Uehara, 2019b; Nachum et al., 2019a;
Mousavi et al., 2020; Uehara et al., 2020; Liu et al., 2020;
Dai et al., 2020). Most of these approaches are based on
some form of moment matching condition, derived from the
stationary distribution of the corresponding Markov chains,
and can avoid the exponential growth of variance in typi-
cal importance sampling methods (Liu et al., 2018). Our
work extends this research to a more general setting with

2That is, for any suchQ, we define d(Q) such that Ee[g(Q)] =
Eb[d(Q)g(Q)] for any measurable function g. Note that this in-
volves slight abuse of notation since the function d depends on the
random variable Q.

unobserved confounders. Similar to our work, Tennenholtz
et al. (2020) has addressed OPE under unmeasured con-
founding in the POMDP setting, however their work relies
on complex invertibility assumptions and is limited to tab-
ular settings. In addition there is a tangential line of work
investigating the limitations of OPE under unmeasured con-
founding in nonparametric settings and constructing partial
identification bounds (Kallus & Zhou, 2020; Namkoong
et al., 2020), which differs from our focus on specific set-
tings where the model of confounding is identifiable and
therefore so is the policy value. Furthermore, OPE under
unmeasured confounding has been studied in contextual
bandit settings (Bennett & Kallus, 2019), which may be
viewed as a special case of our problem where states are
generated iid in every step.

Related to the evaluation problem is policy learning, where
the goal is to interact with an unknown environment to opti-
mize the policy. The partially observable MDP (POMDP)
is a classic model for sequential decision making with un-
observed state (Kaelbling et al., 1998), and has been exten-
sively studied (Spaan, 2012; Azizzadenesheli et al., 2016).
More recently, a few authors have applied counterfactual
reasoning techniques to multi-armed bandits and, more gen-
erally, RL (Bareinboim et al., 2015; Zhang & Bareinboim,
2016; Lu et al., 2018; Buesing et al., 2019). While eval-
uation might appear simpler than learning, OPE methods
only have access to a fixed set of data and cannot explore.
This restriction leads to different challenges in algorithmic
development that are tackled by our proposed method.

Finally, another related area of research is on using proxies
for true confounders (Wickens, 1972; Frost, 1979). Much of
this work involves fitting and using latent variable models
for confounders, or studying sufficient conditions for identi-
fication of these latent variable models (Cai & Kuroki, 2008;
Wooldridge, 2009; Pearl, 2012; Kuroki & Pearl, 2014; Ed-
wards et al., 2015; Louizos et al., 2017; Kallus et al., 2018).
This body of research is complementary to our work, since
we propose an estimator that uses a latent variable model
for confounders, but do not study how to fit it.

4 Theory for Optimally Weighted Policy
Evaluation

In this work, we consider generic weighted estimators of
the form

τ̂W =
1

n

n∑
i=1

WiRi , (1)

where W = W1:n is any vector of weights that is measur-
able with respect to Z1:n. Inspired by Kallus (2018) and
Bennett & Kallus (2019), we proceed by deriving an upper-
bound for the risk of policy evaluation. First, we observe
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that the value of πe is given by

v(πe) =

m∑
a=1

Ee[πe(a | S,U)µa(S,U)]

=

m∑
a=1

Eb[d(S)πe(a | S,U)µa(S,U)] ,

where the second equality follows from the observation
that d(S,U) = d(S) under the iid confounder assump-
tion. In addition, it is easy to verify that Eb[WR] =∑m
a=1 Eb[WδAaµa(S,U)]. It suggests that if we knew

U1:n, the bias of balanced policy evaluation could be ap-
proximated by

1

n

n∑
i=1

m∑
a=1

(WiδAia − d(Si)πe(a | Si, Ui))µa(Si, Ui),

which motivates the following theorem.

Theorem 1. For any vector W , vector-valued function g =
(g1, . . . , gm), and constant λ, define

fia = WiδAia − d(Si)πe(a | Si, Ui) ,

B(W, g) =
1

n

n∑
i=1

m∑
a=1

E[fiaga(Si, Ui) | Zi] ,

Jλ(W, g) = B(W, g)2 +
λ

n2
‖W‖2 .

Then, if λ ≥ 4σ2 and Jλ(W,µ) = Op(rn), where µ =
(µ1, . . . , µm) are the true mean reward functions, it follows
from assumptions 1 to 3 that

τ̂W = v(πe) +Op(max(n−1/2, r1/2n )) .

This result suggests finding weights W in eq. (1) that min-
imize supg∈G Jλ(W, g) for some vector-valued function
class G, since if µ ∈ G and we can minimize this upper
bound uniformly over G at an Op(1/n) rate, then τ̂W is
Op(1/

√
n)-consistent for v(πe).

Next, we describe a category of function classes for which
the above Op(1/

√
n) convergence is achievable.

Definition 1 (Balancing-regular Class). Let G be some
normed vector valued function class, and for a ∈ [m] define

G∗ = {g/‖g‖ : g ∈ G}
G∗a = {ga : ∃(g′1, . . . , g′m) ∈ G∗ with ga = g′a} .

Then we say that G is p-balancing-regular if it satisfies the
following properties:

1. G and G∗ are compact.

2. G is convex.

3. g ∈ G ⇐⇒ −g ∈ G

4. ga(s, u) is continuous in g for every s ∈ S and u ∈ U ,
and is continuous in s and u for every g ∈ G.

5. There exists some constant G such that ‖ga‖∞ ≤ G
for every ga ∈ G∗a and a ∈ [m].

6.
∫∞
0

√
logN[](ε,G∗a ,Lp)dε <∞ for each a ∈ [m] and

every possible joint measure on S and U ,

where N[](ε,F , d) denotes the ε-bracketing number of func-
tion set F under metric d.

We will consider functions classes that are p-balancing-
regular, where p is same constant as from assumption 1. It
is easy to show that many commonly considered function
classes are p-balancing-regular. In particular, we provide
the following lemma, which justifies that this holds for a
variety of Reproducing Kernel Hilbert Spaces (RKHSs).

Lemma 1. Let K be a symmetirc, PSD, C∞-smooth and
and bounded kernel, and let ‖g‖2 =

∑m
a=1 ‖ga‖2K , where

‖ ·‖K is the RKHS norm with kernelK. Then for any γ > 0,
the function class GK,λ = {g : ‖g‖ ≤ γ} is p-balancing-
regular for every p > 0.

Finally, we make the following assumption to avoid the
pathological situation where E[gA(S,U) | Z] = 0 almost
surely for some g 6= 0, in which case B(W, g) = B(W ′, g)
for any W,W ′ ∈ Rn and bias cannot be controlled.

Assumption 4 (Non-degeneracy).

sup
g∈G∗

P (E[gA(S,U) | Z] = 0) < 1.

Note that this is a joint assumption on the class G and the
data generating process, and is similar to identifiability con-
ditions in other causal inference works with latent variable
such as in Miao et al. (2018); it can be seen as the assump-
tion that any µ, µ′ ∈ G with µ 6= µ′ would induce a different
observed distribution of data.

Given this additional assumption and our p-balancing-
regular definition, we can now present our next core the-
orem, which justifies that we can uniformly minimize the
adversarial objective Jλ.

Theorem 2. Given assumptions 1 and 4, and assuming that
G is p-balancing-regular, where p is the same constant as in
assumption 1, we have

inf
W∈Rn

sup
g∈G

Jλ(W, g) = Op(1/n) .

4.1 Oracle Consistency

We now present the most basic consistency result, which
considers the oracle setting where we have an oracle
for the conditional distribution of U given Z, and for
the state density ratio d. This implies that for any W
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and g, we can compute Jλ(W, g) exactly. Let W ∗ =
arg minW supg∈G Jλ(W, g). Then we have the following
oracle consistency theorem.

Theorem 3. Given assumptions 1 to 4, then as long as
λ ≥ 4σ2 and µ ∈ G, we have τ̂W∗ = v(πe) +Op(n

−1/2).

The theorem follows by chaining together theorems 1
and 2, and noting that µ ∈ G implies that Jλ(W,µ) ≤
supg∈G Jλ(W,µ). We note that, although a condition of
this result is that λ ≥ 4σ2, this is without loss of generality
for norm-bounded function classes, since replacing λ with
4σ2 and {g : ‖g‖ ≤ γ} with {g : ‖g‖ ≤ 2σγ/

√
λ} will

give an equivalent optimization problem in W .3 However,
the condition that µ ∈ G is fundamental.

4.2 Sensitivity to Nuisance Estimation Error and
Model Misspecification

Next we extend our theory to more realistic settings, and
consider the effects of estimation errors and non-iid con-
founding. We present simplified results here for the common
case where πe is measurable with respect to S only, with
corresponding results for the general case where πe can also
depend on U presented in appendix C. For this analysis, we
let some normed function class F be given. Then, for any
measures p and q on U we define the integral probability
metric

DF (p, q) = sup
‖f‖F≤1

|
∫
f(u)dp(u)−

∫
f(u)dq(u)| .

Examples of this include total variation distance, where
‖f‖F = ‖f‖∞, the maximum mean discrepancy where
‖f‖F is given by some RKHS norm, and Wasserstein dis-
tance, where ‖f‖F is given by the Lipschitz norm.

We first address the issue that the adversarial objective con-
sidered above depends on the conditional density of U given
Z, and the state density ratio d. In practice these both
would usually need to be estimated from data. Let ϕ(z)
and ϕ̂(z) denote the true and estimated conditional distri-
bution of U respectively given Z = z, let d̂ be the esti-
mated state density ratio. In addition let Ĵλ(W, g) denote
the objective using ϕ̂ and d̂ in place of ϕ and d, and let
W ∗ = arg minW supg∈G Ĵ(W, g).

Lemma 2. Suppose that there exists some constant F <
∞ such that for every g ∈ G and a ∈ [m] we have
‖ga‖F ≤ F and ‖µa‖F ≤ F . Suppose in addition that
DF (ϕ(Zi), ϕ̂(Zi)) = Op(rn), and |d(Si) − d̂(Si)| =
Op(rn), for every i ∈ [n]. Then, given assumptions 1 to 4
and assuming µ ∈ G and G is p-balancing-regular, for the
p defined in assumption 1, we have

τ̂W∗ = v(πe) +Op(max(n−1/2, n1/2r2n)) .

3This is because sup‖g‖≤γ Jλ(W, g) is identical to
(λ/4σ2) sup‖g‖≤2σγ/

√
λ J4σ2(W, g).

Note that rn is not some fixed rate; lemma 2 simply says that
if its conditions hold with any given rate rn, then we obtain
the corresponding bound on the rate of convergence for τ̂W∗ .
In particular, this implies that our methodology will be con-
sistent as long as ϕ and d are estimated at a op(n−1/4) rate,
and also that we can still obtainOp(n−1/2)-consistency if ϕ
and d are estimated at aOp(n−1/2) rate. If we are willing to
assume a correctly-specified parametric model for ϕ and fit
it via maximum likelihood estimation, then the Op(n−1/2)
rate easily follows under mild differentiability assumptions.4

We discuss this in further detail in appendix D.1, as well as
other approaches and corresponding rates for estimating ϕ.
In addition, we discuss the estimation of d in section 5.1.
We also note that by assumption 3 and the definition of
p-balancing-regular, the condition that a finite constant F
exists is immediately follows in the case that we use the
∞-norm for F . However, the presentation of the above
theorem for a general F makes our theory more general.

Next, we consider minor violations in the iid confounder
assumption of the MDPUC model. Specifically, we con-
sider an alternate model where U values form a Markov
chain. Under this alternate model, we provide the following
theorem bounding the squared error.

Theorem 4. Suppose that the conditions of lemma 2 hold,
and ‖d(S,U)‖∞ < ∞. In addition let ϕi and ϕ∗i denote
the conditional densities of Ui given Zi and Z1:n, let b =
maxa ‖µa‖∞, and let c =

√
2F (1 + ‖W ∗‖2/n)1/2. Then

we have (τ̂W∗−v(πe))
2 = ε2+Op(max(1/n, nr4n)), where

|ε| ≤ c

(
1

n

n∑
i=1

DF (ϕi, ϕ
∗
i )

2

)1/2

+ b‖d(S,U)− d(S)‖2 .

We note that in the iid confounder case ϕi = ϕ∗i and
d(S,U) = d(S), so the first two terms disappear, and the
result reduces to that of lemma 2. In addition under assump-
tion 3, the constant b must be finite. Therefore, theorem 4
allows us to bind the asymptotic bias5 in “near-iid” settings,
where the terms DF (ϕi, ϕ

∗
i ) and ‖d(S) − d(S,U)‖2 are

small. Note that the actual magnitude of this asymptotic
bias will be problem specific and depend on the problem pa-
rameters. Rather, theorem 4 establishes that the smaller the
violation of our iid assumption is, the smaller the resulting
asymptotic bias will be.

4.3 Consistency under G Misspecification

All of our theory so far has been conditioned on the strong
and untestable assumption that our function class G is cor-
rectly specified; that is, µ ∈ G. We now generalize our
theory to the case where we use a universally approximating

4We emphasize, however, that our theory does not necessarily
assume a correctly-specified parametric model for ϕ. This is
simply presented as an example of how we might justify a given
rate of convergence of ϕ̂.

5That is, the limiting bias as n→ ∞.
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function class. Specifically, we will consider a sequence of
function classes {G1,G2, . . .} to be universally approximat-
ing if, for any continuous function g, we have

lim
i→∞

sup
g′∈Gi

‖g′ − g‖∞ = 0 .

This property holds for many commonly used function
classes, such as Gaussian RKHSs with shrinking scale pa-
rameter on the kernel (Mendelson, 2003). Given this defini-
tion, we present the following lemma.

Lemma 3. Suppose that the sequence {Gi} is universally
approximating, such that Gi is p-balancing-regular for each
i. Then given all the assumptions of theorem 4 except
that µ ∈ G, and instead just assuming that µ is contin-
uous, there exists some non-decreasing sequence of in-
tegers in such that the weighted estimator using W ∗ =
arg minW supGin Ĵλ(W, g) satisfies theorem 4 with the Op
term replaced with op(1).

We note that the sequence in for which this lemma is sat-
isfied depends on the specific sequence of function classes
{Gi}; this lemma just ensures that there is some rate at which
we can grow the complexity of G and still obtain consistency.
As detailed in our proof in the appendix, the optimal rate
in depends both on the rate at which supg∈Gi ‖g − µ‖∞
converges to zero, and the rate at which the constant factor
in the Op term from theorem 4 grows with Gi. We leave the
question of calculating the optimal in for particular univer-
sally approximating sequences {Gi} to future work.

4.4 Discussion of Assumptions

We acknowledge that much of our consistency theory de-
pends on strong and untestable assumptions. In particular,
we assume either explicitly or implicitly throughout most
of our theory that confounder values are iid, and that we
can estimate the posterior confounder distributions ϕ(Z) at
reasonably fast rates. We believe that these assumptions are
reasonable to make for various reasons.

First, we argue the iid assumption is necessary for statistic
tractability, since otherwise the joint posterior distribution
of the confounder values U1:n could depend arbitrarily on
Z1:n,6 which in general would not factorize nicely, and in
any corresponding estimator to ours we would have to in-
tegrate with respect to this joint distribution. This would
likely make the resulting algorithm both computationally
and statistically intractable. Furthermore, we believe that
in many applications this assumption should hold at least
approximately, such as in our previous diabetes manage-
ment example, and more generally wherever the correlation
between temporally-distant confounder values is weak. In
such settings, we can bound the resulting bias by theorem 4.

6More accurately, the set of all confounder values within each
distinct trajectory could depend arbitrarily on the entire set of
observed data within that same trajectory.

In addition, in general it is impossible to perform consis-
tent policy evaluation under unmeasured confounding with-
out some fairly strong assumptions, as established by the
non-identifiability of the policy value in general in this set-
ting (e.g., Kallus & Zhou, 2020). Hence, while these as-
sumptions may seem unsatisfying, we argue that strong
assumptions such as these are necessary. Furthermore, these
assumptions are weaker than those of the standard OPE
setting, where there is no unmeasured confounding, since
our work subsumes this as a special case.

5 Methodology

We now discuss how to implement the optimal balancing
estimator analyzed in section 4. It can be done in three
steps: (1) estimating the conditional distribution of U given
Z (denoted by ϕ); (2) estimating d; and (3) calculating
W ∗ = arg minW supg∈G Ĵλ(W, g). The first has been stud-
ied extensively, so we focus only on the last two steps.

5.1 Estimating the Stationary Density Ratio

Here, we pose learning the stationary density ratio d(S)
as a conditional moment matching problem. Similarly to
Liu et al. (2018), we can identify d via a set of moment
restrictions, as follows.

Theorem 5. Let β(z) = E[πe(A | S,U)/πb(A | S,U) |
Z = z]. Then under assumption 1, the stationary density
ratio d(S) is the unique function satisfying the regular mo-
ment condition E[d(S)] = 1, as well as the conditional
moment restriction d(S′) = E[d(S)β(Z) | S′] for almost-
everywhere S′.

We note that the conditional moment restriction above is
equivalent to E[h(S′)d(S)β(Z)] = 0 for every function h.
There is a variety of work on solving such conditional mo-
ment restrictions; see e.g. Carrasco et al. (2007); Muandet
et al. (2019); Bennett et al. (2019); Dikkala et al. (2020);
Bennett & Kallus (2020) and citations therein. In particular,
following the efficient variational approaches of Bennett
et al. (2019); Bennett & Kallus (2020), we propose to es-
timate d by solving a smooth-game optimization problem.
Let function classes H and D be given, and let d̃ by some
prior estimate of d, which might come from a previous gen-
eralized method of moments (GMM) estimate or some other
methodology. In addition, define

m(Z; d, h, c)=h(S′)(d(S)β(Z)− d(S′)) + c(d(S)− 1)

Un(d, h, c)=
1

n

n∑
i=1

m(Zi; d, h, c)−
1

4n

n∑
i=1

m(Zi; d̃, h, c)
2.

Our proposed estimator takes the form

d̂ = arg min
d∈D

sup
h∈H,|c|≤λc

Un(d, d̃, h, c) . (2)
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The motivation of this form of estimator is that, if we choose
H = span({h1, . . . , hk}), and λc = ∞, then eq. (2) is
equivalent to a standard efficiently weighted GMM esti-
mator (Hansen, 1982) on the standard moment conditions
E[d(S)] = 1, and E[hi(S

′)d(S)β(Z)] = 0 for i ∈ [k].
This follows from a generalization of (Bennett et al., 2019,
Lemma 1), which we explain in more detail in appendix E.
Therefore, we can view eq. (2) as a regularized analogue of
efficiently weighted GMM on an infinite set of moment con-
ditions. Given this, in the case that D is parametric and we
chooseH and λc as above, then Op(n−1/2)-convergence of
d̂ can be established under standard regularity conditions for
GMM estimators (Hansen, 1982). We further discuss this,
as well as known results for general D, in appendix D.2.

In practice, we can start with an initial guess for d̃ (such as
d̃(s) = 1 ∀s), and then iteratively solve eq. (2) with d̃ being
the previous solution. Furthermore, for our experiments
we choose to use norm-bounded RKHSs for H and D,7

which allows the optimization to be performed analytically,
as dictated by the following theorem.
Theorem 6. Suppose we observe ns distinct states in our
dataset, which we denote {s1, . . . , sns

}. Let Lagrangian
regularization hyperparameters λh, λk > 0 be given, let
KH and KD denote the reproducing kernels for H and D
respectively, and let kH and kD the corresponding kernel
matrices on the states s1, . . . , sns

. Furthermore, define

qi = [KH(s1, S
′
i)d̃(Si)β(Zi),

. . . ,KH(sns , S
′
i)d̃(Si)β(Zi), d̃(Si)− 1]T

Q =
1

n

n∑
l=1

qlq
T
l + BlockDiag(λhkH , λc)

Ωi,j =
1

n

n∑
l=1

KH(si, S
′
l)KD(sj , Sl)β(Zl)

∀i, j ∈ [ns]

Ωns+1,j =
1

n

n∑
l=1

KD(sj , Sl) ∀j ∈ [ns]

ω = [0, . . . , 0, 1]T

b = (ΩTQ−1Ω + λdkD)−1ΩTQ−1ω .

Then, the solution to eq. (2) using RKHS balls forH and D
is given by

d̂(s) =

ns∑
i=1

biKD(si, s) ,

where the radii ofH and D are implicitly given by λh and
λd, respectively.

We note that the computation required by this algorithm is
dominated by solving systems of linear equations of size

7This is in contrast to Bennett et al. (2019), who used neu-
ral networks and smooth-game optimization techniques for their
instrumental variable regression estimator.

ns×ns and ns + 1×ns + 1, so therefore its computational
complexity depends on ns. Finally, since in practice β is
unknown, we can estimate it using ϕ̂.

5.2 Solving for Optimal Weights

We now describe a method for analytically computing
arg minW supg∈G Ĵλ(W, g) for kernel-based classes G =
GK,λ, as defined in lemma 1. Our approach is based on the
following theorem.

Theorem 7. Suppose we observe nz distinct Z tuples in
our dataset, which we denote {z1, . . . , znz

}, and define
the index function ν : [n] → [nz] such that Zi = zν(i).
In addition, for each i ∈ [nz], let Ui and Ũi denote iid
random variables distributed according to ϕ̂(zi), let N ∈
Znz denote the vector of counts of the tuples {z1, . . . , znz

}
in our dataset, let W ∗ = arg minW∈W supg∈G Ĵλ(W, g)
for some given setW , and define

ki,j = K((si, Ui), (sj , Ũj)) ∀i, j ∈ [nz]

Gij = NiNjδaiajE[ki,j ] + λNiδij ∀i, j ∈ [nz]

gi = Ni

nz∑
j=1

d̂(sj)E[πe(ai | sj , Ũj)ki,j ] ∀i ∈ [nz]

W ′ = arg min
W∈W

WTGW − 2gTW .

Then, W ∗i = W ′ν(i) ∀i ∈ [n].

If we do not constrain the weights W , as in both our theory
and our experiments, then

W ∗i = (G−1g)ν(i) .

That is, we can compute the optimal weights be solving a
linear system of equations of size nz × nz . Hence, the com-
putational complexity of our optimal balancing algorithm
depends on the number of unique Z values in the dataset.

Finally, we note that if we wished to impose some con-
straints on W , such as W ∈ ∆n (the set of categorical
distributions over n categories), then we could instead solve
a quadratic program. However, our theory does not support
this, and in practice in our experiments we calculate W ∗

using the unconstrained analytic solution.

6 Experiments

We now evaluate our proposed method and demonstrate its
benefits over state-of-the-art baselines for OPE. Our method
requires as input an approximate confounder model for the
posterior of U given Z: ϕ̂(z) ≈ P (· | Z = z). Since our
baselines cannot account for unmeasured confounding, for
fairness we allow these methods access to ϕ̂. Specifically,
for each i ∈ [n] we sample a value Ûi from the approxi-
mate posterior ϕ̂(Zi), and augment the baselines’ data with
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Figure 3: C-ModelWin Results. From left to right: The off-policy estimate, The log(RMSE) of different methods as we
change the number of trajectories, sensitivity of our estimator to model misspecification, and to noise in the confounders
posterior distribution.

Figure 5: Confounded GridWorld Results. From left to right: off-policy estimate, log(RMSE) of different methods as we
change the number of trajectories, sensitivity of our estimator to model misspecification, and to noise in the confounders
posterior distribution. Note that we changed the y axis scale in the last plot for clarity, since the effect was very small.

{Ûi}i∈[n]. They then use (Si, Ûi) as the state variable rather
than Si. However, since we only assumed a latent variable
model for (Z,U), but not for (Z,U,R) (that is, we do not
assume an outcome model) we expect that this may still lead
to biased estimators even if ϕ̂ is perfect.8

We consider the following baselines: Direct Method which
fits an outcome model using the imputed confounders; Dou-
bly Robust which combines our optimal balancing weights
with the Direct Method, by re-weighting the estimated re-
ward residuals; Inverse Propensity Scores (IPS) with IPS
weights calculated as in Liu et al. (2018); and Black-Box
which is state-of-the-art weighted estimator (Mousavi et al.,
2020). For a detailed description of these baselines see ap-
pendix F.1, and for additional details on hyperparameters
for our method and baselines see appendix F.2.

First Experiment. In this experiment we consider the C-
ModelWin environment, which is a confounded variant of
ModelWin (Thomas & Brunskill, 2016). This is a simple
tabular environment with 3 states, 2 actions, and 2 con-
founder levels. We depict this environment in fig. 2, and
describe it in detail in appendix F.3.

First, we compare our estimator τ̂W , with d̂ calculated as
in section 5.1 and W estimated as in section 5.2, against
the baselines. For this comparison we use the true condi-

8This is because we can only sample confounders conditioned
on Z, not on (Z,R), so the dataset augmented with imputed con-
founders will be distributed differently to a dataset augmented with
the true confounders.

s0

a0

a1

s1 s2r1 r2

U

Figure 2: The C-ModelWin environment with 3 states and 2
actions and a confounder.

tional confounder distribution for ϕ̂, with datasets of varying
number of trajectories of length 100, and performing 50 rep-
etitions for each configuration of estimator and number of
trajectories to compute 95% confidence intervals.9 We dis-
play the results of this comparison in the first two plots of
fig. 3, where we plot the estimated policy value and cor-
responding root mean squared error (RMSE) respectively
for every configuration. We see that our estimator achieves
strong results, with near-zero bias as we increase the num-
ber of trajectories. This is in contrast to the baselines, all
of which converge to biased estimates as we increase the
number of trajectories, with significantly higher RMSE.

Next, we investigate the sensitivity of our estimator to the

9We also used these trajectory lengths and numbers of repeti-
tions in our sensitivity experiments.



Andrew Bennett, Nathan Kallus, Lihong Li, Ali Mousavi

assumption of iid confounders. Let Piid denote the iid con-
founder distribution under the C-ModelWin environment,
and Palt denote some alternative distribution, where within
each trajectory the distribution of the confounder at time
t depends on the confounder at time t − 1. We experi-
ment with a variation of C-ModelWin, where confounders
are distributed according to αPiid + (1− α)Palt, for some
α ∈ [0, 1]. Thus, we recover C-ModelWin with α = 1, and
as we decrease α the iid confounder assumption becomes
increasingly violated. The specific alternative model Palt
used is described in appendix F.4. We display the RMSE of
our estimator for various numbers of trajectories and vari-
ous values of α in the third plot in fig. 3. We see here that,
as predicted in section 4.2, the effects of this assumption
violation are continuous; when α is close to 1 the RMSE
only increases slightly.

Thirdly, we investigate how error in ϕ̂ affects our algorithm.
We inject error by adding random Gaussian noise of varying
variance to the logits of the conditional confounder dis-
tribution for each level of Z (before re-normalizing) and
measured the amount of noise via the average standard
devaition (ASD) metric, which calculates the expected stan-
dard deviation of P̂ (U = u | Z), averaged over the levels
of U .10 Details of this metric and our noise injection are
in appendix F.5. We display the RMSE of our estimator
under varying levels of noise injection in the fourth plot of
fig. 3. We observe that again, as predicted in section 4.2, the
effects of noise injection are continuous; as we increase the
level of noise injection (as measured by ASD) the RMSE
gradually increases, with minimal impact when the error in
ϕ̂ is very small. We provide additional plots in appendix F.6,
repeating both sensitivity experiments for the baselines.

Figure 4: The GridWorld
environment.

Second Experiment. In this
experiment we consider a con-
founded version of the Grid-
World environment. This en-
vironment consists of a 10 ×
10 grid, with 4 actions corre-
sponding to attempted move-
ment in each direction, reward
based on moving toward the
goal, and 2 confounder levels.
We depict this envirnment in
fig. 4, and describe it in detail
in appendix F.3.

We conduct the same set of ex-
periments with GridWorld as with C-ModelWin, except that
each trajectory was of length 200. We detail the alternative
non-iid confounder model used in the sensitivity part of the
experiment in appendix F.4, we display the corresponding
plots in fig. 5, and we include additional sensitivity results
for baselines in appendix F.6. In general, our results here

10With expectation taken over Z, and standard deviation over
random noise injection.

follow the same trend as in the previous experiment. We
note that with GridWorld, which is more complex than C-
ModelWin, the benefits of our methodology are even more
evident, with a larger relative decrease in RMSE compared
to baselines. Interestingly, in this setting we see that our
method seems especially robust to model assumption viola-
tions and nuisance error, with relatively small increases in
RMSE in the second two plots. We hypothesize that this is
because the setting is more challenging than C-ModelWin,
so the error introduced by these perturbations is relatively
small compared with the overall errors of the estimators.
This suggests that our estimator may be relatively robust to
these issues in challenging real-world settings where RMSE
is naturally relatively high.

7 Conclusion

In this work, we considered OPE in infinite-horizon rein-
forcement learning with unobserved confounders. We pro-
posed a novel estimator, and showed its consistency under
reasonable assumptions that account for nuisance estima-
tion error and model misspecification. This is in contrast
to existing estimators designed for fully-observable MDPs,
which typically are unbiased and inconsistent. We also pro-
vided sensitivity results bounding the asymptotic bias of
our estimator under small violations of these assumptions.
Furthermore, we validated our method empirically, demon-
strating its accuracy against baselines and corroborating our
theoretical analysis.

These promising results open up a number of interesting
research directions. First, as an alternative or complement to
our optimal balancing-based approach, one could investigate
direct or “model-based” approaches, by directly estimating
µ, and using this in estimators. This could be combined
with our approach to improve accuracy, using the doubly
robust augmentation (Kallus & Uehara, 2019a; Tang et al.,
2020). Second, we could extend this kind of approach to
episodic settings, where there is a fixed time-horizon, by
estimating the time-dependent state-density ratio at each
time step. Third, we may be able to avoid the dependency
on the knowledge of behavior policy by using black-box
or behavior-agnostic methods (e.g., Nachum et al., 2019a;
Mousavi et al., 2020). Last but not least, one could ap-
ply our approach to extend work on batch policy optimiza-
tion (e.g., Nachum et al., 2019b) to the case of unmeasured
confounders.
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