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Appendix: On Linear Convergence of Policy Gradient Methods for Finite MDPs

A Proof of supporting lemmas

We give proofs of Lemmas 2 and 3, which were excluded from the main text.

Lemma 2. For any state s, π
t+1(s,i)
πt(s,i) ≤

1
2 ∀ i ∈ O

−
t (s).

Proof. The proof follows a simple argument. By definition, for any i ∈ O−t (s):

(
Qt(s, i)−Qt(s, 1)

)
≥ ε

c

⇒ αt(s)
(
Qt(s, i)−Qt(s, 1)

)
≥ log

2

πt(s, 1)

which follows by the definition, αt(s) ≥ c
ε log 2

πt(s,1) which implies ε
c ≥

1
αt(s)

log 2
πt(s,1) . Rearranging, we get

log
(
πt(s, 1)e−αt(s)Q

t(s,1)
)

+ log

(
1

2

)
≥ −αt(s)Qt(s, i)

Define, Zt =
(∑k

j=1 π
t(s, j)e−αt(s)Q

t(s,j)
)

. Then,

log(Zt) ≥ log
(
πt(s, 1)e−αt(s)Q

t(s,1)
)

which holds as all the terms in Zt are positive, i.e. πt(s, j)e−αt(s)Q
t(s,j) > 0 ∀ j ∈ {1, 2, . . . , k}, and log(·) is a monotonic

transformation. Rearranging, we get our desired result.

log

(
Zt
2

)
≥ log

(
πt(s, 1)

2
e−αt(s)Q

t(s,1)

)
≥ −αt(s)Qt(s, i)

⇒ πt+1(s, i)

πt(s, i)
=

1

Zt
e−αt(s)Q

t(s,i) ≤ 1

2
.

Lemma 3 (Progress quantification). Let Jπt(s) denote the cost-to-go function for policy πt from any starting state s ∈ S.
Then,

Tπt+1Jπt(s)− Jπt(s) ≤
1

2
· (TJπt(s)− Jπt(s)) +

ε

c

Proof. Fix any state s ∈ S. Without loss of generality, we assume the following ordering on Q-values: Qt(s, 1) <
Qt(s, 2) . . . < Qt(s, k) which implies that the policy iteration update, π+

t puts the entire mass on action 1, which is the best
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action under the current policy πt. That is, πt+(s, 1) = 1 and πt+(s, i) = 0 ∀i 6= 1. Consider,

Tπt+1Jπt(s)− TJπt(s) = 〈πt+1(s, ·)− πt+(s, ·), Qt(s, ·)〉

= (πt+1(s, 1)− 1)Qt(s, 1) +

k∑
j=2

πt+1(s, j)Qt(s, j)

= −
k∑
j=2

πt+1(s, j)Qt(s, 1) +

k∑
j=2

πt+1(s, j)Qt(s, j)

=

k∑
j=2

πt+1(s, j)
(
Qt(s, j)−Qt(s, 1)

)
=
∑
j∈O−t

πt+1(s, j)
(
Qt(s, j)−Qt(s, 1)

)
+
∑
j∈O+

t

πt+1(s, j)
(
Qt(s, j)−Qt(s, 1)

)
=
∑
j∈O−t

πt+1(s, j)

πt(s, j)
πt(s, j)

(
Qt(s, j)−Qt(s, 1)

)
+
∑
j∈O+

t

πt+1(s, j)
(
Qt(s, j)−Qt(s, 1)

)︸ ︷︷ ︸
< ε
c

≤ 1

2

∑
j∈O−t

πt(s, j)
(
Qt(s, j)−Qt(s, 1)

)
+
ε

c

≤ 1

2

 k∑
j=2

πt(s, j)(Qt(s, j)−Qt(s, 1))

+
ε

c

=
1

2

 k∑
j=2

πt(s, j)Qt(s, j)−
k∑
j=2

πt(s, j)Qt(s, 1)

+
ε

c

=
1

2

(πt(s, 1)− 1
)
Qt(s, 1) +

k∑
j=2

πt(s, j)Qt(s, j)

+
ε

c

=
1

2
〈πt(s, ·)− πt+(s, ·), Qt(s, ·)〉+

ε

c

=
1

2
(Jπt(s)− TJπt(s)) +

ε

c
(13)

where we used that π
t+1(s,j)
πt(s,j) ≤

1
2 ∀j ∈ O

−
t (s) as shown above in Lemma 2 along with the fact that (Qt(s, j)−Qt(s, 1)) ≤

ε
c ∀j ∈ O

+
t (s), which follows by definition. Subtracting Jπt(s) from both sides in (13) and rearranging terms gives our

desired result,

Tπt+1Jπt(s)− Jπt(s) ≤
1

2
· (TJπt(s)− Jπt(s)) +

ε

c
.

B Details of MDP in Figure 1

We used the following two state three action MDP, P ∈ R|S||A|×|S|, g ∈ R|S||A|, γ, ρ ∈ R|S|, to generate Figure 1.

P =


0.666066 0.333934
0.662211 0.337789
0.441947 0.558053
0.391257 0.608743
0.452186 0.547814
0.035519 0.964481

 , g =


0.079718
0.629733
0.717644
0.673362
0.762623
0.541251

 , γ = 0.9, ρ =

[
0.168831
0.831169

]
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Policy π for the two states s1 and s2 was taken to be,

π(s1) =

0.449416
0.251788
0.298796

 , π(s2) =

0.318626
0.346284
0.335090

 .


