Appendix: On Linear Convergence of Policy Gradient Methods for Finite MDPs

A Proof of supporting lemmas

We give proofs of Lemmas 2 and 3, which were excluded from the main text.
Lemma 2. For any state $s, \frac{\pi^{t+1}(s, i)}{\pi^{t}(s, i)} \leq \frac{1}{2} \forall i \in O_{t}^{-}(s)$.

Proof. The proof follows a simple argument. By definition, for any $i \in O_{t}^{-}(s)$:

$$
\begin{aligned}
\left(Q^{t}(s, i)-Q^{t}(s, 1)\right) & \geq \frac{\epsilon}{c} \\
\Rightarrow \alpha_{t}(s)\left(Q^{t}(s, i)-Q^{t}(s, 1)\right) & \geq \log \frac{2}{\pi^{t}(s, 1)}
\end{aligned}
$$

which follows by the definition, $\alpha_{t}(s) \geq \frac{c}{\epsilon} \log \frac{2}{\pi^{t}(s, 1)}$ which implies $\frac{\epsilon}{c} \geq \frac{1}{\alpha_{t}(s)} \log \frac{2}{\pi^{t}(s, 1)}$. Rearranging, we get

$$
\log \left(\pi^{t}(s, 1) e^{-\alpha_{t}(s) Q^{t}(s, 1)}\right)+\log \left(\frac{1}{2}\right) \geq-\alpha_{t}(s) Q^{t}(s, i)
$$

Define, $Z_{t}=\left(\sum_{j=1}^{k} \pi^{t}(s, j) e^{-\alpha_{t}(s) Q^{t}(s, j)}\right)$. Then,

$$
\log \left(Z_{t}\right) \geq \log \left(\pi^{t}(s, 1) e^{-\alpha_{t}(s) Q^{t}(s, 1)}\right)
$$

which holds as all the terms in Z_{t} are positive, i.e. $\pi^{t}(s, j) e^{-\alpha_{t}(s) Q^{t}(s, j)}>0 \forall j \in\{1,2, \ldots, k\}$, and $\log (\cdot)$ is a monotonic transformation. Rearranging, we get our desired result.

$$
\begin{aligned}
\log \left(\frac{Z_{t}}{2}\right) & \geq \log \left(\frac{\pi^{t}(s, 1)}{2} e^{-\alpha_{t}(s) Q^{t}(s, 1)}\right) \geq-\alpha_{t}(s) Q^{t}(s, i) \\
\Rightarrow & \frac{\pi^{t+1}(s, i)}{\pi^{t}(s, i)}=\frac{1}{Z_{t}} e^{-\alpha_{t}(s) Q^{t}(s, i)} \leq \frac{1}{2}
\end{aligned}
$$

Lemma 3 (Progress quantification). Let $J_{\pi^{t}}(s)$ denote the cost-to-go function for policy π^{t} from any starting state $s \in \mathcal{S}$. Then,

$$
T_{\pi^{t+1}} J_{\pi^{t}}(s)-J_{\pi^{t}}(s) \leq \frac{1}{2} \cdot\left(T J_{\pi^{t}}(s)-J_{\pi^{t}}(s)\right)+\frac{\epsilon}{c}
$$

Proof. Fix any state $s \in \mathcal{S}$. Without loss of generality, we assume the following ordering on Q-values: $Q^{t}(s, 1)<$ $Q^{t}(s, 2) \ldots<Q^{t}(s, k)$ which implies that the policy iteration update, π_{t}^{+}puts the entire mass on action 1 , which is the best
action under the current policy π^{t}. That is, $\pi_{+}^{t}(s, 1)=1$ and $\pi_{+}^{t}(s, i)=0 \forall i \neq 1$. Consider,

$$
\begin{align*}
T_{\pi^{t+1}} J_{\pi^{t}}(s)-T J_{\pi^{t}}(s) & =\left\langle\pi^{t+1}(s, \cdot)-\pi_{+}^{t}(s, \cdot), Q^{t}(s, \cdot)\right\rangle \\
& =\left(\pi^{t+1}(s, 1)-1\right) Q^{t}(s, 1)+\sum_{j=2}^{k} \pi^{t+1}(s, j) Q^{t}(s, j) \\
& =-\sum_{j=2}^{k} \pi^{t+1}(s, j) Q^{t}(s, 1)+\sum_{j=2}^{k} \pi^{t+1}(s, j) Q^{t}(s, j) \\
& =\sum_{j=2}^{k} \pi^{t+1}(s, j)\left(Q^{t}(s, j)-Q^{t}(s, 1)\right) \\
& =\sum_{j \in \mathcal{O}_{t}^{-}} \pi^{t+1}(s, j)\left(Q^{t}(s, j)-Q^{t}(s, 1)\right)+\sum_{j \in \mathcal{O}_{t}^{+}} \pi^{t+1}(s, j)\left(Q^{t}(s, j)-Q^{t}(s, 1)\right) \\
& =\sum_{j \in \mathcal{O}_{t}^{-}} \frac{\pi^{t+1}(s, j)}{\pi^{t}(s, j)} \pi^{t}(s, j)\left(Q^{t}(s, j)-Q^{t}(s, 1)\right)+\sum_{j \in \mathcal{O}_{t}^{+}} \pi^{t+1}(s, j) \underbrace{\left(Q^{t}(s, j)-Q^{t}(s, 1)\right)} \\
& \leq \frac{1}{2} \sum_{j \in \mathcal{O}_{t}^{-}} \pi^{t}(s, j)\left(Q^{t}(s, j)-Q^{t}(s, 1)\right)+\frac{\epsilon}{c} \\
\leq & \frac{1}{2}\left(\sum_{j=2}^{k} \pi^{t}(s, j)\left(Q^{t}(s, j)-Q^{t}(s, 1)\right)\right)+\frac{\epsilon}{c} \\
& =\frac{1}{2}\left(\sum_{j=2}^{k} \pi^{t}(s, j) Q^{t}(s, j)-\sum_{j=2}^{k} \pi^{t}(s, j) Q^{t}(s, 1)\right)+\frac{\epsilon}{c} \\
& =\frac{1}{2}\left(\left(\pi^{t}(s, 1)-1\right) Q^{t}(s, 1)+\sum_{j=2}^{k} \pi^{t}(s, j) Q^{t}(s, j)\right)+\frac{\epsilon}{c} \\
& =\frac{1}{2}\left\langle\pi^{t}(s, \cdot \cdot)-\pi_{+}^{t}(s, \cdot), Q^{t}(s, \cdot)\right\rangle+\frac{\epsilon}{c} \\
& =\frac{1}{2}\left(J_{\pi^{t}}(s)-T J_{\pi^{t}}(s)\right)+\frac{\epsilon}{c} \tag{13}
\end{align*}
$$

where we used that $\frac{\pi^{t+1}(s, j)}{\pi^{t}(s, j)} \leq \frac{1}{2} \forall j \in \mathcal{O}_{t}^{-}(s)$ as shown above in Lemma 2 along with the fact that $\left(Q^{t}(s, j)-Q^{t}(s, 1)\right) \leq$ $\frac{\epsilon}{c} \forall j \in \mathcal{O}_{t}^{+}(s)$, which follows by definition. Subtracting $J_{\pi^{t}}(s)$ from both sides in (13) and rearranging terms gives our desired result,

$$
T_{\pi^{t+1}} J_{\pi^{t}}(s)-J_{\pi^{t}}(s) \leq \frac{1}{2} \cdot\left(T J_{\pi^{t}}(s)-J_{\pi^{t}}(s)\right)+\frac{\epsilon}{c}
$$

B Details of MDP in Figure 1

We used the following two state three action MDP, $P \in \mathbb{R}^{|\mathcal{S}||\mathcal{A}| \times|\mathcal{S}|}, g \in \mathbb{R}^{|\mathcal{S}||\mathcal{A}|}, \gamma, \rho \in \mathbb{R}^{|\mathcal{S}|}$, to generate Figure 1 .

$$
P=\left[\begin{array}{ll}
0.666066 & 0.333934 \\
0.662211 & 0.337789 \\
0.441947 & 0.558053 \\
0.391257 & 0.608743 \\
0.452186 & 0.547814 \\
0.035519 & 0.964481
\end{array}\right], g=\left[\begin{array}{l}
0.079718 \\
0.629733 \\
0.717644 \\
0.673362 \\
0.762623 \\
0.541251
\end{array}\right], \gamma=0.9, \rho=\left[\begin{array}{l}
0.168831 \\
0.831169
\end{array}\right]
$$

Policy π for the two states s_{1} and s_{2} was taken to be,

$$
\pi\left(s_{1}\right)=\left[\begin{array}{l}
0.449416 \\
0.251788 \\
0.298796
\end{array}\right], \pi\left(s_{2}\right)=\left[\begin{array}{l}
0.318626 \\
0.346284 \\
0.335090
\end{array}\right]
$$

