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Abstract

We revisit the finite time analysis of policy gra-
dient methods in the one of the simplest settings:
finite state and action MDPs with a policy class
consisting of all stochastic policies and with ex-
act gradient evaluations. There has been some
recent work viewing this setting as an instance
of smooth non-linear optimization problems and
showing sub-linear convergence rates with small
step-sizes. Here, we take a different perspective
based on connections with policy iteration and
show that many variants of policy gradient meth-
ods succeed with large step-sizes and attain a lin-
ear rate of convergence.

1 Introduction

Policy gradient methods, dating back to the works of
[Williams, 1992, Baxter and Bartlett, 1999, Sutton et al.,
2000, Marbach and Tsitsiklis, 2001], along with their
modern variants [Kakade, 2002, Silver et al., 2014], have
emerged as one of the most effective classes of algorithms
for solving challenging reinforcement learning problems
with impressive empirical success [Schulman et al., 2015,
2017]. Despite this, little was known about their global
convergence properties, as these methods search over a
parameterized class of policies by performing (stochastic)
gradient descent on a scalar loss function that is typically
non-convex.

This has changed recently with several recent papers
analysing the global convergence properties of policy gradi-
ent methods. Our earlier work identifies properties which
guarantee that (despite non-convexity) the optimization land-
scape does not suffer from spurious local optima, thereby
implying convergence of policy gradient methods to glob-
ally optimal solutions [Bhandari and Russo, 2019]. Though
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that work does not consider specific algorithms, some con-
vergence rates follow easily from the framework (e.g. a sub-
linear convergence rate for projected gradient descent with
natural parameterization.) The most comprehensive analysis
of convergence rates appears in Agarwal et al. [2020], show-
ing results for different combinations of policy parametriza-
tion (natural and softmax policies), algorithms (projected
and natural gradient descent) as well as entropy regulariza-
tion'. Shani et al. [2020] focus on analyzing trust region
optimization methods [Schulman et al., 2015, 2017] based
on mirror descent [Beck and Teboulle, 2003], giving rates
for both unregularized and regularized tabular MDPs. Es-
sentially all of these papers view policy optimization as
instances of general smooth nonlinear optimization prob-
lems. The analyses suggest small step-sizes to control for
the error due to local linearization and show convergence to
an e—optimal policy within either O (%) orO (6%) iterations,
depending on the precise algorithm used.

In this work, we revisit the finite time analysis of policy
gradient methods in the simplest setting: finite state and
action MDPs with a policy class consisting of all stochastic
policies and with exact gradient evaluations. This setting
was covered in the aforementioned works of Bhandari and
Russo [2019], Agarwal et al. [2020], Shani et al. [2020].
Instead of viewing the problem through the lens of nonlin-
ear optimization, we take a policy iteration perspective. We
highlight that many forms of policy gradient can work with
extremely large stepsizes and attain a /inear rate of conver-
gence, meaning they require only O(log(1/¢)) iterations to
reach an e—optimal policy. At the core of our ideas is a deep
connection between policy gradients and policy iteration,
which underlies the analysis in Bhandari and Russo [2019].

For finite MDPs, we show that this leads to an extremely
simple analysis covering many different first-order methods
applied to the policy gradient objective, including projected
gradient descent, Frank-Wolfe, mirror descent, and natural
gradient descent. In an idealized setting where step-sizes
are set by line search, a one paragraph proof applies to
all algorithms. For natural gradient algorithms, a slightly
longer calculation studies a specific step-size sequence. In

' Agarwal et al. [2020] also go beyond tabular MDPs to give
results for a compatible function approximation setting
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the final section of this paper, we also discuss a setting of
approximate line search as well as natural gradient methods
entropy regularization.

Scope and purpose of this work: It is possible that read-
ers might find our setting of tabular MDPs with access to
exact gradients somewhat limited. It is worth noting that
recent works of [Agarwal et al., 2020, Shani et al., 2020,
Cen et al., 2020, Mei et al., 2020] have all compared the
convergence rates of different policy gradient methods in
this setting. Our work clarifies that with exact gradient eval-
uations, much faster convergence rates can be achieved with
larger step-sizes. The results on line search based step-size
selection are especially idealized, but show that classical
non-linear optimization techniques would automatically se-
lect larger step sizes and attain linear convergence rates.

Small step-sizes may be critical for controlling approxima-
tion errors and stabilizing algorithms in practical settings.
Studying such issues likely requires a model that focuses
on approximation errors and incomplete policy classes. Our
work instead offers a clear understanding of what to expect
without these challenges.

On concurrent work: We remark on the concurrent
works of [Cen et al., 2020, Mei et al., 2020] which also
show linear convergence of exact policy gradient methods
for entropy regularized tabular MDPs with softmax poli-
cies and exact gradients. The main motivation behind these
works is to theoretically characterize the benefits of using
entropy based regularizers to obtain faster convergence rates.
While both analyze different variants (simple gradients vs
natural gradients), using entropy regularization seems cru-
cial to their results. Another key difference is that unlike
[Cen et al., 2020, Mei et al., 2020], our proof techniques rely
on a direct connection between policy gradients and policy
iteration, leading to concise proofs that are applicable to a
broad range of algorithms along with transparent bounds
with a clear dependence on all relevant constants. Instead
of leveraging sophisticated algebra, our focus is on giving
readers a clear understanding.

2 Problem Formulation

Consider a Markov decision process (MDP), which is a
six-tuple (S, A, g, P,, p), consisting of a state space S,
action space A, cost function g, transition kernel P, dis-
count factor v € (0,1) and initial distribution p. We as-
sume the state space S to be finite and index the states as
S = {s1, -+, 8n}. Foreach state s € S, we assume that
there is a finite set of k£ arms to choose from and take the
action space, A = A*~! to be the set of all probability
distributions over those k arms. That is, any action a € A
is a probability vector where each component a; denotes
the probability of taking the ¢-th action. The transition ker-
nel P specifies the probability P(s’|s, a) of transitioning

to a state s’ upon choosing action a in state s. The cost
function ¢(s,a) € R denotes the instantaneous expected
cost incurred when selecting action « in state s. Cost and
transition functions can be naturally extended to functions
on the probability simplex by defining:

k k

g(s,a) = Zg(s,ei) a;, P(s'|s,a) = ZP(S’|3,ei)ai.
i=1 i=1
)]

where e; is the ¢-th standard basis vector, representing one of
the k possible arms. We assume that costs are non-negative,
meaning g(s,e;) > 0forall s € Sandi € {1,...,k}.
The holds without loss of generality, as one can always add
the same large constant to the cost of each state and action
without changing the decision problem.

Cost-to-go functions and Bellman operators. A station-
ary policy 7 : § — A selects a distribution over the k¥ — 1
dimensional simplex, A*~! for each state s € S. We use
the notation 7(s,%) to denote the probability of selecting
action ¢ in state s under policy 7. Let II denote the set of all
stationary policies over the simplex,

k
M= {reRY": ) n(s,i) =1 Vs €S}

i=1

For any policy m € I1, J : S — R is defined as,

Jz(s) =E,

gl m(s) | 0= ] .
t=0

As the per-step costs are uniformly bounded, so are the cost-
to-go functions. Define the Bellman operator 7, : R" —
R™ under policy 7 and the Bellman optimality operator
T:R™ — R" as,

(TrJ) (s) := g(s,m(s)) +7 D P(s'|s,w(5))T(s')

s’eS
(TJ)(s):= (rlrélﬂ g(s,a) +~ Z P(s'|s,a)J(s")
s'eS

Note that the Bellman optimality operator can be equiva-
lently defined as (T'J)(s) = mingen(TxJ)(s). The cost-
to-go function under policy 7 is the unique solution to the
Bellman equation, J; = T J.. Similarly, the optimal cost-
to-go function, J* which satisfies J*(s) = min, J;(s) for
all s € S, is the unique fixed point of 7" and that there is at
least one optimal policy, 7* € II that attains this minimum
for every s € S. From the above definitions, it is simple to
check that: J, = T J; = T'J, for any m € II. We will use
this inequality repeatedly throughout our analysis.

Our analysis uses a few basic properties of Bellman oper-
ators, see Bertsekas [1995] or Puterman [2014] for proofs.
Under the assumption that per-period costs are bounded, T'
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and T, are monotone, meaning the element-wise inequal-
ity J < J' implies TJ < TJ" and T,;J =< T,J'. They
are also contraction operators with respect to the maxi-
mum norm. Thatis, ||[TJ — TJ'||cc < v||J — J'||ec and
| Tn =T |loo < ||J—J'||oo hold for for any J, J' € R™.
The state-action cost-to-go function under policy 7 € 11,

Qr(s,a) =g(s,a) +~ Z P(s' | s,a)J:(s"),

s'eS

measures the cumulative expected cost of taking action a in
state s and applying 7 thereafter. For any polices 7, 7’ € II,
we have the following relations:

Qn(s,m(s)) = Jx(s),
Qn(s,7'(5)) = (T J)(s),
zréii‘l Qr(s,a) = (TJ:)(s).

Note that for any policy 7 € II,s € S and a € A*~L,
linearity of the cost and transitions functions in (1) implies
that the Q-function is linear in a.

k

QW(S,CL) = Z Qﬂ'(sa ei)ai = <Q7T(Sv ')7a>

i=1

Loss function and initial distribution. Policy gradient
methods seek to minimize the scalar loss function

Um) = (1=7) ) Tx(s) pls),

seS

in which the states are weighted by their initial probabilities
under p and we have normalized costs by (1 — ) for con-
venience. We assume throughout that p is supported on S,
meaning that p(s) > 0 for all s € S which implies that 7 €
argmin; ¢(7) if and only if 7 € argmin, Jz(s) Vs € S.
Assuming an exploratory initial distribution is critical as it
is well known that, in the absence of strong assumptions
on the transition kernel, policy gradient methods can fail
catastrophically if applied without some form of intelligent
exploration. See [Thrun, 1992, Kakade and Langford, 2002]
for a simple example and the discussions in [Agarwal et al.,
2020, Bhandari and Russo, 2019].

State distributions. We define the discounted state occu-
pancy measure under any policy 7 and initial state distribu-
tion p as:

e = (1= _7'pPt=(1—y)p(I —yPx)"".
t=0

where 7, and p are both row vectors, P, € R"™*" de-
notes the Markov transition matrix under w, i.e. P, =
(P(s'|s,7(s)))s,s’es and PL denotes its ¢t-step counterpart.
Thus, 7, is essentially the discounted fraction of time
the system spends in a given state. Note that we have
Nr(s) > (1 —v)p(s) > 0 as we assumed p(s) > 0 for
alls e S.

3 Linear convergence of policy iteration

We briefly revisit the classic policy iteration algorithm as
our analysis of policy gradient methods is intricately tied
to it. Starting from an initial policy , policy iteration first
evaluates the corresponding cost-to-go function @), and
then updates to a new policy 7 such that

7t (s) € argmin Q. (s,a) Vs€S.
acA
In terms of the Bellman operators, this can be equivalently
expressed as, T+ J, = T'J,. A simple analysis of policy
iteration follows by using the monotonicity and contraction
properties of the Bellman operators. Observe that

J‘IT :T7TJ7K‘ ETJﬂ‘ :TTr+J7r~ (2)

Inductively applying 7.+ to each side and using the mono-
tonicity property yields a policy improvement property,

o = Tt I = T2 T = v = Tt (3)

Here we use the definition that J_ .+ = limy_,o, T+ J for
any J € R”. Since J; = T'J; = J.+ = J* we have,

[Tt = T oo < 1T Tr — J* |loo = [T — TT*||oo
<Ir = Tl @

using the contraction property. From this, we conclude that
policy iteration converges to the optimal policy at a linear
rate. Let {m*};>( be the set of policies produced by policy
iteration. Then iterating over (4) shows

1wt =T lloe < A= low < -+ < 31T =T e

In fact, policy iteration can sometime also converge quadrat-
ically in the limit [Puterman, 2014].

4 A sharp connection between policy
gradient and policy iteration

Recently, Bhandari and Russo [2019] analyze the optimiza-
tion landscape of the policy gradient objective ¢(-) for gen-
eral MDPs and policy classes. A starting point of that anal-
ysis is rewriting the policy gradient theorem in a form that
emphasizes the illuminating connections between policy gra-
dient and policy iteration. We specialize that presentation to
the tabular setting and argue that several first-order methods
applied to the policy gradient loss ¢(-) will essentially per-
form a soft policy iteration update and hence converge at a
geometric rate, similar to policy iteration.

For any policy 7 € II, consider the weighed policy iteration
or "Bellman” objective, defined as

B(ﬁlnﬂ'v Jﬂ') = ZTIw(S)er(Sa 61-)77(5, Z) = <Qﬂ' ,7_T>777,><1

sES
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where e; denotes the i-th standard basis vector, denoting one
of the k arms, (v, u)w = > o_, Zle v(s,t)u(s, )W (s,1)
denotes the W-weighted inner product and 7, x 1 denotes a
weighting that places weight 7 (s)-1 on any state-action pair
(s,1). Recall that since p(s) > 0 by assumption, 7, (s) > 0
for all s € § and hence the policy iteration update can be
equivalently written as optimizing the Bellman objective,

7t = arg min B(7 |1y, Jx)-

7ell

It is worth emphasizing that the Bellman cost function is a
single period objective, considering the cost-to-go of fol-
lowing 7 for a single period and following 7 thereafter. A
policy gradient theorem connects gradients of the infinite
horizon cost function £(-) to gradients of the single period
Bellman objective underlying policy iteration. In particular,
we have the following lemma from Bhandari and Russo
[2019], which is essentially a restatement of the classical
version by [Sutton et al., 2000, Sutton and Barto, 2018].

Lemma 1 (Policy gradient theorem for tabular MDPs). As-
suming per-period costs are uniformly bounded, ((w) is
continuously differentiable and

o) OB(wlne. J)| |
om(s,i) = 11 (s)Qnr (s, )

o7 (s,i) |-_,

Equivalently, we can write a first order Taylor expansion of
£(-) as

(n)

Um) +(Vi(m), 7 =)+ O(|l7 — 7||*)
L G

(m) +{Qn T = Ty x1 + O(I|7 — 7).

Presentation of the policy gradient theorem in terms of the
Bellman objective clarifies an important connection — we
can interpret V{(m) as gradient of the weighted policy it-
eration objective. What is special about the tabular setting,
relative to the general problems considered by Bhandari and
Russo [2019], is that the weighted policy iteration objective
is linear. In the following section, we use this connection
to show that various first-order methods applied to £(-) can
optimize the Bellman objective B(:|n, J;) to optimality
in a single update with large (and possibly infinite) step-
sizes; equivalent to a policy iteration update. For finitely
large step-sizes, a simple argument establishes equivalence
between a policy gradient step and a soft policy iteration
update, again implying geometric convergence.

+
_|_

Note that for tabular MDPs, a policy iteration step is simple
as it reduces to solving a linear optimization problem over
the probability simplex, and the solution is to select the best
action for each state.

5 Policy gradient methods for finite MDPs

We write all algorithms in terms of their evolution in the
space of policies II. Several of them could instead be viewed

as operating in the space of parameters for some parameter-
ized policy class. We discuss this in Remark 1, but keep our
formulation and results focused on the space of policies II.
Note that IT = A¥=1 x ... x A*~1 is the n-fold product of
the probability simplex. This form of the policy class will
cause policy gradient updates to decouple across states.

Frank-Wolfe. Starting with some policy 7 € II, an itera-
tion of the Frank-Wolfe algorithm computes

7T = argmin (V/(7), 7) = argmin (Qn, 7). x1 (5)
7ell Tell

and then updates the policy to 7’ = (1 — a)m + an™ for
a € [0,1]. We use the notation 7 in (5) as it is exactly
the policy iteration update to 7 so Frank-Wolfe mimics a
soft-policy iteration step, akin to the conservative policy
iteration update’ in Kakade and Langford [2002]. Note,
the minimization problem in (5) decouples across states to
optimize a linear objective over the probability simplex, so

7 (s) € argmin d' Qx(s, ")
deAk—1

is a point-mass that places all weight on arg min; Q. (s, €;).

Projected Gradient Descent. Starting with some policy
m € II, an iteration of the projected gradient descent al-
gorithm with constant stepsize o updates to the solution of
a regularized problem

1
7’ = argmin(VL(7), ) + — ||7 — 7||3
rell 20

= argmin(Q, )y, x1 + i”ﬁ' — 3.
#ell 20

As a — oo (the regularization term tends to zero), ©’ con-

verges to the solution of (5), which is exactly the policy

iteration update as noted above. For intermediate values of

a, the projected gradient update decouples across states and

takes the form:

7T; = PI'OjQVAk—l (ms — aQx(s,))

which is a gradient step followed by a projection onto the
probability simplex. Note that from an implementation per-
spective, projections onto the probability simplex involves
a computationally efficient (O(k log k)) soft-thresholding
operation Duchi et al. [2008].

Mirror-descent. The mirror descent method adapts to
the geometry of the probability simplex by using a non-
euclidean regularizer. We focus on using the Kullback
Leibler (KL) divergence, a natural choice for the regularizer,

%A generalized version of Frank-Wolfe was studied in [Scherrer
and Geist, 2014] under the name of “Boosted Policy Search” to
show global optimality guarantees for any locally optimal policy.
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under which an iteration of mirror descent updates policy 7
to 7' as:

ZDKL 779 ||7Ts

= argmin(Qr, Ty, x1 + — ZDKL (7s || 7s),
well s=1

7' = arg min(V/{(7
well

where Dk, (pllg) = Zle p;ilog(pi/q;) denotes the KL
divergence. It is well know that the solution to this optimiza-
tion problem is the exponentiated gradient update [Bubeck
et al., 2015, Section 6.3],

= Ts,i 'eXp{_an(S)Qw(S» el)} .
Sk e exp{—ana(s)Qx(s. e;)}

Again, we can see that ™ converges to a policy iteration
update as v — 0.

Natural policy gradient and TRPO. We consider the nat-
ural policy gradient (NPG) algorithm of Kakade [2002]
which is closely related to the widely used TRPO algorithm
of Schulman et al. [2015]. We focus on NPG applied to the
softmax parameterization for which it is actually an instance
of mirror descent with a specific regularizer. In particular,
beginning with some policy = € II, an iteration of NPG
updates to 7'

+ é Z Nz (8) Dk (7s || 7s)

s=1

7' = argmin (V{(7),T)
rell

- argergln <Q7r; >n,r><1 + — Znﬂ‘ DKL(/]TS || 775)
(6)

where we use a regularizer that penalizes changes to the the
action distribution at states in proportion to their occupancy
measure 7). As discussed above, it is well known that
this KL divergence regularized problem is solved by an
exponential weights update for each state s € {1,...,n},

;. Tsi - exp{—aQ(s,e;)}
,1) = - . 7
T (Ef_l T -exp{—a@ﬂ<s7ej>}>

Note that this update rule is independent of the state occu-
pancy measure 7. A potential source of confusion is that
natural policy gradient is usually described as steepest de-
scent in a variable metric defined by the Fisher information
matrix induced by the current policy?,

T =m+ ozF(ﬂ')TVK(ﬂ')
Znﬂ [V log 7 (s, 1) (Vlog (s, i)

3This is equivalent to mirror descent under some conditions
Raskutti and Mukherjee [2015].

where M denotes the pseudoinverse of matrix M. Readers
can check that the exponentiated update in (7) matches the
explicit formula for the NPG update with softmax policies
as given in Kakade [2002] and Agarwal et al. [2020].

Step-size selection is an important issue for most first order
methods. Each of the algorithms above can be applied with
a sequence of stepsizes {a; }+>o to produce a sequence of
policies {m*};>o. We define one stepsize selection rule
below.

Exact line search. At iteration ¢, the update rules for each
of the algorithms described above actually specify a new
policy 7! for a range of stepsizes, a > 0. We consider
an idealized stepsize rule using exact line search, which
directly optimizes over this choice of stepsize at each itera-
tion, selecting 7/ ! = 7t! where a* = argmin,, ¢(751)
whenever this minimizer exists. More generally, we define

7't = arg min £(7). (8)

mellt+1

where IT°+! = Closure({n’1}) denotes the closed curve
of policies traced out by varying «. For Frank-Wolfe,
'+t = {ar' + (1 —a)7! : a € [0,1]} is the line segment
connecting the current policy 7 and its policy iteration up-
date 7'_. Under NPG, II'*! = {x/'} is a curve where
mot! = mt and 7t — 7! as @ — co. Since 7, is not
attainable under any fixed «, this curve is not closed. By
taking the closure, and defining line search via (8), certain
formulas become cleaner. Of course, it is also possible to
nearly solve (8) without taking the closure and obtain essen-
tially the same results. We elaborate on this in the discussion
that follows our main result in Theorem 1.

Remark 1 (Policy parameterization and infima vs minima).
We chose to work with the class of all stochastic policies
II (often termed as natural parameterization) as opposed
to some parameterized policy classes, which are more com-
monly used in practice. For example, a policy gradient
algorithm might search over the parameter § € R™*F of
a softmax policy Ty € 11, defined by Ty (s,i) o< e%i. For
example, consider the TRPO algorithm proposed by [Schul-
man et al., 2015]. This forms a locally linearization of £(),
forms the regularized minimization problem in (6), and then
updates the parameter of a softmax policy my by solving

argmm (Qﬂo,%)nwﬂ—l- Zﬁng s) Dk (mg(s) || mo(s)).

s=1

We could define similar versions of projected gradient de-
scent or Frank-Wolfe, which also linearize ¢(r), but then
optimize the resulting local approximation only over pa-
rameterized policies. Since the class of softmax policies
can approximate any stochastic policy to arbitrary preci-
sion, however, this is nearly the same as optimizing over
the class 11. Studying 11 directly makes mathematical anal-
ysis easier, because it is closed. For example, it contains



On the Linear Convergence of Policy Gradient Methods for Finite MDPs

an optimal policy, whereas any softmax policy g € llg
can only come infinitesimally close to an optimal policy. In
practice, optimization problems are never solved beyond
machine precision, so we don’t view the distinction between
infimum and minimum to be relevant to the paper’s main
insights. We caution the reader that our results do not apply
to more more naive gradient methods that directly linearize
£(mq) with respect to 0. In that case, a gradient update 1o 0
may not approximate a policy iteration update, no matter
how large the stepsize is chosen to be. In fact, such methods
may perform very poorly due to issues of poor conditioning
[Kakade, 2002].

6 Main result: geometric convergence

So far, we have described different variants of policy gra-
dient methods for tabular MDPs. For large step-sizes, all
these algorithms essentially make a policy iteration update.
Hence, intuitively, it is reasonable to expect that their con-
vergence behavior closely resemble that of policy iteration
rather than that of gradient descent for smooth objectives.
We quantify this precisely in Theorem 1 below.

Our first result confirms that all of the algorithms we pre-
sented in the previous section converge geometrically when
step-sizes are set by exact line search on £(-). Again, the
idea is that a policy gradient step is a policy iteration update
for an appropriate choice of stepsize. Our proof effectively
uses that exact line search updates make at least as much
progress in reducing £(-) as a policy iteration update. The
mismatch between the policy gradient loss £(-), which gov-
erns the stepsize choice, and the maximum norm, which
governs policy iteration convergence, is the source of the
term minges p(s) in the bound. We further elaborate on
this issue in the discussion that follows Theorem 1.

Our second and third results show that dependence on the
initial distribution in the bounds can be avoided by forcing
the algorithm to use large stepsizes. A simple result in part
(b) applies to the Frank-Wolfe algorithm with a constant
stepsize, which gives performance improvement in max
norm. This bound follows by essentially making a minor
modification to the linear convergence result of policy it-
eration as reviewed in Section 3. Recall that we already
showed a Frank-Wolfe update to be exactly equivalent to a
soft policy iteration update,

Tt (s) = (1 — a)7'(s) + ar’ (s).

Given this close connection, a simple argument shows that
an a-step Frank-Wolfe update offers at least a fraction of
the performance improvement offered by a policy iteration
update,

Jptr1 < (1 - Oz)JTrt + T J

which implies the result. A comparison between parts (a)
and (b) suggest that for @ > 1/|S|, Frank-Wolfe with exact
line search might converge slowly in the worst case.

For softmax policies and exact gradient evaluations, we
show in part (c) that NPG with an adaptive stepsize sequence
converges to an e optimal policy in O(log(1/¢)) iterations.
The error term, e, is inversely related to the stepsize and
reflects the fact that NPG updates with finite stepsizes only
approximately resemble the policy iteration updates*. As
we take the step-size to infinity, we recover the same result
as one would expect for policy iteration. Compared to the
first result in part (a) which applies with exact line search,
the result in part (c) is useful in the sense that it gives a
precise quantification of how large the step-sizes need to be
for linear convergence to hold.

Theorem 1 (Geometric convergence). Suppose one of the
first-order algorithms in Section 5 is applied to minimize
U(r) over w € 11 with step-size sequence {cv }¢>o. Let w°
denote the initial policy and {7'},>o denote the sequence
of iterates. The following bounds apply.

(a) Exact line search. If either Frank-Wolfe, projected
gradient descent, mirror descent, or NPG is applied
with stepsizes chosen by exact line search as in (8),
then

g = e

T J* | < (1— i 1— ) :

I lloo < {1-min p(s)(1~7) minae p(s)

(b) Constant stepsize Frank-Wolfe. Under Frank-Wolfe
with constant stepsize o € (0, 1],

[ T2t = T lloe < (1= (1 = 7)) | Jz0 = Tl oc-

(c) Natural policy gradient with softmax policies and
adaptive stepsize. Fix any ¢ > 0. Let i =
argmin, Q¢ (s,7). Suppose that NPG is performed
with an adaptive step-size sequence,

a(s) > 2 lo 2
= e B\t s, i) )
Then,
1++Y)
o= Pl < (S52) 10 = e

Remark 2. For the result in part (¢), note that for the soft-
max parameterization, Ty (s,i) > 0 for any 6 € R"**. So,
7t(s,4}) > 0 forall t. A similar result can also be obtained
without the need of adaptive step-sizes by considering en-
tropy regularized MDPs. This is discussed below.

Discussion of results: The following discussion is based
primarily on feedback of the reviewers. We thank them for
their valuable inputs.

“More precisely, our proof shows that in this case, the NPG
update is equivalent to a soft policy iteration update upto some
additive error.



Jalaj Bhandari, Daniel Russo
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Figure 1: Line search objective for a Frank-Wolfe update
for a two state three action MDP is non-monotonic with a
minimum at o = 0.83. Therefore, exact line search picks a
smaller step-size than the greedy update, i.e. my+ 7# 7.

1. Dependence on py,i, for exact line search result:
Readers will note that proof of our result in part (a) of
Theorem 1 also shows that,

Ut =) < (1= punin(1 = 7)) £(7°) = £(").

A natural question to ask is whether the presence of the
factor of py,iy in the geometric rate is merely an artifact
of our analysis technique and if in practice, line search
always ends up picking the policy iteration update. In
Figure 1 below, we plot the line search objective,

U(7a) : Mo = am + (1 — )7y, a € [0,1]},

for a Frank-Wolfe update for a randomly generated’
MPD with two states and three actions. For a given
(P, g, p) and policy 7 (see Appendix B for details), we
observe that /() is non-monotonic and so exact line-
search does often select smaller step-sizes as compared
to the greedy update (o = 1). Although we do not
show a lower bound, this example suggests that a factor
of pmin in the bounds might be unavoidable.

2. On inexact line search: Though our result in part (a)
focuses on an idealized setting with exact line search,
we do note that a similar result can also be obtained
if we can ensure, say using inexact line search, that
the improvement in total cost £(-) at every update is
at least a fraction of the improvement offered by ex-
act line search. For example, if we select a step-size
sequence {ay };>0 which offers half the possible im-
provement at every update, meaning ((7*) —¢(m’t1) >

>We generated many random MDPs to compare updates of
policy iteration with those of Frank-Wolfe using grid search and
found many cases where these differ. Details of only one such
example is given to illustrate our point.

(1/2)(6(r*) —inf, £(x"T1)), then our result in part (a)
follows with an extra factor of % in the bound. One
essentially needs to modify the first step in the proof
(Equation (11)) and the rest is the same.

A linear convergence result can also be obtained if the
sequence of policies, {7 };>( obtained via inexact line
search offer approximately the same improvement as
a policy iteration update, i.e. ((m'™!) < {(xt) 4§
holds uniformly for some ¢ > 0. In this case, a bound
similar to that in part (a) will hold with an additional
scaled bias term of 6 /(1 — ).

. NPG with softmax policies for regularized MDPs:

Recall that the result in part (c) uses an adaptive step-
size sequence ay(s) that depends on 7'(s,i;), the
probability under the randomized policy at iteration
t assigned to the action ¢; prescribed by policy itera-
tion. This dependence is a bit undesirable and can be
removed by considering entropy regularized MDPs.
Entropy regularization prevents policies from pick-
ing near deterministic actions and essentially lower
bounds 7¢(s,*). Rather than presenting a lengthy re-
derivation of the result in part (c), we sketch a simple
argument essentially based on some past work on the
theory of regularized MDPs [Neu et al., 2017, Geist
et al., 2019], to show linear convergence with a par-
ticular choice of step-size. Although this result in (9)
is almost identical to the one in Cen et al. [2020], our
ideas, based on connections to policy iteration, consid-
erably simplify the proof.

A common way to enforce regularization is by adding
a a small penalty to the cost function,

k
gM(s,a) = (9(s, ei)ai + Mog(az))

i=1

for some parameter A > 0. Let J2(s) and Q2 (s, a) be
the corresponding cost-to-go functions for any 7 € II,

J;r\(s) =FE,

> st mlsn) | 50 = s] :
t=0

QX(s,a) = g(s,a) +7 > P(s']|s,a) 3 (s").
s'eS

Similar to (6), a quick calculation using the policy
gradient theorem reveals that an NPG update for a
A-regularized MDP solves the following problem,

. _ 1 _
arg min (V£ (), Thnax1 + — Z N (8) Dxw (7| |7s)
rell oS
for any o < 1/X with V& (7r) = Q) + Alog 7. For
a = 1/), these updates take a particularly simple
Xig.. .
form of 7/ (s) = Softmax ( —wa(é)> This update can
alternatively be viewed as a policy iteration update with
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respect to a regularized Bellman optimality operator,
T2(-) defined by:

(T I7)(s) = min (Q(s,),@(s)) + AH(7(s)).

where H(m(s)) = Zle m(s,1)logm(s, %) is the nega-
tive entropy. Importantly, 7(-) can also be shown
to be a monotone and ~y-contraction in the maxi-
mum norm with a unique fixed point, J** such that
1792 =T [loo < 71255 See [Geist et al., 2019] for de-
tails. Therefore, similar to the proof of policy iteration
in Section 3, we can obtain a geometric convergence
result for NPG with softmax policies and a constant

step-size of & = 1/,

2Alog k

Jat — T oo < AT w0 — —_—.
[ oo <71l -

I [Joo + )

6.1 Proof of Theorem 1

Proof. Throughout, we use some standard properties of the
Bellman operator as described in Section 3. We denote 7/,
to be the policy iteration update to any policy 7 € II and
|l - || to be the £, -norm.

Part (a): Exact line-search: Under each algorithm and at
each iteration ¢, the policy iteration update 7', is contained
in the class II**! introduced in (8). Therefore, for each
algorithm,

((x"*1) = min ((r) < () (10)

mellt

Recall policy improvement property in (3), which shows
J* =< Jﬂi < TJpe = Jrt. Denote ppin = minges p(s).
‘We have,

Omty — o(x" ) > e(nt) — e(xh) (11)
=3 0(s) (Jme(5) = It ()
seS
2 Pmin (Z JTr" (8) - Jﬂﬁ (S)>
sES

2 Pmin[Jrt = Jrt ||
> pminl|Jrt — Tt |
= pinll Tt = J* — (T = J°) |
> prain (1wt = T = [T Tt — )
= puin (1Tt = J*|| = | T = T
2 pmin (1 =7) |z = 7|
> pmin (1 =) (£(7") = £(7%)) .
where the penultimate inequality follows by contractivity

property of the Bellman operator, | T Jt —TJ*|| < || Jrt—
J*|| Rearranging terms gives,

where the final inequality follows by inductively apply-
ing the first one. We immediately have the looser bound
() = (7)) < (1 = pmin(1 = 7))*[|Jz0 — J*||. The
final result follows from observing that

[Tzt = T*lloe < (£(x"F) = £(77)) / Pmin

Part (b): Constant stepsize Frank-Wolfe: The proof
follows the policy iteration analysis reviewed in Section
3. Recall from Section 5 that a Frank-Wolfe update is equiv-
alent to a soft policy iteration update:

mt(s) = (1 — a)7'(s) + ar’ (s)

where wfr is the policy iteration update to 7rt. Thus, starting
from a feasible policy 7¥ € II, we always maintain feasi-
bility for « € (0, 1]. By linearity of the cost and transition
functions as shown in (1), we have that for any state s,

T Jre(s) = (L= @) Jre(s) + oI5 Jre(s)
=(1—a)Jgt(s) + aTJr(s)
Using T'J+ X J¢ asin (2), we get
Trt+r1dpt = (1 - Oé)Jﬂ—t +alJe = Jpe. (12)

Using monotonicity of T,:+1, along with the fact that
St = limy 00 T4y Jre implies,

Tt = Trenr e = Ty e = o= Jn
Therefore, from (12), we get
Jptvr S T e = (1 — o) Jpe + a1 T e
Subtracting J* from both sides shows
Jprr — T 2 (1= a) (Jpe = T+ @ (TTpe — J¥).
Since the above inequality holds element wise,

[ Treer = T < (1 = a)l[Jae = " + | T Tz = J7|
< (M=) +7a) [T = J7],

where we use that J* = TJ* and |TJ — TJ*|| <
Y| Tzt — J*|| as T'(+) is a y-contraction. Iterating over the
above equation gives us our final result:

[ pees = T [l < (1= (1 =)' [0 = T

Part (c): Proof for natural policy gradient with softmax
policies and adaptive step-sizes: Recall that in Section
5, the natural policy gradient (NPG) update with a step-size
sequence {ay }>o take the form:

(s, i) - em ot ()Q"(s:9)

S wi(s,4) - e 9@ ()

it l(s,i) =
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where we use the shorthand notation 7t (+) to denote mg: (-)
and Q'(s,1) to denote Q,, (s,7). For simplicity, we let

ci= FQW) which implies, oy (s) > %log(ﬁ).

Our proof strategy shows that for any state s € S, an NPG
update with step-size o (s) decreases the probability of sub-
optimal actions by a multiplicative factor. Informally, the set
of sub-optimal actions per state can be understood to be the
set of actions with action gap® larger than some threshold.
Essentially, this shows the NPG update is equivalent to a
soft policy iteration update upto a small additive error. We
divide the proof into three steps.

Step 1: NPG update for sub-optimal actions: Fix some
state s € S. Without loss of generality, we assume the fol-
lowing ordering on the Q-values: Q'(s, 1) < Q'(s,2)... <
Q*(s, k) which implies that action 1 is optimal in state s
under policy 7*. For error tolerance € > 0, define O; (s)
and O} (s) as:

07 (3= {i1Q'(s1) - @'(s.1) > £}
0f(s) 1= {i 1 Q'(0.1) = Q(s.1) < £}

The set O; (s) can be interpreted as the set of sub-optimal
actions with the action gap, Q%(s,i) — Q*(s, 1), larger than
the threshold ¢/c. Similarly, O} (s) can be interpreted to
be the set of nearly optimal actions according to policy 7.
The following lemma (proved in Ashows that NPG updates
decrease the probability of playing sub-optimal actions by a
multiplicative factor.

g
Lemma 2. For any state s, ﬂ;t(s(si’;) <1 VieOf (s)

Step 2: NPG updates as soft policy iteration: The pol-
icy iteration update, 7% (s) = argmin;c(y o gy Q'(s,1),
puts entire mass on the best action (according to Q-values
of the current policy) and zeros out the probability of play-
ing other actions. On the other hand, Lemma 2 shows
how an NPG update with appropriate stepsize decays the
probabilities of sub-optimal actions (in the set O; (s)) by
a multiplicative factor instead of zeroing them out’. This
resembles a soft-policy iteration update for the set of actions
O; (s). We formalize this intuition in the following lemma
which characterizes the progress made by an NPG update
vis-a-vis a policy iteration update.

Lemma 3 (Progress quantification). Let J«(s) denote the
cost-to-go function for policy ©t from any starting state

®The action gap of any action i € {1,...,k} is the difference
between Q-values when compared to the optimal action.

"This defintion of sub-optimal actions based on action gap
threshold, €/c, is essentially an artifact that we are taking gradient
steps with finite step-sizes. As a;(s) — oo Vs € S, an NPG
update is exactly equal to a policy iteration update.

s € S. Then,

Toin T (5) = Jne (5) < % (T Tae(s) = Tue(s)) + &
Step 3: Completing the proof: Lemma 3 clearly quanti-
fies the relationship between an NPG update with step-size
a4 and a soft policy iteration update with an additive error
<. With this connection, we give a simple proof of geo-
metric convergence for the natural policy gradient method.
First, we claim that J++1(s) < J¢(s). To see this, recall
from Section 5, an NPG update with step-size a(s) can
equivalently be written as,

Nrt(s
1 (s) = argmin | Q' (s, a) + ) Diey (al | (s))
aEAk—1 04(8)

But staying at the current policy, i.e. taking a = 7'(s). is
feasible for the optimization problem above. Therefore,

T Jre(s) = Q' (s, 71 (s)) < Q(s,7'(5)) = Jxt(s)

Using that J 41 = limy, 00 T4 Jr¢ along with mono-
tonicity of T',¢+1 implies,

Jut = Trerr e = T,,?wrl Jat = T
Thus, from Lemma 3, we get that
1
Jptr1 — It ST e I e — S < B . (TJﬂt — Jﬂt) + E
c
Subtracting J* from both sides and rearranging terms gives,

1 1
Joiir = J* = = Joe 4 =TT — J* 4 &
2 2 c

1 1 €
= —(Jp —J* —(TJpe —J" -.
= )+ 5 ( )+

As the above inequality holds element wise, we use the
contraction property of 7'(+) as shown in (4) to get

1 v €
Jptrr — J* <|(=z=+=)||Jxt = J" -.
M = e < (5 + ) 1 = 1 4

Iterating over the above equation and rewriting (% + %)
(1 —1(1—~)) gives us our desired result.

oo

7 Conclusion and Future Work

In this work, we use illuminating connections with policy
iteration as shown in Bhandari and Russo [2019] to show
how many variants of policy gradient algorithms with large
step-sizes and true gradient evaluations converge geomet-
rically fast for tabular MDPs. An interesting question for
future work is whether these results can be extended to func-
tion approximation settings where the policy class might be
restricted, for example in Agarwal et al. [2020]. Another
interesting question is whether our results hold in settings
where unbiased estimates of the value functions are obtained
via sampling. Here some exciting progress has been recently
made for the undiscounted (average cost setting) in [Abbasi-
Yadkori et al., 2019, Hao et al., 2020] for ergodic MDPs, by
leveraging connections to approximate policy iteration.
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Appendix: On the Linear Convergence of Policy Gradient Methods for Finite MDPs

A Proof of supporting lemmas

We give proofs of Lemmas 2 and 3, which were excluded from the main text.

Lemma 2. For any state s, ”;:(15(‘1;) <1 VieOf(s)

Proof. The proof follows a simple argument. By definition, for any i € O, (s):

(Q'(s.1) = Q'(s:1)) =

= o) (@'(0.1) = Q'(s.1)) > log =

which follows by the definition, a(s) > ¢ log ﬁ which implies £ > —

= a(s)

log % Rearranging, we get
¢ 1
log(wt(& l)e—at(S)Q (5,1)) + 10g<2) > —Oét(S)Qt(Sﬂ;)
Define, Z; = <Z§=1 ﬂ_t(svj)efat(s)Qt(s;j))_ Then,

log(Z,) > log ("(s, 1)e™ (92 (1))

which holds as all the terms in Z; are positive, i.e. 7 (s, j)e~*()Q" (=) > 0 Vj € {1,2,...,k}, and log(-) is a monotonic
transformation. Rearranging, we get our desired result.

t t
log (Z;) > log (W(;’l)e(’“(s)Q (5’1)) > —ay(s)Q"(s,19)

t+1(g 7 tsi
T L et < L

wt(s,1) Zy

N

O

Lemma 3 (Progress quantification). Let J,+(s) denote the cost-to-go function for policy ©* from any starting state s € S.
Then,

(T e () — Tt (s)) + E

NN

Trev1dne(s) — Jpe(s) <

Proof. Fix any state s € S. Without loss of generality, we assume the following ordering on Q-values: Q%(s,1) <
Q'(s,2) ... < Q'(s, k) which implies that the policy iteration update, 7, puts the entire mass on action 1, which is the best
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action under the current policy 7’. That is, 7’ (s,1) = 1 and 7, (s,7) = 0 Vi # 1. Consider,

k
Q'(s, 1)+ ) 7 (5,)Q% (5, )
2

Jj=

Tret1 (S) — Tt]ﬂ.t(s) = <7Tt+1(57 ) - 7TZ_(S, ')a Qt(57 >
)

= (r"(s,1) — 1

k k

Zﬂ'H_l $,7)Q" (s, 1) + 4 (s, 5)Q" (s, 4)
k] J=
Z Q'(s.5) = Q'(s,1))
§jt“ Q'(s.0) = Qs 1)) + Y 7 (s.) (Q'(s,4) — Q(5.1)

co; jeof

t+1 S
§j7ﬂ;5%%4w@@ﬁQ%A»+§:H“@Jw@@ﬁQ%J»

jEOr ’ jeof pe

IN

% D 7 (,0) (Q(s,) — Q1 (s, 1)) + =
jeO,

IN
I

k
; ZF%JWﬂ&ﬁf@@D>+Z
j=2

_ t t(s, 1 €
ZWSJQSJ ZWS]QS)JFC

N |

k
=5 | @D =) Qs 1) + 3w (5. )@ (s.0) | + 7

€

<7Tt(37 ) - 71'1(87 ')7 Qt(sa )> + -

(e (5) = T (s)) + (13)

N — N —

where we used that = ((q’f) 3 Vj € Oy (s) as shown above in Lemma 2 along with the fact that (Q'(s, j) — Q'(s, 1)) <

€ Vj € Of (s), which follows by definition. Subtracting .J+(s) from both sides in (13) and rearranging terms gives our
desired result,

(T Ti(s) — Jne(s)) + <.

Trer1dpe () — Jre(s) < c

l\D\>—~

B Details of MDP in Figure 1

We used the following two state three action MDP, P € RISIIAIXISI g ¢ RISIAI ~ 5 € RISI to generate Figure 1.

0.666066 0.333934 0.079718
0.662211 0.337789 0.629733

b 0441947 0.558053| _|07i7644| o [0.168831
0.391257 0.608743 |9 = [0.673362] 7 = V% P~ 10.831169
0.452186  0.547814 0.762623

0.035519 0.964481 0.541251
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Policy 7 for the two states s; and sy was taken to be,

0.449416 0.318626
m(s1) = |0.251788| ,m(so) = |0.346284
0.298796 0.335090



