
Efficient Statistics for Sparse Graphical Models from Truncated
Samples

Arnab Bhattacharyya Rathin Desai Sai Ganesh Nagarajan Ioannis Panageas
NUS BU SUTD UC Irvine

Abstract

In this paper, we study high-dimensional esti-
mation from truncated samples. We focus on
two fundamental and classical problems: (i)
inference of sparse graphical Gaussian mod-
els and (ii) support recovery of sparse linear
models.

(i) For Gaussian graphical models, suppose
d-dimensional samples x are generated
from a Gaussian N(µ,Σ) and observed
only if they belong to a subset S ⊆ Rd.
We show that µ and Σ can be estimated
with error ε in the Frobenius norm, us-
ing1 Õ

(
nz(Σ−1)

ε2

)
samples from a trun-

cated N (µ,Σ) and having access to a
membership oracle for S. The set S is
assumed to have non-trivial measure un-
der the unknown distribution but is oth-
erwise arbitrary.

(ii) For sparse linear regression, suppose
samples (x, y) are generated where y =

Ω∗
>

x + N (0, 1) and (x, y) is seen only
if y belongs to a truncation set S ⊆ R.
We consider the case that Ω∗ is sparse
with a support set of size k. Our main
result is to establish precise conditions
on the problem dimension d, the sup-
port size k, the number of observations
n, and properties of the samples and the
truncation that are sufficient to recover
the support of Ω∗. Specifically, we show
that under some natural assumptions,
only O(k2 log d) samples are needed to
estimate Ω∗ in the `∞-norm up to a

1nz(A) denotes the number of non-zero entries of A.
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bounded error. Similar results are also
estabilished for estimating Ω∗ in the Eu-
clidean norm up to arbitrary error.

For both problems, the estimator is ob-
tained by minimizing the sum of the empir-
ical negative log-likelihood function and an
`1-regularization term.

1 Introduction

Sparse high-dimensional models are a mainstay of
modern statistics and machine learning. In this work,
we consider two different sparse linear models that
have been the subject of intensive study.

– Sparse Gaussian Graphical Models. Graph-
ical models are used to represent the probabilis-
tic relationships between a collection of variables.
These models are used in a huge number of dif-
ferent domains, such as statistical physics, com-
putational biology, finance, and machine learn-
ing; the books [24, 28, 38, 22] give an indica-
tion of the breadth of this area. We focus on
Gaussian graphical models in which the d vari-
ables X1, . . . , Xd are distributed according to a
d-dimensional Gaussian. Specifically, the distri-
bution is described in terms of a density func-
tion p(X) where X = (X1, . . . , Xd) and p(X) =
(2π)−d/2 · (det Σ)−1/2

exp

(
−1

2
(X− µ)>Σ−1(X− µ)

)
.

Here, µ and Σ correspond to the mean and vari-
ance of the distribution respectively.
It is convenient to reparametrize the density func-
tion in terms of the inverse covariance matrix or
the precision matrix, Θ = Σ−1: Then,

p(X) = (2π)−d/2 · exp
(
µTΘX− 1

2
X>ΘX

− 1

2
µ>Θµ +

1

2
log det(Θ)

)



Efficient Statistics for Sparse Graphical Models from Truncated Samples

Note that the exponent is a quadratic polynomial
in which the coefficient of XiXj is Θi,j . The sym-
metric matrix Θ naturally defines an undirected
graph G on d vertices in which (i, j) ∈ E(G) iff
Θi,j 6= 0. The graph G also admits a very nice
probabilistic interpretation: Xi and Xj are inde-
pendent conditioned on all other variables if and
only if Θi,j = 0. Thus, for natural systems, it
is quite reasonable to assume that the degree of
each node in G is small, as this corresponds to as-
suming that each variable is “directly” dependent
on a small number of variables. Note that even if
Θ is sparse, Σ could be dense; in fact, in many
typical systems, any pair of variables is correlated
even though they are not directly dependent.

The problem of learning sparse high-dimensional
Gaussian graphical models (in terms of the pre-
cision matrix) has a rich history. Popular ap-
proaches include the graphical Lasso [18, 41, 3, 13,
33, 32], neighborhood-based methods [4, 27, 36],
and CLIME [6] which have been proved to work
under different sets of assumptions.

– Sparse Linear Regression. A funda-
mental problem in data science is to solve
the following inverse problem. Given pairs
(X1, Y1), . . . , (Xn, Yn) ∈ Rd × R, find the “best”
choice of Ω ∈ Rd so that Yi − Ω>Xi is small in
some norm. It is natural to want Ω to be sparse
so that the prediction can be made based on a
small number of variables.

Consider the model Y = Ω∗
>

X + ε where ε is a
Gaussian random variable and Ω∗ is a sparse vec-
tor. There has been a huge amount of work on this
problem. In the high-dimensional setting, a very
popular approach is using `1-regularization, lead-
ing to the Lasso algorithm [34]. By now, we have
an almost complete understanding of the neces-
sary and sufficient conditions needed for Lasso to
recover Ω∗; see the discussion and references in
Chapter 7 of [37].

In our work, we study the above two problems in the
setting where the samples are subject to truncation.
Truncation is also a classic challenge in statistics, oc-
curring whenever the observation process is dependent
on the drawn sample. Following early work by Galton
[19], there has been a sustained history of research on
truncated distributions, in particular, truncated Gaus-
sians (see the citations in [9]) and truncated linear re-
gression [35, 1, 20, 5]. We pick up the thread at [10]
who developed a computationally and statistically effi-
cient algorithm to learn a multivariate Gaussian given
truncated samples and assuming that the truncation
set is known. A follow-up work, [11], extended the

analysis to the linear regression problem where only
those samples (Xi, Yi) are seen in which Yi ∈ S, the
truncation set.

To the best of our knowledge, ours is the first work
that examines the problems of learning sparse Gaus-
sian graphical models and linear models with trun-
cated samples. We state our results next.

Statement of the results The first contribution of
the paper is the following theorem on learning Gaus-
sian graphical models up to small Frobenius norm er-
ror. The sampling process is that samples from an
unknown d-variate Gaussian are only revealed if they
belong to a subset S ⊆ Rd; otherwise, the samples are
completely hidden.

Theorem 1.1 (Frobenius norm). Suppose that we
are given oracle access to a measurable set S, so
that

∫
S
N (x;µ∗,Σ∗)dx = α > 0 for some d-variate

N (µ∗,Σ∗) and constant2 α > 0. There exists an es-
timator µ̃, Σ̃ that uses Õ

(
nz(Σ∗−1)

ε2

)
samples from the

truncated distribution N (µ∗,Σ∗, S) so that with prob-
ability at least 99%∥∥∥I −Σ∗−1/2Σ̃Σ∗−1/2

∥∥∥
F
6 ε,

∥∥∥Σ∗−1/2(µ∗ − µ̃)
∥∥∥
2
6 ε.

Remark 1.2. We would like to note that the number
of non-zero entries of Σ∗−1 should be at least d (since
α > 0, Σ∗ is invertible and so is Σ∗−1). Therefore
nz(Σ∗−1) absorbs any term that is Θ(d).

The second contribution of the paper solves the vari-
able selection problem for linear models, under certain
assumptions. The sampling process is as follows: each
covariate x(i) ∈ Rd is picked arbitrarily, and the value
yi = Ω∗

>
Xi + εi is revealed only if yi ∈ S. Here,

εi ∼ N (0, 1), the standard normal distribution.

Theorem 1.3 (Linear regression, informal). Suppose
that we are given oracle access to a measurable set S.
Let X denote a design matrix consisting of n samples
x(1), . . . ,x(n) ∈ Rd. Let K denote the unknown sup-
port of Ω∗, and let k = |K|. Assume that:

(i) (Survival probability) For each observed x(i),
the probability that Ω∗

>
x(i)+wi survives the trun-

cation is not too small.

(ii) (Minimum eigenvalue) The vector Ω∗ is iden-
tifiable if its support K was known a priori.

(iii) (Mutual incoherence) Covariates not in the
support set K form columns in X that are ap-
proximately orthogonal to the space spanned by the
columns corresponding to K.

2Think of α like 1%.
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(iv) (Normalization) Each entry of X is small in
magnitude.

Then, with only n = O(k2 log d) samples (x(i), yi) from
the truncated distribution, one can recover a vector Ω̂
such that with high probability:

(a) The support of Ω̂ is contained in K.

(b) If for some j ∈ K, Ω∗j is larger than a threshold
τ (which depends on the problem parameters but
not d), then Ω̂j 6= 0.

Finally, under standard assumptions on the covariates,
we can get `2 error

∥∥∥Ω̂−Ω∗
∥∥∥
2
6 ε using O(k

2 log d
ε2 )

samples (see Section 5).

Our techniques We first discuss the ideas behind
Theorem 1.1. In [10], it was shown that using n =

Õ
(
d2

ε2

)
samples from a d-variate truncated Gaussian

distribution with truncation set S of measure some
constant α > 0, the mean µ∗ and the covariance Σ∗ of
the untruncated distribution can be estimated with ε
error in `2 and Frobenius norm respectively. The crux
of their proof involves proving that the infinite popu-
lation negative log-likelihood is κ-strongly convex in a
neighborhood U (U ⊆ Sd×d × Rd) of the true param-
eters where the radius of U and κ are functions of α3.
Moreover, they run projected SGD with an efficient
projection procedure in that neighborhood U . SGD
requires a sample from the true truncated distribution
in every iteration, so the sample complexity of this ap-
proach is at least as much as the number of iterations
of SGD. Due to variance reasons, for SGD to converge,
the number of samples needed is Ω

(
d2

ε2

)
.

To improve up on their sample complexity, our esti-
mator is the minimizer of a different function - de-
noted by Ln - which is the finite population negative
log-likelihood plus a regularization term (see Equation
(3.4)). The regularization term is the sum of the ab-
solute values of the entries of the precision matrix (ex-
cluding the diagonal entries). This approach is the
well-known Graphical Lasso.

One first easy observation is that the finite population
negative log-likelihood and the infinite population neg-
ative log-likelihood have the same Hessian (thus same
convexity properties, see Equation (3.6)). Moreover,
since the extra regularization term does not change

3Think of the radius r as O
(

log(1/α)

α2

)
and κ to be

O(αcr
5

) where c some constant. U is a subset of Sd×d×Rd
where Sd×d denotes the symmetric matrices of size d× d.

the convexity properties of the finite population neg-
ative log-likelihood, we get for free from [10] that the
function Ln is κ-strongly convex in a neighborhood
U of the true parameters (same κ and U as before).
The crucial part now is that for the Lasso approach to
work, we need that the empirical mean and the em-
pirical covariance (from the truncated distribution) is
close in `∞ and max-norm respectively (and not in `2
and Frobenius norm). The only requirement for the
proof to go through is that the number of samples
gives the statistical guarantee for Lasso to work (see
Lemma 3.2).

For the support recovery problem in the sparse lin-
ear model with truncated samples, we again consider
the Lasso objective, i.e., the sum of the finite popu-
lation negative log-likelihood plus λ‖Ω‖1. This objec-
tive function is globally convex. Suppose we already
know the support K of Ω∗, the true k-sparse coeffi-
cient vector. In this case, we can solve the Lasso ob-
jective restricted to the variables in K and hope that
it is strongly convex so that the minimum is unique.
For the untruncated case, the minimum eigen value
assumption (Assumption (ii) in Theorem 1.3) implies
global strong convexity. In the truncated case, we
can only guarantee strong convexity in a neighbor-
hood around Ω∗. By tuning the regularization pa-
rameter λ, we can ensure that the minimum of the re-
stricted Lasso objective will be in this neighborhood,
and hence, is uniquely defined.

The main challenge in proving Theorem 1.3 is to ex-
tend the above ideas to when K is not known. To this
end, we use the primal-dual witness method that has
proven very useful for studying many Lasso-type algo-
rithms [36, 30, 21, 7, 29, 31, 25, 39, 40]. We identify
a strict dual feasibility condition that implies unique-
ness of the Lasso solution and then demonstrate for
a set of parameters that the condition holds. In con-
trast to the untruncated case, we are not able to drive
the `∞-error to zero as n grows to infinity. Also, we
require a stronger normalization on the entries of the
design matrix. We leave as an interesting open prob-
lem the question of overcoming these deficiencies in
our analysis.

Another independent work: We would like to
note that we became familiar with some concurrent
and independent work for the problem of sparse trun-
cated linear regression that is very similar to ours [12]
(their setting and approach is very close to ours). The
main difference is that their work focuses on `2 recov-
ery (using Stochastic Gradient Descent, they give al-
gorithmic -polynomial time- guarantees for truncation
sets with specific structure, with the extra assump-
tion that the covariates are i.i.d Gaussians) and ours
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focuses on both support and `2 recovery (statistical
guarantees). Moreover, in this work we also provide
results on recovery of Gaussian graphical models which
is not provided in [12].

Other related works Our work comes under the
purview of robust statistics where the body of work
relating to [15, 16, 14, 23, 8] provided guarantees
for computationally efficient robust estimators in the
presence of corruptions of an ε fraction of the data,
when the samples are drawn from a multivariate Gaus-
sian distribution. In addition, [17] provide statistical
query lower bounds on estimation problems related to
multivariate Gaussians such as learning mixtures of
high dimensional Gaussians. These works generally
talk about the seemingly inherent trade-off between
increasing the sample complexity for computational
tractability. As a result, an important assumption
about the underlying problem or the statistical model
is that of sparsity. Aside from the works related to
estimation in sparse models in classical statistics such
as sparse linear regression (LASSO) and sparse PCA
[42] to mention a few, there is a line of work related
to robust estimation in sparse models, such as robust
sparse mean estimation when the covariance matrix is
identity and then detection of rank 1 sparse shifts of
high dimensional covariances of Gaussian distributions
when the mean is zero, using the spiked covariance
model as studied in [26, 2].

2 Preliminaries

2.1 Definitions and Notations

Notation We use bold faces to denote vectors and
matrices. By x−j we denote the vector x that involves
all coordinates but j. We use vec(A) to denote the
standard vectorization of matrix A. Moreover, we use
‖vec(A)‖1,off to denote the `1 norm of vec(A) by ex-
cluding the diagonal entries of matrix A and nz(A) for
the number of non-zero entries of matrix A. We denote
by Sd×d the set of symmetric matrices.

Norms For a d× d matrix A,

‖A‖2 = max
‖x‖2=1

‖Ax‖2 , ‖A‖∞ = max
j∈[n]

n∑
i=1

|Aij |,

‖A‖F =

√√√√ n∑
i=1

n∑
j=1

A2
ij .

When A is a symmetric matrix we have that ‖A‖2 6
‖A‖∞ 6 ‖A‖F 6

√
n ‖A‖2 6

√
n ‖A‖∞. For a vector

x ∈ Rd we also have,

‖x‖2 =

√√√√ d∑
i=1

x2
i , ‖x‖∞ = max

j∈[d]
|xj |, ‖x‖1 =

d∑
i=1

|xi|.

It holds that `1 is the dual of `∞ and for x,y ∈ Rd one
can have xTy 6 ‖x‖1 ‖y‖∞ (Holder’s inequality).

Truncated Gaussian Distribution A truncated
Gaussian distribution for a measurable set S with pa-
rameters µ,Σ is defined as follows

N (µ,Σ, S; x)
def
=


N (µ,Σ; x)∫

S
N (µ,Σ; x)dx

, x ∈ S

0 , x /∈ S
(2.1)

where

N (µ,Σ; x)
def
=

1√
2πdet(Σ)

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

Definition 2.1 (Membership oracle). Let S ⊂ Rd be a
measurable set. A membership oracle of S is a function
that given an arbitrary x ∈ Rd, it returns yes if it
belongs to the set, otherwise no (i.e., it implements
the indicator function of S). We assume oracle access
to the indicator of S.

Precision matrix and sparsity Let G = (V,E) be
an undirected graph with V = [d]. A random vector
X ∈ Rd is said to be distributed according to (undi-
rected) Gaussian Graphical model with graph G if X
has a multivariate Gaussian distribution N (µ,Σ) with(

Σ−1
)
ij

= 0 ∀ (i, j) /∈ E, (2.2)

Σ−1 which we denote by Θ is known as the preci-
sion matrix. In our results, the sample complexity de-
pends on the number of non-zero entries of Σ−1, i.e.,
nz(Σ−1).

3 Statistics for Frobenius norm

3.1 Graphical Lasso and finite population
Likelihood

The infinite population negative log-likelihood for a
truncated Gaussian N (µ∗,Σ∗) with variables (Θ,v)
where Θ captures Σ−1 and v = Σ−1µ is given by (see
[10] for calculations)

l(Θ,v) := Ex∼N (µ∗,Σ∗,S)

[
1

2
xTΘx− xTv

]
− log

(∫
S

exp(−1

2
zTΘz + zTv)dz

)
.

(3.1)
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Moreover, the gradient of the function above l(Θ,v)
is given by

∇l(Θ,v) := −Ex∼N (µ∗,Σ∗,S)

[(
vec(− 1

2xxT )
x

)]
+Ez∼N(Θ−1v,Θ−1,S)

[(
vec(− 1

2zzT )
z

)]
(3.2)

and its Hessian is

∇2l(Θ,v) := Covz∼N(Θ−1v,Θ−1,S)[(
vec(− 1

2zzT )
z

)
,

(
vec(− 1

2zzT )
z

)]
. (3.3)

We define the following score objective with parameter
λ > 0 to be chosen later

Ln(Θ,v) := ln(Θ,v) + λ ‖vec(Θ)‖1,off , (3.4)

where

ln(Θ,v) =
1

n

n∑
i=1

1

2
xTi Θxi

− 1

n

n∑
i=1

xTi v − log

(∫
S

exp(−1

2
zTΘz + zTv)dz

)
,

(3.5)

given i.i.d samples x1, ...,xn from the true truncated
distribution i.e., it is the finite population negative log-
likelihood.

From Lemma A.4 (one of the main Lemmas of [10]), we
know that l(v,Θ) is strongly convex in some neighbor-
hood U ⊆ Sd×d × Rd of the true parameters. We can
conclude that Ln(Θ,v) is also strongly convex in the
same neighborhood because the term λ ‖vec(Θ)‖1,off
is a convex function and

∇2ln(Θ,v) = ∇2l(Θ,v) (3.6)

i.e., they have same strong-convexity properties The
following lemma indicates that the minimizer Θ̃, ṽ of
function Ln does not put too much weight on the co-
ordinates ij of Θ̃ for which Θ∗ij = 0, where (Θ∗,v∗)
denote the true parameters.
Lemma 3.1 (Lasso guarantee). Let (Θ̃, ṽ) be the
minimum of Ln and (Θ∗,v∗) be the true parame-
ters. Assume that λ > 2 ‖∇Θln(Θ∗,v∗)‖∞,off and
∆ = Θ̃−Θ∗, δ = ṽ − v∗ then it holds

1

3
‖vec(∆T̃ )‖

1
− 1

3
‖δ‖1 6 ‖vec(∆T )‖1 ,

where T denotes the support of Θ∗ and T̃ denotes the
complement. Moreover, we may assume that Θ̃ is sym-
metric.

From Lemma 3.1 and Cauchy-Schwarz inequality we
conclude that

‖vec(∆)‖1 + ‖δ‖1 6 ‖vec(∆T )‖1 + 3 ‖vec(∆T )‖1 + 2 ‖δ‖1

6 4
√

nz(Θ∗) + d(‖∆‖F + ‖δ‖2),

(3.7)

We can now prove using Lemma 3.1 that for an appro-
priate choice of λ, the minimizer (Θ̃, ṽ) of Ln will be
close to the true parameters (Θ∗,v∗).

Lemma 3.2 ((Θ̃, ṽ) are close to the true parameters).
Let Ln be κ-strong convex in a neighborhood of the true

parameters. By choosing λ to be O
(

κ·ε√
nz(Θ∗)

)
and

moreover λ > 2 ‖∇ln(Θ∗,v∗)‖∞ then
∥∥∥Θ̃−Θ∗

∥∥∥
F

+

‖ṽ − v∗‖2 6 ε.

We finish this section with a concentration lemma
about how close the empirical mean and covariance
is from the truncated mean and covariance in terms of
`∞ and max norm respectively.

Lemma 3.3 (Concentration of gradient). Assume
that n is Ω

(
log d log(1/δ)

t2

)
It holds that

P
[
‖∇ln(Θ∗,v∗)‖∞ >

t

2

]
6 δ.

3.2 Proof of Theorem 1.1

We choose λ to be Õ

(
ε

12
√

nz(Θ∗)+d

)
and consider

the estimator (Θ̃, ṽ) := arg minΘ,v Ln(Θ,v). No-
tice that we need the oracle access to the trun-
cation set S so that we can compute the term

Ez∼N(Θ−1v,Θ−1,S)

[(
vec(− 1

2zzT )
z

)]
which does not

involve the true parameters (Θ∗,v∗).

We will prove that (Θ̃, ṽ) satisfies the statement of
Theorem 1.1.

From Lemma 3.3 we conclude that if n
is Õ

(
(nz(Θ∗)+d) log(1/δ)

ε2

)
we get that λ >

2 ‖∇ln(Θ∗,v∗)‖∞ with probability 1 − δ. Therefore
the assumptions of Lemma 3.2 hold and is guaranteed
that the minimizer (Θ̃, ṽ) of Ln satisfies∥∥∥Θ̃−Θ∗

∥∥∥
F
6 ε and ‖ṽ − v∗‖2 6 ε. (3.8)

4 Sparse Linear Regression

Recall the model described in the Introduction for the
linear regression problem. The probability of obtain-
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ing a sample (x, y) ∈ Rd × R is:

exp
(
− 1

2 (y −Ω∗
>

x)2
)

∫
exp

(
− 1

2 (z −Ω∗
>

x)2
)
S(z)dz

The infinite population negative log-likelihood func-
tion with n samples is then:

¯̀(Ω) =
1

n

n∑
i=1

E
y∼N (Ω∗>x(i),1,S)

[
1

2
y2 − y ·Ω>x(i)

− log

∫
exp

(
−1

2
z2 + z ·Ω>x(i)

)
dz

]
(4.1)

As in the last section, we instead work with the finite
sample negative log-likelihood, which is based on n
samples (x(1), y(i)), . . . , (x(n), y(i)) with each y(i) being
drawn from the distribution N (Ω∗

>
x(i), 1, S):

`n(Ω) =
1

n

n∑
i=1

(
1

2
y(i)

2
− y(i)Ω>x(i)

+ log

∫
exp

(
−1

2
z2 + zΩ>x(i)

)
S(z)dz

)
.

Note that `n is a random variable. We add a regular-
izer to the sample negative log-likelihood to obtain the
truncated Lasso estimator:

Ω̂ ∈ arg min
Ω∈Rd

{`n(Ω) + λ‖Ω‖1} . (4.2)

In the following, let X denote the n-by-d design matrix
whose i’th row corresponds to the i’th sample x(i).
Also, we let xj ∈ Rn denote the j’th column of X.

4.1 Assumptions

We now formally state the assumptions under which
our result holds. For vectors Ω and x, let α(Ω,x)

def
=

Ey∼N (Ω>x,1)[S(y)]. Also, in the following, let K ⊆ [d]
denote the support of Ω∗, and let k = |K|.

Our first assumption states that for every observed
x(i), there is a significant probability that the corre-
sponding response variable y(i) is not truncated.
Assumption 4.1 (Survival Probability). There ex-
ists a constant α > 0 such that for every i ∈ [n],
α(Ω∗,x(i)) > α.

Our second assumption is quite mild. It ensures that
the model is identifiable when the support set S is
known in advance.
Assumption 4.2 (Lower Eigenvalue). There exists a
constant σmin > 0 such that

1

n
X>KXK � σmin · I.

Our third assumption ensures that the covariates cor-
responding to the support set are sufficiently promi-
nent. More precisely, the mutual incoherence assump-
tion below requires that if j /∈ K, then xj is approx-
imately orthogonal to the span of the submatrix XK

corresponding to the covariates in K.

Assumption 4.3 (Mutual incoherence). There exists
a constant β ∈ (0, 1) such that:

max
j /∈K
‖x>j XK(X>KXK)−1‖1 6 β.

Mutual incoherence is known to hold, for example,
with high probability when x(1), . . . ,x(n) are drawn
i.i.d. from N(0, Id×d) as long as n > Ω (k log d).

Our last assumption puts a bound on each entry of X.

Assumption 4.4 (Normalization). There exists
a parameter C such that maxi∈[n] ‖x(i)‖∞ =
maxj∈[d] ‖xj‖∞ 6 C.

4.2 Support Recovery

We formally state the main theorem of this section.

Theorem 4.5. Consider a k-sparse linear regression
model for which Assumptions 4.1, 4.2, 4.3, and 4.4 are
all satisfied. Moreover, suppose that C2k

α5σmin(1−β) is a
sufficiently small constant. Then, if

n > Ω

(
C4k2 log d

(1− β)2σ2
minα

9

)
and λ = Θ

(
α4σmin

Ck

)
,

any solution Ω̂ to the objective (4.2) satisfies the fol-
lowing properties with high probability.

(a) Uniqueness: There is a unique solution Ω̂.

(b) No false inclusion: supp(Ω̂) ⊆ supp(Ω∗).

(c) `∞-bounds: The error Ω̂−Ω∗ satisfies

‖Ω̂−Ω∗‖∞ 6 O

√ log(1/α)

σmin
+

α4

C
√
k

 .

In other words, if the non-zero entries of Ω∗ are greater
than a particular threshold τ (which is independent of
d), then the support of Ω̂ exactly matches with the
support of Ω∗.

In the untruncated setting, it is known (see Chapter 7
of [37]) that λ can be made to scale as ∼ 1√

n
, and the

`∞ error is the sum of two terms, one proportional to
λ and the other to 1√

n
. Hence, by making n large, the

`∞ error can be made arbitrarily small. In contrast, in
our analysis, we cannot make λ arbitrarily small; so,
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above, we fix it in terms of the other problem param-
eters.

The other notable aspect of Theorem 4.5 is the hypoth-
esis that C2k

α5σmin(1−β) is small, which is also absent from
the untruncated setting. The hypothesis can be satis-
fied if C is mildly decreasing in d (e.g., ∼ 1/ log(d)),
and d is very large.

5 Bounds on `2-error for truncated
linear regression

In this section, we give bounds on the `2-error for the
truncated sparse linear regression problem. We use
the same notation as Section 4, with:

Ω̂ ∈ arg min
Ω∈Rd

{ln(Ω) + λ‖Ω‖1} (5.1)

where ln is the negative log-likelihood function:

ln(Ω) =
1

n

n∑
i=1

(
1

2
y(i)

2
− y(i)Ω>x(i)

+ log

∫
exp

(
−1

2
z2 + zΩ>x(i)

)
S(z)dz

)
,

which is convex everywhere. Recall that each y(i) is
distributed as N (x(i)Ω∗, 1, S); we denote K as the
support of Ω∗ and let k = |K|. The matrix X is
defined to have n rows x(1), . . . ,x(n).

For the theorem in this section, we need the survival
probability assumption (Assumption 4.1) and the nor-
malization assumption (Assumption 4.4), but we re-
place the minimum eigenvalue and mutual incoherence
assumptions by the following.

Assumption 5.1 (Restricted Eigenvalue). There ex-
ists β > 0 such that the matrix X satisfies:

1

n
‖X∆‖22 > β‖∆‖22 for all ∆

such that ‖∆K‖1 6 3‖∆K‖1.

The restricted eigenvalue assumption is a very com-
mon one in the study of Lasso-type algorithms, and it
is known that many families of random design matri-
ces satisfy it (see Chapter 7 of [37]). We can now state
the main result of this section:

Theorem 5.2. Suppose that Assumptions 4.1, 4.4 and
5.1 hold. Then, for any ε > 0, if λ = O

(
βα4ε
Ck

)
and

n = Õ
(
C4k2 log d
β2α8ε2

)
, then ‖Ω̂−Ω∗‖2 6 ε.

6 Experimental Evaluation and
Conclusion

We studied the problem of parameter estimation for
sparse Gaussian Graphical models and the problem of
sparse linear regression, given samples that are subject
to truncation. We provided sample efficient estima-
tors for both aforementioned problems under suitable
assumptions.

We conducted a few experiments to empirically investi-
gate the problem of inferring Gaussian graphical mod-
els. The algorithm we used was a projected stochastic
gradient descent algorithm. In each iteration of this
algorithm, the current estimates v and Θ are updated
by adding a subgradient of the graphical Lasso objec-
tive (3.4), scaled by a regularization parameter (that is
set in accordance with Lemma 3.2). The updated Θ is
projected so as to ensure that it is symmetric with min-
imum eigenvalue at least 10−5. The distribution gen-
erating the original samples is a 10-dimensional Gaus-
sian distribution with each co-ordinate truncated on a
support (−2, 2). The mean of the distribution v∗ is
set to be (0, 0, · · · , 0). Moreover, we set the precision
matrix Θ∗ to be the identity matrix plus 0.2’s entries
in the the upper and lower diagonal, thus making the
number of nonzero entries in the precision matrix to
be 30 (out of 100).

The first experiment studies how the Frobenius norm
error ε (between the true parameters and the esti-
mates) varies with the number of samples (fixing the
number of iterations of SGD to be 106). The second
experiment focuses on how the error varies with num-
ber of iterations of projected SGD for a fixed number
of samples from the true distribution. In Figure 1a we
see that the number of samples scales, as expected, like
1/ε2 w.r.t the error ε. Figure 1b shows that projected
SGD performs rather poorly computationally; this is
also expected as the function we optimize Ln is locally
strong convex and the initialization is not necessarily
close enough to the true parameters.

We also performed a couple of experiments to un-
derstand how well we can recover the support of the
model. One experiment studies how the sparsity of the
estimate varies as a function of the number of itera-
tions of the proposed algorithms for a fixed number of
samples from the true distribution. Another focuses on
understanding how the sparsity of the estimate varies
with the number of initial samples (fixing the number
of SGD iterations to 106). To quantify the sparsity
in our solution, we “binarized" the estimated precision
matrix by thresholding all elements lying in the inter-
val [−0.1, 0.1] to zero and the rest to one.

Now to compare the “closeness" in sparsity between



Efficient Statistics for Sparse Graphical Models from Truncated Samples

(a) Error vs Number of Samples (b) Error vs Number of Iterations of SGD

the two binary matrices (the original and the esti-
mated), we evaluate element wise Hamming distance
between them. This is defined as follows:

h(x,y) =

k∑
i=1

1{xi 6= yi}, (6.1)

where x and y are two k-dimensional binary vectors.

Evaluation. The experiments suggest that our pro-
posed algorithms recovers the true sparsity of the pre-
cision matrix. We observe from Figure 2a that the
sparsity of the estimate goes reaches the required num-
ber over 2 ∗ 105 number of iterations. Although the
estimate is sparse, we observe from our previous ex-
periments (Figure 1b), that the desired accuracy is
achieved with (≈ 106) number of iterations. In ad-
dition, our experiment for n = 5000 (see Figure 2b)
suggests that even if we obtain a sparse estimate with
less than 50000 initial samples, it takes a larger number
of iterations to converge. This is evidenced in Figure
2b, where, the graph is noisy before (≈ 106) iterations
and convergence happens beyond it.

In our second experiment we try to understand how
the hamming distance varies with the initial number
of samples. From Figure 3, we observe that n = 2500
are sufficient to achieve the required sparsity with 106

iterations.

Thus, together with the experiments on the conver-
gence with respect to the Frobenius norm of the pre-
cision matrix, we can see that our proposed algorithm
is able to recover the sparse precision matrix.
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Figure 2: Hamming distance vs Iterations in low and high sample regimes.

Figure 3: Hamming distance vs Number of Samples
when keeping the number of iterations to be 106
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