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This supplementary material presents the proofs of Lemma 4 and Lemma 7 in the main paper.

1 PROOF OF LEMMA 4 IN THE PAPER

Without loss of generality, assume that ‖K‖F = ‖L‖F = 1. By the δ-RIP2r property of Q, we have

(1− δ)‖K − L‖2F ≤ [Q](K − L,K − L) ≤ (1 + δ)‖K − L‖2F ,
(1− δ)‖K + L‖2F ≤ [Q](K + L,K + L) ≤ (1 + δ)‖K + L‖2F .

Taking the difference between the above two inequalities, one can obtain

4[Q](K,L) ≤ (1 + δ)‖K + L‖2F − (1− δ)‖K − L‖2F = 4δ + 4〈K,L〉,
−4[Q](K,L) ≤ (1 + δ)‖K − L‖2F − (1− δ)‖K + L‖2F = 4δ − 4〈K,L〉,

which proves the desired inequality.

2 PROOF OF LEMMA 7 IN THE PAPER

Let OPT(X,Z) denote the optimal value of the optimization problem

min
δ,H

δ

s. t. ‖XTHe‖ ≤ a,
2Ir ⊗matS(He) + XTHX � −bInr,
H is symmetric and satisfies δ-RIP2r,

(1)

and LMI(X,Z) denote the optimal value of the optimization problem

min
δ,H

δ

s. t.

[
Inr XTHe

(XTHe)T a2

]
� 0,

2Ir ⊗matS(He) + XTHX � −bInr,
(1− δ)In2 � H � (1 + δ)In2 .

(2)

As mentioned in the paper, the first constraint in (1) and the first constraint in (2) are interchangeable. Our
goal is to prove that OPT(X,Z) = LMI(X,Z) for given X,Z ∈ Rn×r. Let (v1, . . . , vn) be an orthogonal basis
of Rn such that (v1, . . . , vd) spans the column spaces of both X and Z. Note that d ≤ 2r. Let P ∈ Rn×d be the
matrix with the columns (v1, . . . , vd) and P⊥ ∈ Rn×(n−d) be the matrix with the columns (vd+1, . . . , vn). Then,

PTP = Id, PT⊥P⊥ = In−d, PT⊥P = 0, PTP⊥ = 0,

PPT + P⊥P
T
⊥ = In, PPTX = X, PPTZ = Z.
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Define P = P ⊗ P . Consider the auxiliary optimization problem

min
δ,H

δ

s. t.

[
Inr XTHe

(XTHe)T a2

]
� 0,

2Ir ⊗matS(He) + XTHX � −bInr,
(1− δ)Id2 � PTHP � (1 + δ)Id2 ,

(3)

and denote its optimal value as the function LMI(X,Z). Given an arbitrary symmetric matrix H ∈ Rn2×n2

, if
H satisfies the last constraint in (2), then it obviously satisfies δ-RIP2r and subsequently the last constraint in
(1). On the other hand, if H satisfies the last constraint in (1), for every matrix Y ∈ Rd×d with Y = vecY ,
since rank(PY PT ) ≤ d ≤ 2r and vec(PY PT ) = PY, by δ-RIP2r property, one arrives at

(1− δ)‖Y‖2 = (1− δ)‖PY‖2 ≤ (PY)THPY ≤ (1 + δ)‖PY‖2 = (1 + δ)‖Y‖2,

which implies that H satisfies the last constraint in (3). The above discussion implies that

LMI(X,Z) ≥ OPT(X,Z) ≥ LMI(X,Z).

Let

X̂ = PTX, Ẑ = PTZ.

Lemma 2 and Lemma 3 to be stated later will show that

LMI(X,Z) ≤ LMI(X̂, Ẑ) ≤ LMI(X,Z),

which completes the proof.

Before stating Lemma 2 and Lemma 3 that were needed in the above proof, we should first state a preliminary
result below.

Lemma 1. Define ê and X̂ in the same way as e and X, except that X and Z are replaced by X̂ and Ẑ,
respectively. Then, it holds that

e = Pê,

X(Ir ⊗ P ) = PX̂,

PTX = X̂(Ir ⊗ P )T .

Proof. Observe that

e = vec(XXT − ZZT ) = vec(P (X̂X̂T − ẐẐT )PT ) = Pê,

X(Ir ⊗ P ) vec Û = X vec(PÛ) = vec(XÛTPT + PÛXT )

= vec(P (X̂ÛT + ÛX̂T )PT ) = PX̂ vec Û ,

X̂(Ir ⊗ P )T vecU = X̂ vec(PTU) = vec(X̂UTP + PTUX̂T )

= vec(PT (XUT + UXT )P ) = PTX vecU,

where U ∈ Rn×r and Û ∈ Rd×r are arbitrary matrices.

Lemma 2. The inequality LMI(X̂, Ẑ) ≥ LMI(X,Z) holds.

Proof. Let (δ, Ĥ) be an arbitrary feasible solution to the optimization problem defining LMI(X̂, Ẑ) with δ ≤ 1.
It is desirable to show that (δ,H) with

H = PĤPT + (In2 −PPT )
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is a feasible solution to the optimization problem defining LMI(X,Z), which directly proves the lemma. To this
end, notice that

H− (1− δ)In2 = P(Ĥ− (1− δ)Id2)PT + δ(In2 −PPT ),

which is positive semidefinite because

In2 −PPT = (PPT + P⊥P
T
⊥ )⊗ (PPT + P⊥P

T
⊥ )− (PPT )⊗ (PPT )

= (PPT )⊗ (P⊥P
T
⊥ ) + (P⊥P

T
⊥ )⊗ (PPT ) + (P⊥P

T
⊥ )⊗ (P⊥P

T
⊥ ) � 0.

Similarly,
H− (1 + δ)In2 � 0,

and therefore the last constraint in (2) is satisfied and H is always positive semidefinite. Next, since

XTHe = XTHPê = XTPĤê = (Ir ⊗ P )X̂T Ĥê,

we have
‖XTHe‖2 = (X̂T Ĥê)T (Ir ⊗ PT )(Ir ⊗ P )(X̂T Ĥê) = ‖X̂T Ĥê‖2,

and thus the first constraint in (2) is satisfied. Finally, by letting W ∈ Rd×d be the vector satisfying vecW = Ĥê,
one can write

vec(PWPT ) = P vecW = PĤê.

Hence,

2Ir ⊗matS(He) = 2Ir ⊗matS(HPê) = 2Ir ⊗matS(PĤê) = Ir ⊗ (P (W +WT )PT )

= 2Ir ⊗ (P matS(Ĥê)PT ) = 2(Ir ⊗ P )(Ir ⊗matS(Ĥê))(Ir ⊗ P )T .

In addition,
XTHX(Ir ⊗ P ) = XTHPX̂ = XTPĤX̂ = (Ir ⊗ P )X̂T ĤX̂.

Therefore, by defining
S := 2Ir ⊗matS(He) + XTHX + bInr,

we have

(Ir ⊗ P )TS(Ir ⊗ P ) = 2Ir ⊗matS(Ĥê) + X̂T ĤX̂ + bIdr � 0,

(Ir ⊗ P⊥)TS(Ir ⊗ P⊥) = (Ir ⊗ P⊥)TXTHX(Ir ⊗ P⊥) + bI(n−d)r � 0,

(Ir ⊗ P⊥)TS(Ir ⊗ P ) = 0.

Since the columns of Ir ⊗ P and Ir ⊗ P⊥ form a basis for Rnr, the above inequalities imply that S is positive
semidefinite, and thus the second constraint in (2) is satisfied.

Lemma 3. The inequality LMI(X,Z) ≥ LMI(X̂, Ẑ) holds.

Proof. The dual problem of the optimization problem defining LMI(X̂, Ẑ) can be expressed as

max
Û1,Û2,V̂ ,Ĝ,λ̂,ŷ

tr(Û1 − Û2)− tr(Ĝ)− a2λ̂− b tr(V̂ )

s. t. tr(Û1 + Û2) = 1,
r∑
j=1

(X̂ŷ − vec V̂j,j)ê
T +

r∑
j=1

ê(X̂ŷ − vec V̂j,j)
T − X̂V̂ X̂T = Û1 − Û2,[

Ĝ −ŷ
−ŷT λ̂

]
� 0,

Û1 � 0, Û2 � 0, V̂ =

V̂1,1 · · · V̂r,1
...

. . .
...

V̂ Tr,1 · · · V̂r,r

 � 0.

(4)
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Since

Û1 =
1

2d2
Id2 −

µ

2
M, Û2 =

1

2d2
Id2 +

µ

2
M, V̂ = µIdr, Ĝ = Idr, λ̂ = 1, ŷ = 0,

where
M = r((vec Id)ê

T + ê(vec Id)
T ) + X̂X̂T ,

is a strict feasible solution to the above dual problem (4) as long as µ > 0 is sufficiently small, Slater’s condition
implies that strong duality holds for the optimization problem defining LMI(X̂, Ẑ). Therefore, we only need to
prove that the optimal value of (4) is smaller than or equal to the optimal value of the dual of the optimization
problem defining LMI(X,Z) given by:

max
U1,U2,V,G,λ,y

tr(U1 − U2)− tr(G)− a2λ− b tr(V )

s. t. tr(U1 + U2) = 1,
r∑
j=1

(Xy − vecVj,j)e
T +

r∑
j=1

e(Xy − vecVj,j)
T −XVXT = P(U1 − U2)PT ,[

G −y
−yT λ

]
� 0,

U1 � 0, U2 � 0, V =

V1,1 · · · Vr,1
...

. . .
...

V Tr,1 · · · Vr,r

 � 0.

(5)

The above claim can be verified by noting that given any feasible solution

(Û1, Û2, V̂ , Ĝ, λ̂, ŷ)

to (4), the matrices

U1 = Û1, U2 = Û2, V = (Ir ⊗ P )V̂ (Ir ⊗ P )T ,[
G −y
−yT λ

]
=

[
Ir ⊗ P 0

0 1

] [
Ĝ −ŷ
−ŷT λ̂

] [
(Ir ⊗ P )T 0

0 1

]
form a feasible solution to (5), and both solutions have the same optimal value.


