On the Absence of Spurious Local Minima in Nonlinear Low-Rank Matrix Recovery Problems: Supplementary Material

Yingjie Bi
Javad Lavaei
Industrial Engineering and Operations Research, University of California, Berkeley

This supplementary material presents the proofs of Lemma 4 and Lemma 7 in the main paper.

1 PROOF OF LEMMA 4 IN THE PAPER

Without loss of generality, assume that $\|K\|_{F}=\|L\|_{F}=1$. By the δ-RIP $_{2 r}$ property of \mathcal{Q}, we have

$$
\begin{aligned}
& (1-\delta)\|K-L\|_{F}^{2} \leq[\mathcal{Q}](K-L, K-L) \leq(1+\delta)\|K-L\|_{F}^{2}, \\
& (1-\delta)\|K+L\|_{F}^{2} \leq[\mathcal{Q}](K+L, K+L) \leq(1+\delta)\|K+L\|_{F}^{2} .
\end{aligned}
$$

Taking the difference between the above two inequalities, one can obtain

$$
\begin{aligned}
& 4[\mathcal{Q}](K, L) \leq(1+\delta)\|K+L\|_{F}^{2}-(1-\delta)\|K-L\|_{F}^{2}=4 \delta+4\langle K, L\rangle, \\
& -4[\mathcal{Q}](K, L) \leq(1+\delta)\|K-L\|_{F}^{2}-(1-\delta)\|K+L\|_{F}^{2}=4 \delta-4\langle K, L\rangle,
\end{aligned}
$$

which proves the desired inequality.

2 PROOF OF LEMMA 7 IN THE PAPER

Let $\operatorname{OPT}(X, Z)$ denote the optimal value of the optimization problem

$$
\begin{array}{ll}
\min _{\delta, \mathbf{H}} & \delta \\
\text { s.t. } & \left\|\mathbf{X}^{T} \mathbf{H e}\right\| \leq a \tag{1}\\
& 2 I_{r} \otimes \operatorname{mat}_{S}(\mathbf{H e})+\mathbf{X}^{T} \mathbf{H} \mathbf{X} \succeq-b I_{n r} \\
& \mathbf{H} \text { is symmetric and satisfies } \delta-\mathrm{RIP}_{2 r},
\end{array}
$$

and $\operatorname{LMI}(X, Z)$ denote the optimal value of the optimization problem

$$
\begin{align*}
\min _{\delta, \mathbf{H}} & \delta \\
\text { s.t. } & {\left[\begin{array}{cc}
I_{n r} & \mathbf{X}^{T} \mathbf{H e} \\
\left(\mathbf{X}^{T} \mathbf{H e}\right)^{T} & a^{2}
\end{array}\right] \succeq 0, } \tag{2}\\
& 2 I_{r} \otimes \operatorname{mat}_{S}(\mathbf{H e})+\mathbf{X}^{T} \mathbf{H X} \succeq-b I_{n r}, \\
& (1-\delta) I_{n^{2}} \preceq \mathbf{H} \preceq(1+\delta) I_{n^{2}} .
\end{align*}
$$

As mentioned in the paper, the first constraint in (1) and the first constraint in (2) are interchangeable. Our goal is to prove that $\operatorname{OPT}(X, Z)=\operatorname{LMI}(X, Z)$ for given $X, Z \in \mathbb{R}^{n \times r}$. Let $\left(v_{1}, \ldots, v_{n}\right)$ be an orthogonal basis of \mathbb{R}^{n} such that $\left(v_{1}, \ldots, v_{d}\right)$ spans the column spaces of both X and Z. Note that $d \leq 2 r$. Let $P \in \mathbb{R}^{n \times d}$ be the matrix with the columns $\left(v_{1}, \ldots, v_{d}\right)$ and $P_{\perp} \in \mathbb{R}^{n \times(n-d)}$ be the matrix with the columns $\left(v_{d+1}, \ldots, v_{n}\right)$. Then,

$$
\begin{gathered}
P^{T} P=I_{d}, \quad P_{\perp}^{T} P_{\perp}=I_{n-d}, \quad P_{\perp}^{T} P=0, \quad P^{T} P_{\perp}=0 \\
P P^{T}+P_{\perp} P_{\perp}^{T}=I_{n}, \quad P P^{T} X=X, \quad P P^{T} Z=Z
\end{gathered}
$$

Define $\mathbf{P}=P \otimes P$. Consider the auxiliary optimization problem

$$
\begin{array}{ll}
\min _{\delta, \mathbf{H}} & \delta \\
\text { s.t. } & {\left[\begin{array}{cc}
I_{n r} & \mathbf{X}^{T} \mathbf{H e} \\
\left(\mathbf{X}^{T} \mathbf{H e}\right)^{T} & a^{2}
\end{array}\right] \succeq 0,} \tag{3}\\
& 2 I_{r} \otimes \operatorname{mat}_{S}(\mathbf{H e})+\mathbf{X}^{T} \mathbf{H X} \succeq-b I_{n r}, \\
& (1-\delta) I_{d^{2}} \preceq \mathbf{P}^{T} \mathbf{H P} \preceq(1+\delta) I_{d^{2}},
\end{array}
$$

and denote its optimal value as the function $\overline{\operatorname{LMI}}(X, Z)$. Given an arbitrary symmetric matrix $\mathbf{H} \in \mathbb{R}^{n^{2} \times n^{2}}$, if \mathbf{H} satisfies the last constraint in (2), then it obviously satisfies δ - $\mathrm{RIP}_{2 r}$ and subsequently the last constraint in (1). On the other hand, if H satisfies the last constraint in (1), for every matrix $Y \in \mathbb{R}^{d \times d}$ with $\mathbf{Y}=\operatorname{vec} Y$, since $\operatorname{rank}\left(P Y P^{T}\right) \leq d \leq 2 r$ and $\operatorname{vec}\left(P Y P^{T}\right)=\mathbf{P Y}$, by δ-RIP $2 r$ property, one arrives at

$$
(1-\delta)\|\mathbf{Y}\|^{2}=(1-\delta)\|\mathbf{P Y}\|^{2} \leq(\mathbf{P Y})^{T} \mathbf{H P Y} \leq(1+\delta)\|\mathbf{P Y}\|^{2}=(1+\delta)\|\mathbf{Y}\|^{2}
$$

which implies that \mathbf{H} satisfies the last constraint in (3). The above discussion implies that

$$
\operatorname{LMI}(X, Z) \geq \operatorname{OPT}(X, Z) \geq \overline{\operatorname{LMI}}(X, Z)
$$

Let

$$
\hat{X}=P^{T} X, \quad \hat{Z}=P^{T} Z
$$

Lemma 2 and Lemma 3 to be stated later will show that

$$
\operatorname{LMI}(X, Z) \leq \mathrm{LMI}(\hat{X}, \hat{Z}) \leq \overline{\mathrm{LMI}}(X, Z)
$$

which completes the proof.
Before stating Lemma 2 and Lemma 3 that were needed in the above proof, we should first state a preliminary result below.
Lemma 1. Define $\hat{\mathbf{e}}$ and $\hat{\mathbf{X}}$ in the same way as \mathbf{e} and \mathbf{X}, except that X and Z are replaced by \hat{X} and \hat{Z}, respectively. Then, it holds that

$$
\begin{aligned}
\mathbf{e} & =\mathbf{P} \hat{\mathbf{e}} \\
\mathbf{X}\left(I_{r} \otimes P\right) & =\mathbf{P} \hat{\mathbf{X}} \\
\mathbf{P}^{T} \mathbf{X} & =\hat{\mathbf{X}}\left(I_{r} \otimes P\right)^{T}
\end{aligned}
$$

Proof. Observe that

$$
\begin{aligned}
& \mathbf{e}=\operatorname{vec}\left(X X^{T}-Z Z^{T}\right)=\operatorname{vec}\left(P\left(\hat{X} \hat{X}^{T}-\hat{Z} \hat{Z}^{T}\right) P^{T}\right)=\mathbf{P} \hat{\mathbf{e}} \\
& \mathbf{X}\left(I_{r} \otimes P\right) \operatorname{vec} \hat{U}=\mathbf{X} \operatorname{vec}(P \hat{U})=\operatorname{vec}\left(X \hat{U}^{T} P^{T}+P \hat{U} X^{T}\right) \\
&=\operatorname{vec}\left(P\left(\hat{X} \hat{U}^{T}+\hat{U} \hat{X}^{T}\right) P^{T}\right)=\mathbf{P} \hat{\mathbf{X}} \operatorname{vec} \hat{U} \\
& \hat{\mathbf{X}}\left(I_{r} \otimes P\right)^{T} \operatorname{vec} U=\hat{\mathbf{X}} \operatorname{vec}\left(P^{T} U\right)=\operatorname{vec}\left(\hat{X} U^{T} P+P^{T} U \hat{X}^{T}\right) \\
&=\operatorname{vec}\left(P^{T}\left(X U^{T}+U X^{T}\right) P\right)=\mathbf{P}^{T} \mathbf{X} \operatorname{vec} U
\end{aligned}
$$

where $U \in \mathbb{R}^{n \times r}$ and $\hat{U} \in \mathbb{R}^{d \times r}$ are arbitrary matrices.
Lemma 2. The inequality $\operatorname{LMI}(\hat{X}, \hat{Z}) \geq \operatorname{LMI}(X, Z)$ holds.

Proof. Let $(\delta, \hat{\mathbf{H}})$ be an arbitrary feasible solution to the optimization problem defining $\operatorname{LMI}(\hat{X}, \hat{Z})$ with $\delta \leq 1$. It is desirable to show that (δ, \mathbf{H}) with

$$
\mathbf{H}=\mathbf{P} \hat{\mathbf{H}} \mathbf{P}^{T}+\left(I_{n^{2}}-\mathbf{P} \mathbf{P}^{T}\right)
$$

is a feasible solution to the optimization problem defining $\operatorname{LMI}(X, Z)$, which directly proves the lemma. To this end, notice that

$$
\mathbf{H}-(1-\delta) I_{n^{2}}=\mathbf{P}\left(\hat{\mathbf{H}}-(1-\delta) I_{d^{2}}\right) \mathbf{P}^{T}+\delta\left(I_{n^{2}}-\mathbf{P} \mathbf{P}^{T}\right)
$$

which is positive semidefinite because

$$
\begin{aligned}
I_{n^{2}}-\mathbf{P} \mathbf{P}^{T} & =\left(P P^{T}+P_{\perp} P_{\perp}^{T}\right) \otimes\left(P P^{T}+P_{\perp} P_{\perp}^{T}\right)-\left(P P^{T}\right) \otimes\left(P P^{T}\right) \\
& =\left(P P^{T}\right) \otimes\left(P_{\perp} P_{\perp}^{T}\right)+\left(P_{\perp} P_{\perp}^{T}\right) \otimes\left(P P^{T}\right)+\left(P_{\perp} P_{\perp}^{T}\right) \otimes\left(P_{\perp} P_{\perp}^{T}\right) \succeq 0
\end{aligned}
$$

Similarly,

$$
\mathbf{H}-(1+\delta) I_{n^{2}} \preceq 0,
$$

and therefore the last constraint in (2) is satisfied and \mathbf{H} is always positive semidefinite. Next, since

$$
\mathbf{X}^{T} \mathbf{H e}=\mathbf{X}^{T} \mathbf{H} \mathbf{P} \hat{\mathbf{e}}=\mathbf{X}^{T} \mathbf{P} \hat{\mathbf{H}} \hat{\mathbf{e}}=\left(I_{r} \otimes P\right) \hat{\mathbf{X}}^{T} \hat{\mathbf{H}} \hat{\mathbf{e}},
$$

we have

$$
\left\|\mathbf{X}^{T} \mathbf{H e}\right\|^{2}=\left(\hat{\mathbf{X}}^{T} \hat{\mathbf{H}} \hat{\mathbf{e}}\right)^{T}\left(I_{r} \otimes P^{T}\right)\left(I_{r} \otimes P\right)\left(\hat{\mathbf{X}}^{T} \hat{\mathbf{H}} \hat{\mathbf{e}}\right)=\left\|\hat{\mathbf{X}}^{T} \hat{\mathbf{H}} \hat{\mathbf{e}}\right\|^{2}
$$

and thus the first constraint in (2) is satisfied. Finally, by letting $W \in \mathbb{R}^{d \times d}$ be the vector satisfying vec $W=\hat{\mathbf{H}} \hat{\mathbf{e}}$, one can write

$$
\operatorname{vec}\left(P W P^{T}\right)=\mathbf{P} \operatorname{vec} W=\mathbf{P} \hat{\mathbf{H}} \hat{\mathbf{e}}
$$

Hence,

$$
\begin{aligned}
2 I_{r} \otimes \operatorname{mat}_{S}(\mathbf{H e}) & =2 I_{r} \otimes \operatorname{mat}_{S}(\mathbf{H P} \hat{\mathbf{e}})=2 I_{r} \otimes \operatorname{mat}_{S}(\mathbf{P} \hat{\mathbf{H}} \hat{\mathbf{e}})=I_{r} \otimes\left(P\left(W+W^{T}\right) P^{T}\right) \\
& =2 I_{r} \otimes\left(P \operatorname{mat}_{S}(\hat{\mathbf{H}} \hat{\mathbf{e}}) P^{T}\right)=2\left(I_{r} \otimes P\right)\left(I_{r} \otimes \operatorname{mat}_{S}(\hat{\mathbf{H}} \hat{\mathbf{e}})\right)\left(I_{r} \otimes P\right)^{T}
\end{aligned}
$$

In addition,

$$
\mathbf{X}^{T} \mathbf{H} \mathbf{X}\left(I_{r} \otimes P\right)=\mathbf{X}^{T} \mathbf{H} \mathbf{P} \hat{\mathbf{X}}=\mathbf{X}^{T} \mathbf{P} \hat{\mathbf{H}} \hat{\mathbf{X}}=\left(I_{r} \otimes P\right) \hat{\mathbf{X}}^{T} \hat{\mathbf{H}} \hat{\mathbf{X}}
$$

Therefore, by defining

$$
\mathbf{S}:=2 I_{r} \otimes \operatorname{mat}_{S}(\mathbf{H e})+\mathbf{X}^{T} \mathbf{H} \mathbf{X}+b I_{n r}
$$

we have

$$
\begin{aligned}
\left(I_{r} \otimes P\right)^{T} \mathbf{S}\left(I_{r} \otimes P\right) & =2 I_{r} \otimes \operatorname{mat}_{S}(\hat{\mathbf{H}} \hat{\mathbf{e}})+\hat{\mathbf{X}}^{T} \hat{\mathbf{H}} \hat{\mathbf{X}}+b I_{d r} \succeq 0 \\
\left(I_{r} \otimes P_{\perp}\right)^{T} \mathbf{S}\left(I_{r} \otimes P_{\perp}\right) & =\left(I_{r} \otimes P_{\perp}\right)^{T} \mathbf{X}^{T} \mathbf{H} \mathbf{X}\left(I_{r} \otimes P_{\perp}\right)+b I_{(n-d) r} \succeq 0 \\
\left(I_{r} \otimes P_{\perp}\right)^{T} \mathbf{S}\left(I_{r} \otimes P\right) & =0
\end{aligned}
$$

Since the columns of $I_{r} \otimes P$ and $I_{r} \otimes P_{\perp}$ form a basis for $\mathbb{R}^{n r}$, the above inequalities imply that \mathbf{S} is positive semidefinite, and thus the second constraint in (2) is satisfied.

Lemma 3. The inequality $\overline{\operatorname{LMI}}(X, Z) \geq \operatorname{LMI}(\hat{X}, \hat{Z})$ holds.
Proof. The dual problem of the optimization problem defining $\operatorname{LMI}(\hat{X}, \hat{Z})$ can be expressed as

$$
\begin{align*}
\max _{\hat{U}_{1}, \hat{U}_{2}, \hat{V}, \hat{G}, \hat{\lambda}, \hat{y}} & \operatorname{tr}\left(\hat{U}_{1}-\hat{U}_{2}\right)-\operatorname{tr}(\hat{G})-a^{2} \hat{\lambda}-b \operatorname{tr}(\hat{V}) \\
\text { s.t. } & \operatorname{tr}\left(\hat{U}_{1}+\hat{U}_{2}\right)=1, \\
& \sum_{j=1}^{r}\left(\hat{\mathbf{X}} \hat{y}-\operatorname{vec} \hat{V}_{j, j}\right) \hat{\mathbf{e}}^{T}+\sum_{j=1}^{r} \hat{\mathbf{e}}\left(\hat{\mathbf{X}} \hat{y}-\operatorname{vec} \hat{V}_{j, j}\right)^{T}-\hat{\mathbf{X}} \hat{V} \hat{\mathbf{X}}^{T}=\hat{U}_{1}-\hat{U}_{2}, \\
& {\left[\begin{array}{cc}
\hat{G} & -\hat{y} \\
-\hat{y}^{T} & \hat{\lambda}
\end{array}\right] \succeq 0, } \tag{4}\\
& \hat{U}_{1} \succeq 0, \quad \hat{U}_{2} \succeq 0, \quad \hat{V}=\left[\begin{array}{ccc}
\hat{V}_{1,1} & \cdots & \hat{V}_{r, 1} \\
\vdots & \ddots & \vdots \\
\hat{V}_{r, 1}^{T} & \cdots & \hat{V}_{r, r}
\end{array}\right] \succeq 0
\end{align*}
$$

Since

$$
\hat{U}_{1}=\frac{1}{2 d^{2}} I_{d^{2}}-\frac{\mu}{2} M, \quad \hat{U}_{2}=\frac{1}{2 d^{2}} I_{d^{2}}+\frac{\mu}{2} M, \quad \hat{V}=\mu I_{d r}, \quad \hat{G}=I_{d r}, \quad \hat{\lambda}=1, \quad \hat{y}=0
$$

where

$$
M=r\left(\left(\operatorname{vec} I_{d}\right) \hat{\mathbf{e}}^{T}+\hat{\mathbf{e}}\left(\operatorname{vec} I_{d}\right)^{T}\right)+\hat{\mathbf{X}} \hat{\mathbf{X}}^{T}
$$

is a strict feasible solution to the above dual problem (4) as long as $\mu>0$ is sufficiently small, Slater's condition implies that strong duality holds for the optimization problem defining $\operatorname{LMI}(\hat{X}, \hat{Z})$. Therefore, we only need to prove that the optimal value of (4) is smaller than or equal to the optimal value of the dual of the optimization problem defining $\operatorname{LMI}(X, Z)$ given by:

$$
\begin{align*}
\max _{U_{1}, U_{2}, V, G, \lambda, y} & \operatorname{tr}\left(U_{1}-U_{2}\right)-\operatorname{tr}(G)-a^{2} \lambda-b \operatorname{tr}(V) \\
\text { s.t. } & \operatorname{tr}\left(U_{1}+U_{2}\right)=1, \\
& \sum_{j=1}^{r}\left(\mathbf{X} y-\operatorname{vec} V_{j, j}\right) \mathbf{e}^{T}+\sum_{j=1}^{r} \mathbf{e}\left(\mathbf{X} y-\operatorname{vec} V_{j, j}\right)^{T}-\mathbf{X} V \mathbf{X}^{T}=\mathbf{P}\left(U_{1}-U_{2}\right) \mathbf{P}^{T}, \\
& {\left[\begin{array}{cc}
G & -y \\
-y^{T} & \lambda
\end{array}\right] \succeq 0, } \tag{5}\\
& U_{1} \succeq 0, \quad U_{2} \succeq 0, \quad V=\left[\begin{array}{ccc}
V_{1,1} & \cdots & V_{r, 1} \\
\vdots & \ddots & \vdots \\
V_{r, 1}^{T} & \cdots & V_{r, r}
\end{array}\right] \succeq 0 .
\end{align*}
$$

The above claim can be verified by noting that given any feasible solution

$$
\left(\hat{U}_{1}, \hat{U}_{2}, \hat{V}, \hat{G}, \hat{\lambda}, \hat{y}\right)
$$

to (4), the matrices

$$
\begin{gathered}
U_{1}=\hat{U}_{1}, \quad U_{2}=\hat{U}_{2}, \quad V=\left(I_{r} \otimes P\right) \hat{V}\left(I_{r} \otimes P\right)^{T}, \\
{\left[\begin{array}{cc}
G & -y \\
-y^{T} & \lambda
\end{array}\right]=\left[\begin{array}{cc}
I_{r} \otimes P & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\hat{G} & -\hat{y} \\
-\hat{y}^{T} & \hat{\lambda}
\end{array}\right]\left[\begin{array}{cc}
\left(I_{r} \otimes P\right)^{T} & 0 \\
0 & 1
\end{array}\right]}
\end{gathered}
$$

form a feasible solution to (5), and both solutions have the same optimal value.

