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Abstract

The restricted isometry property (RIP) is a
well-known condition that guarantees the ab-
sence of spurious local minima in low-rank
matrix recovery problems with linear mea-
surements. In this paper, we introduce a
novel property named bound difference prop-
erty (BDP) to study low-rank matrix recov-
ery problems with nonlinear measurements.
Using RIP and BDP jointly, we propose a
new criterion to certify the nonexistence of
spurious local minima in the rank-1 case, and
prove that it leads to a much stronger theo-
retical guarantee than the existing bounds on
RIP.

1 INTRODUCTION

The low-rank matrix recovery problem plays a central
role in many machine learning problems, such as rec-
ommendation systems (Koren et al., 2009) and mo-
tion detection (Zhou et al., 2013; Fattahi and Sojoudi,
2020). It also appears in engineering problems, such as
power system state estimation (Zhang et al., 2018c).
The goal of this problem is to recover an unknown low-
rank matrix M∗ ∈ Rn×n from certain measurements
of the entries of M∗.

The basic form of the low-rank matrix recovery prob-
lem is the symmetric and noiseless one with linear mea-
surements and the quadratic loss. The linear mea-
surements can be represented by a linear operator
A : Rn×n → Rm given by

A(M) = (〈A1,M〉, . . . , 〈Am,M〉)T .

The ground-truth matrix M∗ is assumed to be sym-
metric and positive semidefinite with rank(M∗) ≤ r.
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The recovery problem can be formulated as follows:

min
1

2
‖A(M)− d‖2

s. t. rank(M) ≤ r, M � 0, M ∈ Rn×n,

where d = A(M∗). By factoring the decision variable
M into its low-rank factors XXT , the above problem
can be rewritten as the unconstrained problem:

min
X∈Rn×r

{
1

2
‖A(XXT )− d‖2

}
. (1)

The optimization (1) associated with different ma-
chine learning applications is commonly solved by lo-
cal search methods, such as the stochastic gradient de-
scent (Ge et al., 2015), due to their ability in handling
large-scale problems. Since (1) is generally nonconvex,
local search methods may converge to a spurious local
minimum (a non-global local minimum is called a spu-
rious solution). To provide theoretical guarantees on
the performance of local search methods for the low-
rank matrix recovery, several papers have developed
various conditions under which the optimization (1)
is free of spurious local minima. In what follows, we
will briefly review the state-of-the-art results on this
problem.

Given a linear operator A, define its corresponding
quadratic form Q : Rn×n × Rn×n → R as

[Q](K,L) = 〈A(K),A(L)〉, (2)

for all K,L ∈ Rn×n.

Definition 1 (Recht et al. (2010)). A quadratic form
Q : Rn×n×Rn×n → R satisfies the restricted isometry
property (RIP) of rank 2r for a constant δ ∈ [0, 1),
denoted as δ-RIP2r, if

(1− δ)‖K‖2F ≤ [Q](K,K) ≤ (1 + δ)‖K‖2F

for all matrices K ∈ Rn×n with rank(K) ≤ 2r.

Ge et al. (2017) showed that the problem (1) has no
spurious local minima if the quadratic form Q satisfies
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δ-RIP2r with δ < 1/5. Zhang et al. (2019) strength-
ened this result for the special case of r = 1 by showing
that δ-RIP2r with δ < 1/2 is sufficient to guarantee
the absence of spurious local minima for (1). Zhang
et al. (2018a) provided an example with a spurious
local minimum in case of δ = 1/2 to support the tight-
ness of the bound.

The purpose of this paper is to study the existence of
spurious local minima for the general low-rank matrix
recovery problem

min
X∈Rn×r

f(XXT ), (3)

where f : Rn×n → R is an arbitrary function induced
by nonlinear measurements. In this paper, f is always
assumed to be twice continuously differentiable. The
problem (1) is a special case of (3) by choosing

f(M) =
1

2
‖A(M)− d‖2. (4)

In the case with linear measurements, note that
f(M∗) = 0 and therefore M∗ is a global minimizer
of f . In other words, there are often infinitely many
minimizers for f , but the goal is to find the ground-
truth low-rank solution M∗. Similar to the linear mea-
surement case, we assume that the problem (3) has a
ground truth M∗ = ZZT with rank(M∗) ≤ r that is
a global minimizer of f(M).

The optimization problem (3) has immediate applica-
tions in machine learning. One such example is the 1-
bit matrix completion problem (Davenport et al., 2014;
Ghadermarzy et al., 2019). In this problem, there is
an unknown ground truth matrix M∗ ∈ Rn×n with
M∗ � 0 and rank(M∗) = r. One is allowed to take
independent measurements on each entry M∗ij , where
each measurement value is a binary random variable
whose distribution is given by

Yij =

{
1 with probability σ(M∗ij),

0 with probability 1− σ(M∗ij).

Here, σ(x) is commonly chosen to be the sigmoid func-
tion ex/(ex + 1). The maximum likelihood estimation
of M∗ is an optimization problem in the form (3) with
the objective

f(M) = −
n∑
i=1

n∑
j=1

(yijMij − log(1 + eMij )),

where yij is the percentage of the measurements on
the (i, j)-th entry that are equal to 1. Moreover, every
polynomial optimization problem can be formulated
as (3), and therefore the analysis of (3) enables the
design of global optimization techniques for nonconvex
polynomial optimization (Madani et al., 2017).

The Hessian of the function f in (3), denoted as
∇2f(M), can be also regarded as a quadratic form
whose action on any two matricesK,L ∈ Rn×n is given
by

[∇2f(M)](K,L) =

n∑
i,j,k,l=1

∂2f

∂Mij∂Mkl
(M)KijLkl.

If f is considered to be the special function in (4),
then its corresponding Hessian ∇2f(M) becomes ex-
actly the quadratic form Q defined in (2). Therefore,
we naturally extend the definition of the δ-RIP2r prop-
erty for quadratic forms given in Definition 1 to general
functions f by restricting their Hessian.

Definition 2. A twice continuously differentiable
function f : Rn×n → R satisfies the restricted isometry
property of rank 2r for a constant δ ∈ [0, 1), denoted
as δ-RIP2r, if

(1− δ)‖K‖2F ≤ [∇2f(M)](K,K) ≤ (1 + δ)‖K‖2F (5)

for all matrices M,K ∈ Rn×n with rank(M) ≤ 2r and
rank(K) ≤ 2r.

It is still unknown whether the δ-RIP2r condition could
lead to the nonexistence of spurious local minima.
However, Li et al. (2019) proved that the problem (3)
has no spurious local minima under a stronger condi-
tion, named δ-RIP2r,4r with δ < 1/5, as defined be-
low (a similar result has obtained for the nonlinear
low-rank matrix recovery problems with asymmetric
matrices in Zhang et al. (2018b)).

Definition 3. A twice continuously differentiable
function f : Rn×n → R satisfies the restricted isome-
try property of rank (2r, 4r) for a constant δ ∈ [0, 1),
denoted as δ-RIP2r,4r, if

(1− δ)‖K‖2F ≤ [∇2f(M)](K,K) ≤ (1 + δ)‖K‖2F

for all matrices M,K ∈ Rn×n with rank(M) ≤ 2r and
rank(K) ≤ 4r.

For the general recovery problem (3) with r = 1,
the previous results in Zhang et al. (2019) and Li
et al. (2019) both have serious limitations. The bound
δ < 1/2 given in Zhang et al. (2019) is proven to be
tight in the case when f is generated by linear mea-
surements, but it is not applicable to nonlinear mea-
surements. The bound δ < 1/5 given in Li et al. (2019)
can be applied to a general function f , but it is not
tight even in the linear case. To address these issues,
we develop a new criterion to guarantee the absence of
spurious local minima in (3) for a general function f in
the rank-1 case, which is more powerful than the pre-
vious conditions. Unlike the bound given in Li et al.
(2019), our new criterion completely depends on the
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properties of the Hessian of the function f applied to
rank-2 matrices, rather than rank-4 matrices. Note
that the rank-1 case has applications in many prob-
lems, such as motion detection (Fattahi and Sojoudi,
2020) and power system state estimation (Zhang et al.,
2018c).

Notations In is the identity matrix of size n × n,
and diag(a1, . . . , an) is a diagonal matrix whose diag-
onal entries are a1, . . . , an. A = vecA is the vector
obtained from stacking the columns of a matrix A.
Given a vector A ∈ Rn2

, define its symmetric matri-
cization matS A = (A + AT )/2, where A ∈ Rn×n is
the unique matrix satisfying A = vecA. A ⊗ B is
the Kronecker product of A and B, which satisfies the
well-known identity:

vec(AXBT ) = (B ⊗A) vecX.

For two matrices A,B of the same size, 〈A,B〉 =
tr(ATB) = 〈vecA, vecB〉. ‖v‖ is the Euclidean norm
of the vector v and ‖A‖F =

√
〈A,A〉 is the Frobenius

norm of the matrix A. In addition, A � 0 means that
A is symmetric and positive semidefinite.

2 MAIN RESULTS

To obtain a powerful condition for guaranteeing the
absence of spurious local minima in problem (3), it is
helpful to shed light on a distinguishing property of
the function in (4) for linear measurements that does
not hold in the general case: the Hessian matrices at
all points are equal. If a general function f satisfies δ-
RIP2r, (5) intuitively states that the Hessian ∇2f(M)
should be close to the quadratic form defined by an
identity matrix, at least when applied to rank-2r ma-
trices. Hence, ∇2f(M) should change slowly when M
alters. The above discussion motivates the introduc-
tion of a new notion below.

Definition 4. A twice continuously differentiable
function f : Rn×n → R satisfies the bounded differ-
ence property of rank 2r for a constant κ ≥ 0, denoted
as κ-BDP2r, if

|[∇2f(M)−∇2f(M ′)](K,L)| ≤ κ‖K‖F ‖L‖F (6)

for all matrices M,M ′,K, L ∈ Rn×n whose ranks are
at most 2r.

It turns out that the RIP and BDP properties are not
fully independent. Their relationship is summarized in
the following theorems that will be proved in Section 3.

Theorem 1. If the function f satisfies δ-RIP2r, then
it also satisfies 4δ-BDP2r.

Theorem 2. If the function f satisfies δ-RIP2r,4r,
then it also satisfies 2δ-BDP2r.

The bounds in the above two theorems are tight. In
Section 3, we will construct a class of functions f that
satisfy the δ-RIP2r property but do not satisfy the κ-
BDP2r property for some κ with κ/δ being arbitrarily
close to 4. Similar examples can also be constructed
for Theorem 2.

The main result of this paper is the following theo-
rem, which is a powerful criterion for the nonexistence
of spurious local minima based on the RIP and BDP
properties jointly. Its proof is given in Section 4.

Theorem 3. When r = 1, the problem (3) has no
spurious local minima if the function f satisfies the δ-
RIP2 and κ-BDP2 properties for some constants δ and
κ such that

δ <
2− 6(1 +

√
2)κ

4 + 6(1 +
√

2)κ
.

In the case of linear measurements and the quadratic
loss, the function f satisfies the κ-BDP2 property with
κ = 0. Hence, Theorem 3 recovers the result in Zhang
et al. (2019) stating that the problem (1) has no spuri-
ous local minima if the operator A satisfies the δ-RIP2

property with δ < 1/2. On the other hand, by combin-
ing Theorem 1 and Theorem 3, one can immediately
verify that the problem (3) has no spurious solutions
if f satisfies the δ-RIP2 property with δ < 0.0313.
Theorem 3 is most valuable for functions f associated
with nonlinear measurements that satisfy δ-RIP2 and
κ-BDP2 for δ < 1/2 and κ being relatively small. At
the end of Section 3, we will construct such functions
for which the RIP2,4 property does not exist, and thus
the condition in Li et al. (2019) cannot be used. These
are the examples for which the absence of spurious lo-
cal minima can be certified by Theorem 3, while the
existing conditions in the literature fail to work.

3 RIP AND BDP PROPERTIES

In this section, the relationship among the RIP2r,
RIP2r,4r and BDP2r properties of a given function f
will be investigated. We will first prove Theorem 1
and Theorem 2, and then show that the bounds in
these theorems are tight. The following lemma will
be needed. For its proof, the reader could refer to
Candès (2008); Bhojanapalli et al. (2016); Li et al.
(2019), presented in different notations, or the supple-
mentary material.

Lemma 4. If a quadratic form Q satisfies δ-RIP2r,
then

|[Q](K,L)− 〈K,L〉| ≤ δ‖K‖F ‖L‖F
for all matrices K,L ∈ Rn×n with rank(K) ≤ r,
rank(L) ≤ r.

Proof of Theorem 2. Let M and M ′ be two matrices
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of rank at most 2r. By the definition of δ-RIP2r,4r

of the function f , both ∇2f(M) and ∇2f(M ′) sat-
isfy δ-RIP4r. After the constant r in the statement of
Lemma 4 is replaced by 2r, we obtain

|[∇2f(M)](K,L)− 〈K,L〉| ≤ δ‖K‖F ‖L‖F ,
|[∇2f(M ′)](K,L)− 〈K,L〉| ≤ δ‖K‖F ‖L‖F ,

for all matrices K,L ∈ Rn×n of rank at most 2r, which
leads to (6) for κ = 2δ.

Proof of Theorem 1. We first prove that any quadratic
form Q with δ-RIP2r satisfies

|[Q](K,L)− 〈K,L〉| ≤ 2δ‖K‖F ‖L‖F , (7)

for all matrices K,L ∈ Rn×n of rank at most 2r. Let
K = UDV T be the singular value decomposition of
K. Write D = D1 + D2 in which D1 and D2 both
have at most r nonzero entries, and let K1 = UD1V

T

and K2 = UD2V
T . Then, K = K1 + K2, where

rank(K1) ≤ r, rank(K2) ≤ r and 〈K1,K2〉 = 0. We
decompose L = L1 + L2 similarly. By Lemma 4, it
holds that

|[Q](K,L)− 〈K,L〉|
≤ |[Q](K1, L1)− 〈K1, L1〉|+ |[Q](K1, L2)− 〈K1, L2〉|
+ |[Q](K2, L1)− 〈K2, L1〉|+ |[Q](K2, L2)− 〈K2, L2〉|
≤ δ(‖K1‖F + ‖K2‖F )(‖L1‖F + ‖L2‖F )

≤ 2δ
√
‖K1‖2F + ‖K2‖2F

√
‖L1‖2F + ‖L2‖2F

= 2δ‖K‖F ‖L‖F .

The remaining proof is exactly the same as the proof
of Theorem 2.

The inequality (7) is parallel to the square root lifting
inequality (Cai et al., 2010) in the compressed sensing
problem. Our result can be regarded as a general-
ization of that result to the low-rank matrix recovery
problem.

In what follows, we will show that the bounds in The-
orem 1 and Theorem 2 are tight. To this end, we
will work on examples of function f with δ-RIP2r or
δ-RIP4r for a small δ whose Hessian has a large varia-
tion across different points. Consider an integer n ≥ 4
and an integer r ≥ 1. Let

A1 =
1√
n

diag(a1, . . . , an)

with ai ∈ {−1, 1} whose exact value will be deter-
mined later. One can extend A1 to an orthonormal
basis A1, . . . , An2 of the space Rn×n. Define a linear
operator A : Rn×n → Rn2−1 by letting

A(M) = (〈A2,M〉, . . . , 〈An2 ,M〉).

Then, for every matrix M ∈ Rn×n, it holds that

‖A(M)‖2 = ‖M‖2F − (〈A1,M〉)2 ≤ ‖M‖2F .

Now, assume that M is a matrix with rank(M) ≤
2r, and let σ1(M), . . . , σ2r(M) denote its 2r largest
singular values. Observe that

|〈A1,M〉| ≤
1√
n

n∑
i=1

|Mii| ≤
1√
n

2r∑
i=1

σi(M)

=

√
2r

n

√√√√ 2r∑
i=1

σ2
i (M) =

√
2r

n
‖M‖F ,

which implies that

‖A(M)‖2 = ‖M‖2F − (〈A1,M〉)2 ≥
(

1− 2r

n

)
‖M‖2F .

Define a scaled linear operator Ā as

Ā(M) =

√
n

n− r
A(M), ∀M ∈ Rn×n.

Thus, the relation(
1− r

n− r

)
‖M‖2F ≤ ‖Ā(M)‖2

≤
(

1 +
r

n− r

)
‖M‖2F (8)

holds for all M ∈ Rn×n with rank(M) ≤ 2r.

After choosing A1 = (1/
√
n)In in the above argument,

let A be the resulting linear operator and Q be the
quadratic form in (2) that corresponds to the scaled
linear operator Ā. By the same argument, a simi-
lar linear operator A′ and the corresponding quadratic
form Q′ can be obtained after choosing

A′1 =
1√
n

diag(1, 1,−1,−1, 1, . . . , 1). (9)

Now, we select K = diag(1, 1, 0, 0, 0, . . . , 0) and L =
diag(0, 0, 1, 1, 0, . . . , 0). Then,

|[Q−Q′](K,L)|

=
n

n− r
|〈A(K),A(L)〉 − 〈A′(K),A′(L)〉|

=
n

n− r
|−〈A1,K〉〈A1, L〉+ 〈A′1,K〉〈A′1, L〉|

=
4

n− r
‖K‖F ‖L‖F .

(10)

In the case r = 1, it follows from (8) that both of the
constructed quadratic forms Q and Q′ satisfy δ-RIP2

with δ = 1/(n−1). If one can find a twice continuously
differentiable function f satisfying δ-RIP2 such that

∇2f(M) = Q, ∇2f(M ′) = Q′
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hold at two particular points M,M ′ ∈ Rn×n with
rank(M) ≤ 2 and rank(M ′) ≤ 2, then by (10) the
function f cannot satisfy κ-BDP2 for κ < 4δ. Since
the design of such function is cumbersome, we will use
a weaker result that serves the same purpose. This
result, to be formalized in Lemma 5, states that for
every µ > 0, one can find a twice continuously differ-
entiable function f with (δ+µ)-RIP2 and two matrices
M,M ′ ∈ Rn×n of rank at most 1 satisfying the follow-
ing inequalities:

|[∇2f(M)−Q](K,L)| ≤ µ‖K‖F ‖L‖F ,
|[∇2f(M ′)−Q′](K,L)| ≤ µ‖K‖F ‖L‖F .

(11)

Combining (10) and (11) yields that

|[∇2f(M)−∇2f(M ′)](K,L)| ≤ (4δ + 2µ)‖K‖F ‖L‖F .

Therefore, the function f cannot satisfy the κ-BDP2

property for any κ < 4δ + 2µ. Since µ can be made
arbitrarily small, this shows that the constant 4δ in
Theorem 1 cannot be improved. Similarly, by choos-
ing r = 2 instead of r = 1 and repeating the above
argument, one can show that the constant 2δ in The-
orem 2 cannot be improved either.

Lemma 5. Consider two quadratic forms Q and Q′
satisfying the δ-RIP2r property. For every µ > 0,
there exists a twice continuously differentiable function
f : Rn×n → R and two matrices M,M ′ ∈ Rn×n with
rank(M) ≤ 1 and rank(M ′) ≤ 1 such that f satisfies
the (δ + µ)-RIP2r property and that (11) holds for all
K,L ∈ Rn×n.

Proof. Given µ > 0, let f be given as

f(V ) =
1

2
[Q′](V, V ) +

1

2
H(‖V ‖2F )[∆](V, V ),

where ∆ = Q−Q′ and H : R→ R is defined as

H(t) =

{
0, if t ≤ 0,

exp(−1/tγ), if t > 0.

Here, γ ∈ (0, 1) is a constant that will be determined
later. It is straightforward to verify that H is twice
continuously differentiable and

H ′(0) = H ′′(0) = 0, (12a)

|tH ′(t)| ≤ γ

e
, |t2H ′′(t)| ≤ 4γ

e
, ∀t ∈ R. (12b)

The basic idea behind the above construction of f is
that when γ is chosen to be small, the growth of the
function H becomes so slow that it can be regarded as
a constant when computing the Hessian of the above
function f . As a result, the Hessian is approximately
a linear combination of two quadratic forms Q and

Q′ with the δ-RIP2r property. Formally, the Hessian
∇2f(V ) of f at a particular matrix V ∈ Rn×n, when
applied to arbitrary K,L ∈ Rn×n, is given by

[∇2f(V )](K,L) = 2H ′′(‖V ‖2F )[∆](V, V )〈V,K〉〈V,L〉
+H ′(‖V ‖2F )[∆](V, V )〈K,L〉
+ 2H ′(‖V ‖2F )([∆](L, V )〈V,K〉+ [∆](K,V )〈V,L〉)
+ [Q′ +H(‖V ‖2F )∆](K,L).

(13)
By compactness, there exists a constant C > 0 such
that

|[∆](A,B)| ≤ C‖A‖F ‖B‖F (14)

holds for all A,B ∈ Rn×n. We choose a sufficiently
small γ such that 26γC/e ≤ µ. By (12b), (13), (14)
and the Cauchy–Schwartz inequality, we have

|[∇2f(V )−Q′ −H(‖V ‖2F )∆](K,L)|

≤ 13γC

e
‖K‖F ‖L‖F ≤

µ

2
‖K‖F ‖L‖F . (15)

To prove that the function f satisfies (δ + µ)-RIP2r,
assume for now that K = L and rank(K) ≤ 2r. The
inequality 0 ≤ H(‖V ‖2F ) ≤ 1 and the δ-RIP2r property
of Q and Q′ imply that

(1− δ)‖K‖2F ≤ [Q′ +H(‖V ‖2F )∆](K,K)

≤ (1 + δ)‖K‖2F .

By (15) and the above inequality, the function f satis-
fies the (δ+µ)-RIP2r property. To prove the existence
of M and M ′ satisfying (11), we select M ′ = 0 and

M = diag(s, 0, . . . , 0).

For any K,L ∈ Rn×n, it follows from (12a) and (13)
that

[∇2f(M ′)−Q′](K,L) = 0. (16)

Moreover, (14) and (15) yield that

|[∇2f(M)−Q](K,L)|

≤ µ

2
‖K‖F ‖L‖F + |[Q′ +H(‖M‖2F )∆−Q](K,L)|

≤
(µ

2
+ (1−H(‖M‖2F ))C

)
‖K‖F ‖L‖F .

Since H(‖M‖2F ) → 1 as s → +∞, (11) is satisfied as
long as s is sufficiently large.

The above argument also provides examples of the
function f whose corresponding recovery problem (3)
can be certified to have no spurious local minima via
Theorem 3, while the existing results in the literature
fail to do so. Following the above construction, choose
n = 4, r = 1, and let

f̃(V ) =
1− λ

2
[Q′](V, V ) + λf(V ),
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for some λ ∈ [0, 1]. The Hessian can be written as

∇2f̃(V ) = (1− λ)Q′ + λ∇2f(V ). (17)

If λ > 0, the Hessian of f̃ is not a constant, and there-
fore the condition in Zhang et al. (2019) cannot be
applied. On the other hand, it follows from (16) that

[∇2f̃(0)](A′1, A
′
1) = [Q′](A′1, A′1) = 0,

for the matrix A′1 of rank 4 defined in (9). Thus, the
function f̃ cannot satisfy the δ-RIP2,4 property for any
δ ∈ [0, 1). This implies that the condition in Li et al.
(2019) cannot be applied either. In contrast, note that
the quadratic form Q′ satisfies the 1/3-RIP2 property
and the function f satisfies the (1/3 + µ)-RIP2 prop-
erty. Therefore, it can be concluded from (17) that the
function f̃ also satisfies the (1/3 + µ)-RIP2 property.
In light of Theorem 1, f satisfies 4(1/3+µ)-BDP2 and
thus f ′ satisfies 4λ(1/3+µ)-BDP2. Hence, Theorem 3
certifies the absence of spurious local minima as long
as λ and µ jointly satisfy

1

3
+ µ <

2− 6(1 +
√

2)4λ(1/3 + µ)

4 + 6(1 +
√

2)4λ(1/3 + µ)
.

4 PROOF OF THEOREM 3

Our approach consists of two major steps. The first
step is to find a necessary condition that the function
f must satisfy if the corresponding problem (3) has a
local minimizer X such that XXT 6= M∗, where M∗ is
the ground truth. The second step is to develop certain
conditions on δ and κ that rule out the satisfaction of
the above necessary condition.

Before proceeding with the proof, we need to introduce
some notations. Given two matrices X,Z ∈ Rn×r,
define

e = vec(XXT − ZZT ) ∈ Rn
2

,

and let X ∈ Rn2×nr be the matrix satisfying

X vecU = vec(XUT + UXT ), ∀U ∈ Rn×r.

Similarly, let H ∈ Rn2×n2

be the matrix satisfying

(vecK)TH vecL = [∇2f(XXT )](K,L),

for all K,L ∈ Rn×n. The desired necessary condition
for the existence of spurious local minima in (3) is
stated in the following lemma.

Lemma 6. Assume that the function f in the problem
(3) satisfies the δ-RIP2r and κ-BDP2r properties. If X
is a local minimizer of (3) and Z is a global minimizer
of (3) with M∗ = ZZT , then

1. ‖XTHe‖ ≤ 2κ‖X‖F ‖e‖;

2. 2Ir ⊗matS(He) + XTHX � −2κ‖e‖Inr;

3. H satisfies the δ-RIP2r property, i.e, for every
matrix U ∈ Rn×n with rank(U) ≤ 2r, it holds
that

(1− δ)‖U‖2 ≤ UTHU ≤ (1 + δ)‖U‖2,

where U = vecU .

Proof. Condition 3 follows immediately from the δ-
RIP2r property of the function f . To prove the re-
maining two conditions, define g(Y ) = f(Y Y T ) and
M = XXT . Since X is a local minimizer of the func-
tion g(·), for every U ∈ Rn×r with U = vecU , the
first-order optimality condition implies that

0 = 〈∇g(X), U〉 = 〈∇f(M), XUT + UXT 〉. (18)

Define an auxiliary function h : Rn×n → R by letting

h(V ) = 〈∇f(V ), XUT + UXT 〉.

By the mean value theorem, there exists a matrix ξ on
the segment between M and M∗ such that

[∇2f(ξ)](M −M∗, XUT + UXT )

= 〈∇h(ξ),M −M∗〉 = h(M)− h(M∗) = 0, (19)

in which the last equality follows from (18) and
∇f(M∗) = 0. Since rank(M) ≤ r and rank(M∗) ≤ r,
we have rank(ξ) ≤ 2r and rank(M −M∗) ≤ 2r. Ap-
plying the κ-BDP2r property to the Hessian of f(·) at
matrices M and ξ, together with (19), one can obtain

|eTHXU| = |[∇2f(M)](M −M∗, XUT + UXT )|
≤ κ‖M −M∗‖F ‖XUT + UXT ‖F
≤ 2κ‖e‖‖X‖F ‖U‖.

Condition 1 can be proved by setting U = XTHe.

For every U ∈ Rn×r with U = vecU , the second-order
optimality condition implies that

0 ≤ [∇2g(X)](U,U) = [∇2f(M)](XUT + UXT ,

XUT + UXT ) + 2〈∇f(M), UUT 〉. (20)

The first term on the right-hand side can be equiva-
lently written as (XU)TH(XU). A similar argument
can be made to conclude that there exists another ma-
trix ξ′ on the segment between M and M∗ such that

〈∇f(M), UUT 〉 = 〈∇f(M)−∇f(M∗), UUT 〉
= [∇2f(ξ′)](M −M∗, UUT )

≤ [∇2f(M)](M −M∗, UUT )

+ κ‖M −M∗‖F ‖UUT ‖F
= vec(UUT )He + κ‖e‖‖U‖2

=
1

2
(vecU)T vec((W +WT )U) + κ‖e‖‖U‖2

= UT (Ir ⊗matS(He))U + κ‖e‖‖U‖2, (21)
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in which W ∈ Rn×n is the unique matrix satisfying
vecW = He. Condition 2 can be obtained by combin-
ing (20) and (21).

For given X,Z ∈ Rn×r and κ ≥ 0, one can construct
an optimization problem based on the conditions in
Lemma 6 as follows:

min
δ,H

δ

s. t. ‖XTHe‖ ≤ a,
2Ir ⊗matS(He) + XTHX � −bInr,
H is symmetric and satisfies δ-RIP2r,

(22)

where
a = 2κ‖X‖F ‖e‖, b = 2κ‖e‖. (23)

Let δ(X,Z;κ) be the optimal value of (22). Assume
that f in the original problem (3) satisfies δ-RIP2r and
κ-BDP2r. By Lemma 6, if X is a local minimizer of (3)
and Z is a global minimizer of (3) with M∗ = ZZT ,
then δ ≥ δ(X,Z;κ). As a result, by defining δ∗(κ) as
the optimal value of the optimization problem

min
X,Z∈Rn×r

δ(X,Z;κ) s. t. XXT 6= ZZT ,

the problem (3) is guaranteed to have no spurious local
minima as long as δ < δ∗(κ).

The remaining task is to compute δ(X,Z;κ) and δ∗(κ).
First, by the property of the Schur complement, the
first constraint in (22) can be equivalently written as[

Inr XTHe
(XTHe)T a2

]
� 0.

The major difficulty of solving (22) comes from the
last constraint, since it is NP-hard to verify whether a
given quadratic form satisfies δ-RIP2r (Tillmann and
Pfetsch, 2014). Instead, we tighten the last constraint
of (22) by requiring H to have a norm-preserving prop-
erty for all matrices instead of just for matrices with
rank at most 2r, i.e.,

(1− δ)‖U‖2 ≤ UTHU ≤ (1 + δ)‖U‖2, ∀U ∈ Rn
2

,

which leads to following semidefinite program:

min
δ,H

δ

s. t.

[
Inr XTHe

(XTHe)T a2

]
� 0,

2Ir ⊗matS(He) + XTHX � −bInr,
(1− δ)In2 � H � (1 + δ)In2 .

(24)

Similar to the case with linear measurements studied
in Zhang et al. (2019), due to the symmetry under or-
thogonal projections, the problems (22) and (24) turn
out to have the same optimal value. See the supple-
mentary material for the proof.

Lemma 7. For given X,Z ∈ Rn×r and κ ≥ 0, the
optimization problems (22) and (24) have the same
optimal value.

Even if the value of δ(X,Z;κ) for given X, Z and κ can
now be efficiently calculated by solving the semidefi-
nite program (24), to further compute δ∗(κ), an an-
alytical expression is still needed for δ(X,Z;κ). For
our purpose, it is sufficient to find a lower bound on
δ(X,Z;κ). In the remainder of this section, we will fo-
cus on the problem of lower bounding δ(X,Z;κ) and
δ∗(κ) in the case r = 1.

When r = 1, X and Z reduce to vectors and henceforth
will be denoted as x and z with

e = x⊗ x− z ⊗ z, Xu = x⊗ u+ u⊗ x.

Moreover,

‖Xu‖2 = 2‖x‖2‖u‖2 + 2(xTu)2, ∀u ∈ Rn. (25)

Given two vectors x, z ∈ Rn with x 6= 0 and xxT 6=
zzT , one can find a unit vector w ∈ Rn such that w is
orthogonal to x and z = c1x+ c2w. Then,

e = Xỹ − c22(w ⊗ w),

in which

ỹ =
1− c21

2
x− c1c2w.

Note that Xỹ is orthogonal to w ⊗ w. Furthermore,
since ỹ 6= 0 by xxT 6= zzT and thus Xỹ 6= 0 by (25),
one can rescale ỹ into ŷ such that ‖Xŷ‖ = 1 and

e = ‖e‖(
√

1− α2Xŷ − α(w ⊗ w)), (26)

with

α :=
c22
‖e‖

=
‖z‖2 − (xT z/‖x‖)2

‖e‖
. (27)

In addition, (25) also implies

‖ŷ‖ ≤ ‖Xŷ‖√
2‖x‖

=
1√

2‖x‖
. (28)

Lemma 8. Let x, z ∈ Rn with xxT 6= zzT . The opti-
mal value δ(x, z;κ) of (24) satisfies

δ(x, z;κ) ≥ 1− η0(x, z)− 2(1 +
√

2)κ

1 + η0(x, z) + 2(1 +
√

2)κ
,

in which

η0(x, z) =


1−
√

1− α2

1 +
√

1− α2
, if β ≥ α

1 +
√

1− α2
,

β(β − α)

βα− 1
, if β ≤ α

1 +
√

1− α2
,

with α defined in (27)1 and β = ‖x‖2/‖e‖.
1When x = 0, α is defined to be ‖z‖2/‖e‖.
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Proof. Define η(x, z;κ) to be the optimal value of the
following optimization problem:

max
η,H

η

s. t.

[
Inr XTHe

(XTHe)T a2

]
� 0,

2 matS(He) + XTX � −bInr,
ηIn2 � H � In2 .

(29)

It can be verified that

η(x, z;κ) ≥ 1− δ(x, z;κ)

1 + δ(x, z;κ)
, (30)

because given any feasible solution (δ,H) to (24), the
point (

1− δ
1 + δ

,
1

1 + δ
H

)
is also a feasible solution to (29). The reason is that
the first and last constraints in (29) naturally hold
while the second constraint is satisfied due to

2 matS

(
1

1 + δ
He

)
+ XTX � 1

1 + δ
(2 matS(He)

+ XTHX) � − b

1 + δ
Inr � −bInr.

Therefore, to find a lower bound on δ(x, z;κ), we only
need to find an upper bound on η(x, z;κ).

The dual problem of (29) can be written as

min
U1,U2,V,
G,λ,y

tr(U2) + 〈XTX + bIn, V 〉+ a2λ+ tr(G),

s. t. tr(U1) = 1,

(Xy − v)eT + e(Xy − v)T = U1 − U2,[
G −y
−yT λ

]
� 0,

U1 � 0, U2 � 0, V � 0, v = vecV.
(31)

By weak duality, the dual objective value associated
with any feasible solution to the dual problem (31) is
an upper bound on η(x, z;κ).

In the case when x 6= 0, we fix a constant γ ∈ [0, α]
and choose

y =

√
1− γ2
‖e‖

ŷ, v =
γ

‖e‖
(w ⊗ w),

where ŷ and w are the vectors defined before (26).
Since ‖Xŷ‖ = 1, ‖w⊗w‖ = 1 and Xŷ is orthogonal to
w ⊗ w, it holds that

‖Xy − v‖ =
1

‖e‖
.

Combined with (26), one can obtain

eT (Xy − v) = ψ(γ),

where ψ(γ) is given by

ψ(γ) = γα+
√

1− γ2
√

1− α2.

Now, define

M = (Xy − v)eT + e(Xy − v)T

and decompose

M = [M ]+ − [M ]−,

in which both [M ]+ � 0 and [M ]− � 0. Let θ be the
angle between e and Xy − v. Subsequently,

tr([M ]+) = ‖e‖‖Xy − v‖(1 + cos θ) = 1 + ψ(γ),

tr([M ]−) = ‖e‖‖Xy − v‖(1− cos θ) = 1− ψ(γ)

(see (Zhang et al., 2019, Lemma 15)). Then, it is rou-
tine to verify that

U∗1 =
[M ]+

tr([M ]+)
, U∗2 =

[M ]−
tr([M ]+)

,

y∗ =
y

tr([M ]+)
, v∗ =

v

tr([M ]+)

λ∗ =
‖y∗‖
a

, G∗ =
1

λ∗
y∗y∗T

forms a feasible solution to the dual problem (31)
whose objective value is equal to

tr([M ]−) + 〈XTX + bIn, V 〉+ 2a‖y‖
tr([M ]+)

. (32)

By (25) and (28), one can write

〈XTX + bIn, V 〉 =
γ

‖e‖
(‖Xw‖2 + b)

=
γ

‖e‖
(2‖x‖2 + b) = 2(β + κ)γ,

(33)

2a‖y‖ ≤ 2a‖ŷ‖
‖e‖

≤ 2
√

2κ, (34)

where a and b are defined in (23). Substituting (33)
and (34) into (32) yields that

η(x, z;κ) ≤ Ψ(γ) + 2(1 +
√

2)κ,

where

Ψ(γ) =
2βγ + 1− ψ(γ)

1 + ψ(γ)
.

A simple calculation shows that the function Ψ(γ) has
at most one stationary point over the interval (0, α)
and

min
0≤γ≤α

Ψ(γ) = η0(x, z).
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In the case when x = 0, we have η0(x, z) = 0, and

U1 =
eeT

‖e‖2
, U2 = 0, V =

zzT

2‖e‖2
,

y = 0, λ = 0, G = 0

forms a feasible solution to the dual problem (31),
which implies that

η(x, z, κ) ≤ 〈bIn, V 〉 = κ.

In either case, it holds that

η(x, z;κ) ≤ η0(x, z) + 2(1 +
√

2)κ,

which gives the desired result after combining it with
(30).

Proof of Theorem 3. By Lemma 7 and the discussion
after Lemma 6, we only need to show that

δ(x, z;κ) ≥ 2− 6(1 +
√

2)κ

4 + 6(1 +
√

2)κ
, (35)

for all x, z ∈ Rn with xxT 6= zzT . Similarly to the
approach used in proof of (Zhang et al., 2019, The-
orem 3), it can be verified that the function η0(x, z)
defined in the statement of Lemma 8 has the maxi-
mum value 1/3 that is attained by any two vectors
x and z that are orthogonal to each other such that
‖x‖/‖z‖ = 1/2. Consequently, (35) holds in light of
Lemma 8.

This paper mainly focuses on the nonlinear matrix
recovery problems in the rank-1 case. The issue
with ranks greater than 1 is the inability to handle
the second-order optimality condition when finding a
closed-form solution for the semidefinite program (24).
By removing the second-order condition from (24) and
only studying the first-order condition, we can gener-
alize the results of the paper to arbitrary ranks. The
difference is that the rank-1 result ruled out the exis-
tence of spurious solutions over the entire space, while
this is impossible to achieve for the rank-r cases under
the approach based on the first-order condition since
0 is always a spurious stationary point of the problem.
Instead, the rank-r generalization of Theorem 3 be-
comes a local result, stating that there is no spurious
local minimum in a neighborhood of the ground truth
M∗. For details, please refer to the follow-up work Bi
and Lavaei (2020).

5 CONCLUSIONS

In this paper, we first propose the bounded difference
property (BDP) in order to study the symmetric low-
rank matrix recovery problem with nonlinear measure-
ments. The relationship between BDP and RIP is

thoroughly investigated. Then, a novel criterion for
the nonexistence of spurious local minima is proposed
based on RIP and BDP jointly. It is shown that the
developed criterion is superior to the existing condi-
tions relying only on RIP.
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