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Abstract

Computing the discrepancy between time se-
ries of variable sizes is notoriously challeng-
ing. While dynamic time warping (DTW) is
popularly used for this purpose, it is not dif-
ferentiable everywhere and is known to lead
to bad local optima when used as a “loss”.
Soft-DTW addresses these issues, but it is
not a positive definite divergence: due to the
bias introduced by entropic regularization, it
can be negative and it is not minimized when
the time series are equal. We propose in this
paper a new divergence, dubbed soft-DTW
divergence, which aims to correct these is-
sues. We study its properties; in particu-
lar, under conditions on the ground cost, we
show that it is a valid divergence: it is non-
negative and minimized if and only if the
two time series are equal. We also propose
a new “sharp” variant by further removing
entropic bias. We showcase our divergences
on time series averaging and demonstrate sig-
nificant accuracy improvements compared to
both DTW and soft-DTW on 84 time series
classification datasets.

1 Introduction

Designing a meaningful discrepancy or “loss” between
two sequences of variable lengths and integrating it
in an end-to-end differentiable pipeline is challenging.
For sequences on finite alphabets, differentiable local
alignment kernels (Saigo et al., 2006) and edit dis-
tances (McCallum et al., 2012) have been proposed.
For sequences on continuous domains, connectionist
temporal classification (CTC) is popularly used in
speech recognition (Graves et al., 2006). A related
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approach for time series motivated by geometry is dy-
namic time warping (DTW), which seeks a minimum-
cost alignment between time series and can be com-
puted by dynamic programming in quadratic time
(Sakoe and Chiba, 1978). However, DTW is not differ-
entiable everywhere, is sensitive to noise and is known
to lead to bad local optima when used as a loss. Soft-
DTW (Cuturi and Blondel, 2017) addresses these is-
sues by replacing the minimum over alignments with
a soft minimum, which has the effect of inducing a
probability distribution over all alignments. Despite
considering all alignments, it is shown that soft-DTW
can still be computed by dynamic programming in
the same complexity. Since then, soft-DTW has been
successfully applied for audio to music score align-
ment (Mensch and Blondel, 2018), video segmentation
(Chang et al., 2019), spatial-temporal sequences (Ja-
nati et al., 2020), and end-to-end differentiable text-
to-speech synthesis (Donahue et al., 2020), to name
but a few examples. Soft-DTW is included in pop-
ular R and Python packages for time series analysis
(Sarda-Espinosa, 2017; Tavenard et al., 2020).

In this paper, we show that, despite recent successes,
soft-DTW has some limitations which have been over-
looked in the literature. First, it can be negative,
which is a nuisance when used as a loss. Second, and
more problematically, when used with a squared Eu-
clidean cost, we show that it is never minimized when
the two time series are equal. Put differently, given an
input time series, the closest time series in the soft-
DTW sense is never the input time series. This is due
to the entropic bias introduced by replacing the min-
imum with a soft one. We propose in this paper a
new divergence, dubbed soft-DTW divergence, which
is based on soft-DTW but corrects for these issues. We
study its properties; in particular, under condition on
the ground cost, we show that it is a valid divergence:
it is non-negative and it is minimized if and only if the
two time series are equal. Our approach is related to
Sinkhorn divergences (Ramdas et al., 2017; Genevay
et al., 2018; Feydy et al., 2019), which use similar
correction terms as we do for optimal transport dis-
tances, but our proof techniques are completely differ-
ent. We also propose a new “sharp” variant by further
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removing entropic bias. We showcase our divergences
on time series averaging and demonstrate significant
accuracy improvements compared to both DTW and
soft-DTW on 84 time series classification datasets.

The rest of the paper is organized as follows. After re-
viewing some background in §2, we introduce the soft-
DTW divergence and its “sharp” variant in §3. We
study their properties and limit behavior. We study
their empirical performance in §4 with experiments on
time series averaging, interpolation and classification.

2 Background

2.1 Dynamic time warping

Let X € R™*? and Y € R"*? be two d-dimensional
time series of lengths m and n. We denote their ele-
ments by ; € R? and y; € R?, for i € [m] and j € [n].
We say that A € {0,1}™*"™ is an alignment matrix be-
tween X and Y when [A]; ; = 1if x; is aligned with y;
and 0 otherwise. We say that A is a monotonic align-
ment matrix if the ones in A form a path starting from
the upper-left corner (1,1) that connects the lower-
right corner (m,n) using only |, —, \, moves. We de-
note the set of all such monotonic alignment matrices
by A(m,n) C {0,1}"*". The cardinality |.A(m,n)]|
grows exponentially in min(m,n) and is equal to the
Delannoy number, Delannoy(m—1,n—1), named after
French amateur mathematician Henri Delannoy (Su-
lanke, 2003; Banderier and Schwer, 2005).

Let C: R™X4 x R™"X4 5 R™*" he a function which
maps X € R™*? and Y € R"*? to a distance or cost
matrix C = C(X,Y) € R™*™. A popular choice is
the squared Euclidean cost

O Y )iy = gl —yil3 iclmljeln. ()

The Frobenius inner product (A, C) = Trace(C T A)
between C and A is the sum of the costs along the
alignment (Figure 1). Dynamic time warping (Sakoe
and Chiba, 1978) can then be naturally formulated as
the minimum cost among all possible alignments,

DTW(C) := min

A,C). 2
AGA(m,n)< ’ > ()

The corresponding optimal alignment (not necessarily
unique) is then

A*(C) € argmin (A,C). (3)
AcA(m,n)

Despite the exponential number of alignments, (2)
and (3) can be computed in O(mn) time using dy-
namic programming and backtracking, respectively.
The quantity DTW(C(X,Y")) is popularly used as a
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Figure 1: An alignment between two time series X €
R™*4 and Y € R™*? corresponds to a path in a di-
rected acyclic graph (DAG) and can be encoded as a
binary matrix A € {0,1}™*™. The sum of the costs
along the path is then (A,C). DTW secks a mini-
mum cost alignment, while soft-DTW seeks the soft
minimum cost alignment. The latter induces a Gibbs
distribution over all alignments.

discrepancy measure between time series in numerous
applications. In the rest of the paper, we will make
the following assumptions about the ground cost C:

e Al C(X,Y) > 0,,xn (non-negativity),
e A2 [C(X,X)];; =0 for all i € [m],
e A3. C(X,Y)=C(Y,X)" (symmetry).

The properties of DTW under these assumptions are
summarized in Table 1. Note that DTW is minimized
at X =Y but this may not be the unique minimum.

2.2 Soft dynamic time warping

Definitions. In order to obtain a fully differentiable
discrepancy measure between time series, Cuturi and
Blondel (2017) proposed to replace the min operator
in (2) by a smooth one,

min, f(z) = —vlog » _ exp(—f(x)/7),

zeS €S

where v > 0 is a parameter which controls the trade-
off between approximation and smoothness. For con-
venience, we define the extension ming := min. The
resulting “soft” dynamic time warping formulation is

SDTW,(C) :== min, (A,C)

AcA(m,n)

=—ylog >

AcA(m,n)

exp(—(A, C)/7). (4)

Instead of only considering the minimum-cost align-
ment as in (2), (4) induces a Gibbs distribution over
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Table 1: Properties of time-series losses under assumptions A.1-A.3 and differentiability of C'. For the soft-
DTW divergence, we prove non-negativity and “minimized at X =Y using the cost (11) and one-dimensional
absolute value (12) (cf. Proposition 3). For the soft-DTW and sharp divergences with the squared Euclidean
cost (1), we only prove that X =Y is a stationary point (cf. Proposition 4)

Non-negativity Minimized at X =Y Symmetry Differentiable everywhere

DTW v
Soft-DTW X
Sharp soft-DTW v
Soft-DTW divergence v
Sharp divergence v
Mean-cost divergence v

NN NI TR

v X

ANENENENEN
ANENENENEN

alignments. The probability of A given C € R™*" is

o =Dp(=(A C) /)
P (4:C) = ZA/eA(m,n)<_<A/a C)/v)

We can see (4) as the negative log-partition of (5).
For convenience, we also gather the probabilities of all
possible alignments in a vector

€ (0,1]. (5)

P+ (C) = (Py(A;C)) acaimn) € Al

where AF = {p € RF: p > 0p,p'1; = 1} is the
probability simplex. Let A be a random variable dis-
tributed according to (5). The expected alignment ma-

trix under the Gibbs distribution induced by C'is

>

AcA(m,n)

E,(C)=E,[AC]|=

(6)
Note that because the matrices in A(m,n) are binary
ones, [E,(C)];; is also equal to the marginal proba-
bility P, (A; ; = 1; C), i.e., the probability that any of
the paths goes through the cell (4, 5).

Computation. Surprisingly, even though (4) con-
tains a sum over all A in A(m,n), it can be computed
in O(mn) time by simply replacing the min operator
with min, in the original dynamic programming recur-
sion (Cuturi and Blondel, 2017). See also Algorithm
1 in Appendix A. The equivalence between (4) and
this “locally smoothed” recursion was later formally
proved using the associativity of the min, operator
(Mensch and Blondel, 2018). The expected alignment
can also be computed in O(mn) time by backprop-
agation through the dynamic programming recursion
(Cuturi and Blondel, 2017). See also Algorithm 2 in
Appendix A.

Properties. The following proposition summarizes
known properties of SDTW., (Cuturi and Blondel, 2017;
Mensch and Blondel, 2018).

P,(A;C)A € (0,1]"*".

Proposition 1. Properties of SDTW,
The following properties hold for all C € R™*™,
1. Gradient: spTwW,(C) is differentiable every-
where and its gradient is the expected alignment,

Vesprw, (C) = E,(C) € (0,1]™*".

2. Concavity: sDTw.(C) is concave in C.

3. Variational form: letting H(p) = —(p,logp),

(p,s(C)) —vH(p)

min

SDTW,(C) =
+(C) pEAIAGm)|

(7
where S(C) = (<Aa C>)A€A(mmn) € R|A(m,n)|
4. Scaling:  spTw,(C) ~vspTW1(C'/7),
E,(C) = E\(C/) and py(C) = p1(C/7).
5. Asymptotics: DTW(C) . spTW,(C) and
7

6. Lower and upper bounds:

DTW(C) —vlog|A(m,n)| < sbTw,(C) < DTW(C).

Note that spTw,(C(X,Y)) is generally neither con-
vex nor concave in X and Y, as is the case when C is
the squared Euclidean cost (1). A notable exception
is C(X,Y)=-XY", for which spTw.,(C(X,Y)) is
concave in X and Y (separately).

Use as a loss function. The differentiability of
SDTW, makes it particularly suitable to use as a loss
function between time series, of potentially variable
lengths. An example of application is the computa-
tion of Fréchet means (1948) with respect to SDTW.,.
Specifically, given a set of k time series Y] € R™ %9,
..., Y, € R4 we compute its average (barycenter)
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according to SDTW,, by solving

k
argmin w; SDTW,(C(X,Y;)), (8)
X eRmX d i=1

where w = (w1, ..., wy) € R¥ is a vector of pre-defined
weights. When the time series Y7, ..., Y}, have differ-
ent lengths, a typical choice would be w; = 1/n;, to
compensate for the fact that SDTW,, increases with the
length of the time series. Although it is non-convex,
objective (8) can be solved approximately by gradient-
based methods. Compared to DTW barycenter aver-
aging (DBA) (Petitjean et al., 2011), it was shown that
smoothing helps to avoid bad local optima. Using the
chain rule and item 1 of Proposition 1, the gradient of
sDTW,(C(X,Y)) wrt. X is

Vxsprw, (C(X,Y)) = (JxC(X,Y))"E,(C(X,Y)).

(9)
Here, we assume that C' is differentiable and Jx de-
notes the Jacobian matrix of C(X,Y) w.r.t. X, a lin-
ear map from R™*4 to R™*" (its transpose is a linear
map from R™X" to R™*X4),

2.3 Global alignment kernel

Although it was introduced before soft dynamic time
warping, the global alignment kernel (Cuturi et al.,
2007) can be naturally expressed using SDTW., as

KS(X,Y) = exp(—spTwW1(C(X,Y) /7).  (10)

Using a constructive proof, it was shown that (10) is a
positive definite (p.d.) kernel under certain cost func-
tions and in particular with

[C(X,Y)]i; = 6(wi, yi) + log(2 — exp(=d(wi, yi)),

(11)
where 6(x,y) = 1|z — y[|3. In the one-dimensional
case (d = 1), we show in Appendix B.4 that

[C(X,Y)]ij = llei — yjll, (12)

also has the property that the kernel (10) is p.d. Using
these costs, (10) can be used in any kernel method,
such as support vector machines. The positive defi-
niteness of (10) using the squared Euclidean cost (1)
has to our knowledge not been proved or disproved
yet.

3 New differentiable divergences

In this section, we begin by pointing out potential lim-
itations of soft-DTW. We then introduce two new di-
vergences, the soft-DTW divergence and its sharp vari-
ant, which aim to correct for these limitations. We
study their properties and limit behavior.
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Figure 2: Denoising effect of soft-DTW. We show
the result of argminx SDTW,(C(X,Y")), solved by L-
BFGS with X = Y as initialization, for two values
of 7. As stated in Proposition 2, SDTW., with v > 0
and squared Euclidean cost never achieves its mini-
mum at X =Y. While this denoising can be useful,
this means that SDTW.,, is not a valid divergence.

Limitations of soft-DTW. Despite recent empiri-
cal successes, soft-DT'W has some inherent limitations
that were not discussed in previous works. The follow-
ing proposition clarifies these limitations.

Proposition 2. Limitations of SDTW,
The following holds.

1. For all C € R™", v — sDTW,(C) is non-
increasing, concave, and diverges to —oo when
v — 4o00. In particular, there exists o € [0, 00)
such that SDTW(C) < 0 for all v > 7o.

2. For all cost functions C satisfying A.2, X €
R™*4 gnd ~ € [0,00), SDTW,(C(X, X)) < 0.

3. For the squared Fuclidean cost (1) and any
v € (0,00), the minimum of SDTW,(C(X,Y))
s not achieved at X =Y.

A proof is given in Appendix B.3. Proposition 2
shows that that there exists values of v or C for
which SDTW, (C) is negative. Non-negativity is a use-
ful property of divergences and the fact that spTw,
does not satisfy it can be a nuisance. More problem-
atic is the fact that spTw, (C(X,Y)) is not minimized
at X =Y. This is illustrated in Figure 2. While the
denoising effect of soft-DTW can be useful, we would
expect a proper differentiable divergence to be zero
when the two time series are equal.
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Soft-DTW divergences. To address these issues,
we propose to use for all X € R™*? and Y € R**¢

DS(X,Y) = spTw,(C(X,Y))
—%SDTWW(C(X, X))

—%SDTWW(C(Y,Y)).

Since it is based on soft-DTW, we call it the soft-DTW
divergence. Sinkhorn divergences (Ramdas et al.,
2017; Genevay et al., 2018; Feydy et al., 2019), which
are divergences between probability measures based
on entropy-regularized optimal transport, use similar
correction terms.

Sharp divergences. The variational form of SDTW,,
(Proposition 1) implies that it can be decomposed as
the sum of a cost term and an entropy term,

SDTW, (C) = (B, (C),C) —vH(p,(C)).  (13)
On the other hand, we have
pTW(C) = (A*(C), C).

Since E,(C) — A*(C) when v — 0, this suggests a
new discrepancy measure,

SHARP. (C) = (E,(C),C). (14)

It is the directional derivative of sDTW,(C) in the
direction of C, since E.(C) = VesbTw,(C). In-
spired by Luise et al. (2018), who studied a similar
idea in an optimal transport context,we call it sharp
soft-DTW, since it removes the entropic regularization
term —vH (p,(C)) from (13). Its gradient is equal to

1
VcSHARP, (C) = EW(C)JWV%SDTWW(C)C e R™*™,

(15)
where V4sDTW,(C)C is a Hessian-vector product
(that can be computed efficiently, as we detail be-
low). The gradient w.r.t. X is obtained by the chain
rule, similarly to (9). Although SHARP, is trivially
non-negative, it suffers from the same issue as SDTW,,
namely, SHARP,(C(X,Y)) is not minimized at X =
Y. We therefore propose to use instead

S5C(X,Y) = sHARP,(C(X,Y))
—%SHARPV(C(X, X))

—%SHARPV(C(Y,Y)).

We call it the sharp soft-DTW divergence.

Validity. We remind the reader that in mathemat-
ics, a divergence D is a function that is non-negative
(D(X,Y) > 0 for any X,Y) and that satisfies the
identify of indiscernibles (D(X,Y) = 0 if and only if
X =Y). By construction, we have Dg(X,X) =0
and SY(X, X) = 0 for all X € R™*?. Moreover, the
following result shows that Dg is a valid divergence,
under some assumptions on the cost C.

Proposition 3. Valid divergence.

Let v > 0. If C is the cost defined in (11) with
d € N, or, if C is the absolute value (12) with
d =1, then Dg(X,Y) > 0 for all X € R™x4
andY € R™ ¥, and DSV(X7 Y) =0 if and only if
X =Y. Therefore, Dg is a valid divergence.

A proof is given in Appendix B.4. This implies that,
for the costs (11) and (12), DS(X, Y') is uniquely min-
imized at X =Y. The proof relies on the fact that the
global alignment kernel (10) is positive definite under
these costs. Unfortunately, since the positive definite-
ness of (10) under the squared Euclidean cost (1) has
not been proved or disproved, the same proof tech-
nique does not apply. Nevertheless, we can prove the
following.

Proposition 4. Stationary point under cost (1)
If C is the squared FEuclidean cost (1), then
X =Y is a stationary point of Dg(X,Y) and
SYUX,Y) wrt. X e R for all Y € R4,

A proof is given in Appendix B.6. Based on Propo-
sition 4 and ample numerical evidence (cf. Appendix
B.5), we conjecture that DS'(X,Y) and Sg(X, Y) are
also non-negative under the squared Euclidean cost.

Asymptotic behavior. We now study the behav-
ior of our divergences in the zero and infinite temper-
ature limits, i.e., when v — 0 and v — oco. As we
saw, E.(C) is the expected alignment matrix under
the Gibbs distribution P (A;C). Let A be a random
alignment matrix uniformly distributed over A(m,n),
i.e., independent of the cost matrix C. Replacing
E.(C) with E[A] in (14), we obtain the mean cost,
the average of the cost along all possible paths,
MEAN_cOST(C) = (E[A],C)
1
=———~ Y (AC).(16)
[A(m, ) AcA(m,n)

We also define the mean-cost divergence,

MY (X,Y) = MEAN_COST(C(X,Y))

_ %MEAN,COST(C(X7 X))

1
_ §MEAN,COST(C(Y7 Y)).
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It bears some similarity with energy distances (Bar-
inghaus and Franz, 2004; Székely et al., 2004), with
the key difference that the probability distribution is
over the alignments, not over the time series.

We now show that our proposed divergences are all
intimately related through their asymptotic behavior,
and that Dg and S$ share the same limits to the right
when m = n but not when m # n.

Proposition 5. Limits w.r.t. 7y

FordllC=C(X,Y) e R™" m=n:

pTW(C) +— DS(X,Y) —— MY(X,Y).

0y y—00

ForadlC=C(X,Y) e R™™ " m #n:

pTW(C) +— DS(X,Y) —— .
Oy

Y00

ForallC=C(X,Y) e R™*":

DTW(C) +—— S$(X,Y) —— MY(X,Y).
0

Y— 00

Note that the mean-cost divergence was obtained
mostly as a side product of our limit case analysis. As
we show in our experiments, it performs worse than
the (sharp) soft-DTW divergence in practice. There-
fore we do not recommend it in practice.

Computation. The value, gradient, directional
derivative and Hessian product of SDTW.,(C) for C €
R™*™ can all be computed in O(mn) time (Cuturi and
Blondel, 2017; Mensch and Blondel, 2018). Therefore,
both Dg(X,Y) and Sg(X,Y) take O(max{m,n}?)
time to compute. Sharp divergences take roughly twice
more time to compute, as computing a Hessian-vector
product requires one more pass through the dynamic
programming recursion. The mean alignment and
mean cost can also both be computed in O(mn) time.
We detail all algorithms in Appendix A.

Comparison with Sinkhorn divergences. Since
our proposed divergences use similar correction terms
as Sinkhorn divergences, we briefly review them and
discuss their differences. Given two input probability
measures a« € A" and B8 € A", entropy-regularized
optimal transport is now commonly defined as

OT,(e,3) == min

T.C KL(T 17
pamin(1.C)+9KL(T]|as ). (17

where KL is the Kullback-Leibler divergence and
U(a,B) is the so-called transportation polytope
(Peyré et al., 2019). To address the entropic

bias of OT,, Sinkhorn divergences include correc-
tion terms, i.e., they are defined as (a,8) —
OT, (e, B) = 0T, (c, ) — 20T, (3, B). There are
however two important differences between OT., and
SDTW,(C(-,-)). First, the former is convex in its in-
puts (separately) while the latter is not. This means
that the proof technique for non-negativity of Sinkhorn
divergences (Feydy et al., 2019) does not apply to the
soft-DTW divergence. Indeed our proof technique for
Proposition 3 is completely different than for Sinkhorn
divergences. Second, the entropic regularization in
SDTW, is on the probability distribution (Proposition
1), not on the soft alignment, as is the case for the
transportation map T in (17). Contrary to Sinkhorn
divergences, the soft-DTW and sharp divergences are
non-convex in their inputs. For time-series averaging,
an initialization scheme that works well in practice is
to use the SDTW,, solution as initialization, itself ini-
tialized from the Fuclidean mean.

4 Experimental results

Throughout this section, we use the UCR (Univer-
sity of California, Riverside) time series classification
archive (Chen et al., 2015). We use a subset contain-
ing 84 datasets encompassing a wide variety of fields
(astronomy, geology, medical imaging) and lengths.
Datasets include class information (up to 60 classes)
for each time series and are split into train and test
sets. Due to the large number of datasets in the UCR
archive, we choose to report only a summary of our
results in the main manuscript. Detailed results are
included in the appendix for interested readers. In all
experiments, we use the squared Euclidean cost (1).
Our Python source code is available on github.

4.1 Time series averaging

Experimental setup. To investigate the effect of
our divergences on time series averaging, we replace
SDTW, in objective (8) with our divergences. For
this task, we focus on a visual comparison and re-
frain from reporting quantitative results, since the
choice of evaluation metric necessarily favors one di-
vergence over others. For each dataset, we pick 10
time series Y7,..., Y10 randomly. Since the time se-
ries all have the same length, we use uniform weights
w; = -+ = wg = 1. To approximately minimize
the objective function, we use 200 iterations of L-
BFGS (Liu and Nocedal, 1989). Because the objec-
tive is non-convex in X, initialization is important.
For DTW, SDTW,, SHARP, and MEAN_COST, we use
the Euclidean mean as initialization and set v = 1.
For Dg , S$ and M, we use as initialization the solu-
tion of their “biased couterpart”, i.e., SDTW,, SHARP.,
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Figure 3: Average of 10 time series Y7, ..

MEAN_COST, respectively, and we set v = 10.

Results. We show the time series averages obtained
on the uWaveGestureLibrary_.Y dataset in Figure 3.
With DTW, the obtained average does not match well
the time series, confirming the conclusion of Cuturi
and Blondel (2017). This is because the objective
is both highly non-convex and non-smooth, render-
ing optimization difficult, despite the use of Euclidean
mean as initialization. On the other hand, the aver-
ages obtained by other divergences appear to match
the time series much better, thanks to the smoothness
of their objective function. We observe that Dg (soft-
DTW divergence), S$ (sharp divergence) and MY
(mean-cost divergence) produce different results from
their biased counterpart, SDTW,, (soft-DTW), SHARP.,
(sharp soft-DTW) and MEAN_COST (mean cost), re-
spectively. This is to be expected, since the variable
X with respect to which we minimize is involved in
the correcting term using C (X, X). The averages ob-
tained with SHARP, and S,? tend to include sharper
peaks, a trend confirmed on other datasets as well.
More average examples are included in the appendix.

4.2 Time series interpolation

Experimental setup. As a simple variation of time
series averaging, we now consider time series interpo-
lation. We pick two times series Y; and Y> and set the
weights in objective (8) to wy = m and we = 1 — 7, for
m € {0.25,0.5,0.75}, i.e., we seek an interpolation of
the two time series. We again minimize the objective
approximately using L-BFGS, with the same initial-
ization scheme and the same v as before.

., Y19, on the uWaveGestureLibrary_Y dataset.

Results. Results on the ArrowHead dataset are
shown in Figure 4. We observe similar trends as for
time series averaging. The interpolations obtained by
DTW include artifacts that do not represent well the
data. Our divergences obtain slightly more visually
pleasing results than their biased counterparts. More
examples are included in the appendix. The interpola-
tion obtained by the sharp soft-DTW includes a peak
(light green) which is slightly off, but this is not the
case of the sharp divergence.

4.3 Time series classification

Experimental setup. To quantitatively compare
our proposed divergences, we now consider time se-
ries classification tasks. To better isolate the effect of
the divergence itself, we choose two simple classifiers:
nearest neighbor and nearest centroid. To predict the
class of a time series, the well-known nearest neighbor
classifier assigns the class of the nearest time series in
the training set, according to the chosen divergence.
Note that this does not require differentiability of the
divergence. The lesser known nearest centroid clas-
sifier (Hastie et al., 2001) first computes the centroid
(average) of each class in the training set. We compute
the centroid by minimizing (8) for each class, according
to the chosen divergence. To predict the class of a time
series, we then assign the class of the nearest centroid,
according to the same divergence. Although very sim-
ple, this method is known to be competitive with the
nearest neighbor classifier, while requiring much lower
computational cost at prediction time (Petitjean et al.,
2014).

For all datasets in the UCR archive, we use the pre-
defined test set. For divergences including a v param-
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Euclidean mean SDTW Sharp SDTW Mean cost
2 2 21 21
0 0 01 0
21 21 21 —21
0 100 200 0 100 200 0 100 200 0 100 200
DTW SDTW divergence Sharp divergence Mean-cost divergence
2 2 21 21
0 0 01 0
21 21 21 —21
0 100 200 0 100 200 0 100 200 0 100 200

Figure 4: Interpolation between two time series Y; (red) and Y>3 (dark green), from the ArrowHead dataset.

eter, we select v by cross-validation. More precisely,
we train on 2/3 of the training set and evaluate the
goodness of a v value on the held-out 1/3. We repeat
this procedure 5 times, each with a different random
split, in order to get a better estimate of the goodness
of 7. We do so for v € {1074,1073,...,10*} and select
the best one. Finally, we retrain on the entire training
set using that ~ value.

Results. Due to the large number of datasets in the
UCR archive, we only show a summary of the results in
Table 2 and Table 3. Detailed results are in Appendix
C. We observe consistent trends for both the near-
est neighbor and the nearest centroid classifiers. The
mean-cost divergence appears to perform poorly, even
worse than the squared Euclidean distance and DTW.
This shows that considering all possible alignments
uniformly does not lead to a good divergence measure.
On the other hand, our proposed divergences, the soft-
DTW divergence and the sharp divergence, outper-
form on the majority of the datasets the Euclidean
distance, DTW, soft-DTW, and sharp soft-DTW. Fur-
thermore, each proposed divergence (i.e., with correc-
tion term) clearly outperforms its biased counterpart
(i.e., without correction term). This shows that proper
divergences, which are minimized when the two time
series are equal, indeed translate to higher classifica-
tion accuracy in practice. Overall, the soft-DTW di-
vergence works better than the sharp divergence.

5 Conclusion

Due to entropic bias, soft-DTW can be negative and
is not minimized when the two time series are equal.
To address these issues, we proposed the soft-DTW

divergence and its sharp variant. We proved that the
former is a valid divergence under the cost (11) for
d € N and under the absolute cost (12) for d = 1.
We conjecture that this is also true under the squared
Euclidean cost (1), but leave a proof to future work.
By studying the limit behavior of our divergences when
the regularization parameter v goes to infinity, we also
obtained a new mean-cost divergence, which is of inde-
pendent interest. Experiments on 84 time series classi-
fication datasets established that the soft-DTW diver-
gence performs the best among all discrepancies and
divergences considered.
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