
Learning Complexity of Simulated Annealing

Anonymous Author
Anonymous Institution

Abstract

Simulated annealing is an effective and gen-
eral means of optimization. It is in fact
inspired by metallurgy, where the temper-
ature of a material determines its behav-
ior in thermodynamics. Likewise, in sim-
ulated annealing, the actions that the al-
gorithm takes depend entirely on the value
of a variable which captures the notion of
temperature. Typically, simulated anneal-
ing starts with a high temperature, which
makes the algorithm pretty unpredictable,
and gradually cools the temperature down
to become more stable.

A key component that plays a crucial role
in the performance of simulated annealing
is the criteria under which the tempera-
ture changes, namely, the cooling schedule.
Motivated by this, we study the following
question in this work: “Given enough sam-
ples to the instances of a specific class of
optimization problems, can we design near-
optimal cooling schedules that minimize the
runtime or maximize the success rate of
the algorithm on average when the underly-
ing problem is drawn uniformly at random
from the same class?”

We provide positive results both in terms of
sample complexity and simulation complex-
ity 1. For sample complexity, we show that
Õ(
√
m) samples suffice to find an approx-

imately optimal cooling schedule of length
m. We complement this result by giving
a lower bound of Ω̃(m1/3) on the sample

1We call the overall runtime of the algorithm that de-
termines the cooling schedule the simulation complexity

Preliminary work. Under review by AISTATS 2021. Do
not distribute.

complexity of any learning algorithm that
provides an almost optimal cooling sched-
ule. These results are general and rely on
no assumption. For simulation complexity,
however, we make additional assumptions
to measure the success rate of an algorithm.
To this end, we introduce the monotone
stationary graph that models the perfor-
mance of simulated annealing. Based on
this model, we present polynomial time al-
gorithms with provable guarantees for the
learning problem.

1 Introduction

The goal of this work is to better understand how we
can design efficient simulated annealing (SA) algo-
rithms. Simulated annealing is a well-known heuris-
tic method to tackle hard problems. Term anneal-
ing originates from thermodynamics, referring to the
way that metals cool and anneal. Instead of the en-
ergy of the material, simulated annealing utilizes the
objective function of an optimization problem. Sur-
prisingly, the implementation of SA is very simple
as it is very similar to hill-climbing. The only differ-
ence is that instead of picking the best move in every
step, simulated annealing picks a random move. If
the selected move improves the quality of the solu-
tion, then the move is always accepted. Otherwise,
the algorithm makes the move anyway with some
probability less than 1. The probability decreases
exponentially with the badness of the move, which is
the amount by which the solution is worsened. This
is shown by ∆(E). One example of the annealing
criteria is given below:

Pr[accepting downhill move at step i] ' 1−e∆(E)/ti .

where parameter ti is the temperature of the algo-
rithm at step i which is used to determine this proba-
bility. The ti parameter is analogous to temperature

Sample complexity
Upper bound: Õ(

√
m)

Lower bound: Ω̃(
√
m)

(for our discretization approach)
Lower bound: Ω̃(m1/3)

(for any learning algorithm)
Simulation complexity

identical paths separate paths separate paths + all-satisfied
exact solution exact solution (O(log n|T |), 0) approximation

in time in time in time
poly(m,n, |T |) poly(m,n, |T |n) poly(m,n, |T |)

Table 1: Overview of our results. Here, m denote the length of cooling schedule. In the computational
results, T is the set of the discretized temperatures and n is the number of samples used in the learning
algorithm.

in an annealing system at time step i. At higher val-
ues of temperature, downhill moves are more likely
to occur. As the temperature tends to zero, they
become more and more unlikely, until the algorithm
behaves more or less like hill-climbing. In a typical
SA optimization, the temperature starts at a high
value and is gradually decreased according to a cool-
ing schedule. Simulated annealing is used for a broad
class of computational problems ranging from SAT
to travelling salesman problem, to VLSI routing,
etc. as experiments strongly support the efficiency
of simulated annealing in practice [3, 17, 18, 26], and
still achieving empirical success in various applica-
tions recently [11, 12, 21, 22, 23, 35].

Indeed the efficiency of an SA algorithm signifi-
cantly depends on its cooling schedule [1, 4, 18,
19, 20, 27, 28, 30, 32]. One simple cooling sched-
ule is to start with a single temperature t0 and
decrease the temperature linearly with a rate of α
to obtain lower temperatures gradually. We use
this simple cooling strategy to present illustrating
examples, nonetheless we consider a more gener-
alized setting in this work. The literature has
also gone beyond simple cooling schedules and sev-
eral non-linear methods have been proposed so far
[1, 4, 18, 19, 20, 27, 28, 30, 32]. It is not hard to
imagine that even for different instances of the same
problem, the optimal cooling schedules may vary sig-
nificantly.

In our setting, we focus on a family of problem
instances (available via sample access to an un-
known distribution) and tend to maximize the av-
erage score over all instances. This approach is
known as the PAC-style modeling which has been
used to analyze a variety of other application-specific
algorithms, including branch and bound algorithms,

center-based/linkage-based clustering, and combina-
torial auctions[5, 8, 9, 14]. We refer the readers to
[29] for a more comprehensive review of this area.
Generally in algorithm design, we need to incorpo-
rate an unknown set of instances, since otherwise for
any given instance there is an algorithm that has the
solution memorized. Typically one does this worst-
case over an instance family, and with this analysis
we are at least aiming to bring that closer to the
specific instances by performing near-optimally with
respect to the actual distribution over instances at
hand.

Therefore in this work, we take a learning approach
towards designing simulated annealing algorithms,
using the PAC-style model for data-driven algorithm
design introduced in [14] and used to analyze a wide
range of important families of algorithms and heuris-
tics in [5, 7, 8, 9]. In brief, we consider a distribution
D over a specific class of instances of a presumably
hard problem (such as SAT) and aim to design near-
optimal cooling schedules for such instances, analyz-
ing both sample complexity (the number of instances
from D we need to observe) and simulation complex-
ity (runtime) needed for learning. Our approach is
particularly motivated by the work of [9].

2 Prelimnaries

As aforementioned, an SA algorithm makes a ran-
dom walk on the nodes of a search graph. Each
node of this graph represents a potential (not neces-
sarily optimal) solution for the underlying problem
and the energy of a node is a value reflecting how
close this solution is to an optimal solution. We as-
sume that for each node, its energy and neighbors
are available via oracle queries. One thing to keep

2

in mind is that the number of nodes in this huge
search graph may be exponentially large and that
we only have local views on the nodes of the graph.
For instance, when the underlying problem is SAT,
we may have 2k nodes where k is the number of vari-
ables in the SAT problem and each node represent
an assignment of true/false to the variables.

Crucial to any cooling schedule are the parameters
that maximize its performance. This could be as
simple as just a real value specifying the cooling rate
or as complicated as a sequence of variables deter-
mining the exact value of the temperature at every
step. Take for instance, the simplest case in which a
parameter t0 and linear cooling rate α formulate the
temperature at every step. In this case, at step i,
ti = t0(1 − αi) formulates the temperature. There-
fore, the learning algorithm has to find the optimal
pair (t0, α) that maximizes efficiency. It is an easy
exercise to see that the learning problem is actu-
ally not very challenging in this case. Although this
simple formulation involves infinitely many (t0, α)
pairs that need to be searched over, via careful dis-
cretization techniques, one can narrow down the set
of possible (t0, α) pairs to polynomially many can-
didates and iterate over them to find the optimal
cooling schedule2. Samples are used to determine
how well each cooling schedule performs in practice.
More precisely, samples are used to approximate the
score of a cooling schedule.

However, we go beyond linear cooling schedules and
include more sophisticated systems (i.e., non-linear
cooling schedules). Our setting is pretty general:
we denote the cooling schedule by a vector E =
〈t1, t2, . . . , tm〉 where m is the number of steps our
algorithm takes and ti specifies the temperature at
time i. Any non-increasing sequence of values makes
a valid cooling schedule. The problem becomes more
challenging with this representation; Even after dis-
cretizing the temperatures, still there are exponen-
tially many cooling schedules and determining an
approximately optimal schedule is non-trivial.

Recall that each node of the search graph corre-
sponds to a potential solution for the underlying
problem. In case of SAT for instance, each node
can be an assignment of the true/false values to the
variables. We label a subset of nodes in the search
graph as acceptable solution nodes. These nodes cor-
respond to solutions that are acceptable for the un-
derlying problem. In the case of SAT, a node whose
corresponding solution satisfies all of the clauses is

2This improvement comes with a small error to the
quality of the solution.

a solution node. The score of an SA algorithm with
a specific cooling schedule is the likelihood of reach-
ing an acceptable solution node after a fixed number
of steps. We would like to point out that although
a reasonable energy function for the nodes of the
search graph gives higher energies to the acceptable
solution nodes, we make no particular assumption
on the energies in our setting. We remark that if
the cooling schedule is available, it is computation-
ally easy to evaluate the score of the algorithm. We
run the SA algorithm according to the cooling sched-
ule and once it terminates we find out if the solution
found by the algorithm is acceptable for the prob-
lem. By repeating this process enough times, we
can estimate the score of the cooling schedule very
accurately.

Indeed the optimal parameters may vary for different
problems or even for different instances of the same
problem and therefore we need to also incorporate
the problem instances in our setting. To illustrate
the importance of the cooling schedule, consider the
example shown in Figure 2. In the example shown
in Figure 2, there is one solution node (colored in
red) which has an energy of 3n and the search graph
consists of a clique of vertices with distinct energies
one of whose vertices has a path to the solution node.
The energies of the nodes of this path are increasing.
Let us assume that the initial state of the algorithm
is the node colored in green. It is easy to verify
that an extreme strategy that never accepts down-
hill moves has zero chance of reaching the solution
node and another extreme strategy that always ac-
cepts all downhill moves requires a cubic number of
steps to reach the solution node. However, a strat-
egy that accepts each downhill move with probabil-
ity 1/2 only requires O(n2) steps in expectation to
reach the solution node.

Motivated by this example, we define our general
problem in the following way:

Problem Let D be a distribution over a specific
class of instances3 of a hard problem (such as SAT).
Denote the set of valid (combination of) parameters
for the SA algorithm by F = {E1, E2, . . . , }. More-
over, let for an instance I ∼ D and a set of parame-
ters E ∈ F , score(I, E) be a function that reflects how
well an SA algorithm with parameters E works on in-
stance I. This is basically the likelihood of finding
a solution, if our SA algorithm uses E as its cooling
schedule. Our goal is to find a set of parameters

3For instance industrial instances of SAT.
3

1
2

3

4

... ...

. . .
n − 2

n − 1

n 2n + 1 2n + 2 2n + 3 2n + 4 3n

2n − 1

2n

Figure 1: A search graph with 3n nodes is illustrated
in this figure. The numbers on the nodes show their
energy or in other words goodness of the nodes. In
this example, we consider the red node to be the
only solution of the problem.

E ∈ F that maximizes efficiency. In other words,

EI∼D[score(I, E)]

is (approximately) maximized. We assume through-
out this paper that the scores improve as energy in-
creases. Also, a downhill move is a move which hurts
the energy of a node and thus is accepted with some
probability smaller than 1. However, whenever the
score of a node does not hurt in a move, such a move
is always made.

We clarify the notation by a simple example. Let us
go back to the basic setting in which we formulate
the temperature at each step with a pair (t0, α). In
this case, F = R+ × (0, 1/m) would be the set of
all valid parameters. Moreover, a natural example
for score is the probability of finding a correct so-
lution after a given (say m) number of steps. This
way, the problem is to find a temperature t0 and a
cooling rate α that maximize the success probabil-
ity after performing m moves of SA. Our attention
in this work is focused on an even more general set-
ting. We denote the cooling schedule by a sequence
of non-increasing temperatures 〈t1, t2, . . . , tm〉 for a
fixed m. Thus, in our setting we have F ⊆ (R+)m

subject to the temperatures being non-increasing.
For simplicity, and without loss of generality, we as-
sume that the energies of the nodes are integer num-
bers in range {1, 2, . . . , emax}.

Any SA algorithm basically makes a random walk
on a search graph in which every node represents a
potential/partial solution for the problem. For in-
stance, when the underlying problem is SAT, every
node of the search graph is a true/false assignment
to the variables of the program. The energy of each

node is a local guess on how well that solution sat-
isfies the goals of the problem. For the case of SAT
for instance, one simple energy function for a node
is the number of clauses the corresponding solution
satisfies. In our setting, we make no assumption on
the energy of the nodes though in practice we expect
that a higher energy signals a better solution. Since
an SA algorithm makes a random walk, its state at
every step can be shown via a distribution over the
nodes of the search graph. Initially, this distribu-
tion shows the likelihood of each node being used as
the starting solution and as the algorithm proceeds,
the distribution changes based on the criteria of the
random walk. The final state of the algorithm rep-
resents the likelihood of each node reported as the
final solution. Thus, we wish the final distribution
of our algorithm to be highly concentrated on the
solution nodes.

We evaluate our learning algorithm based on two
quantities: sample complexity and simulation com-
plexity4. The former measures the number of sam-
ples one needs in order to find an (approximately)
optimal cooling schedule and the latter measures the
runtime of the learning algorithm in order to find an
optimal cooling schedule.

Our main results are concerned with the sample
complexity of the learning problem. As a typical
challenge for learning problems, we have to face the
issue that the space of the problem is infinitely large
as there are infinitely many cooling schedules for an
SA algorithm. In order to prove a bound on the
sample complexity, the first step is to show that by
losing a small additive error, we can bound the space
of the solutions to a finite set. We begin by explain-
ing this in Section 3. We also propose a computa-
tional model for evaluating the simulation complex-
ity of the problem and design efficient algorithms
with theoreteical guarantees in Section 4.

3 Sample Complexity

In this section, we give an analysis for the sample
complexity of the problem. Recall that, for any
problem instance I and any sequence of m tem-
peratures E = 〈t1, t2, . . . , tm〉, we define score(I, E)
to be the probability of finding an acceptable so-
lution of I using temperatures in E . We say E
is ε-approximately optimal, if EI∼Dscore(I, E) ≥
supE′ EI∼Dscore(I, E ′) − ε. That is, no other cool-

4This is equivalent to the notion of running time if we
assume that our SA procedure halts after a polynomial
number of steps.

4

ing schedule of the same length can achieve a signif-
icantly higher success rate. Our goal is to provide
upper and lower bounds on the number of i.i.d. sam-
ples from D required for learning an ε-approximately
optimal cooling schedule.

3.1 Warm-Up: A Crude Upper Bound

We first show that although the space of the prob-
lem is infinitely large, only a polynomial number of
samples suffice to approximate the optimal solution
within desirable guarantees. This step is quite clas-
sic as discretization is the typical approach to bound
the solution set. One of the difficulties in finding
near-optimal cooling schemes is that there are in-
finitely many options available. We show that by
discretizing the temperatures into Õ(m/ε) different
values, we only lose an additive error of ε in the
success rate when running the algorithm on any in-
stance of the problem. Note that, we are not mak-
ing any assumptions yet: we only rely on the fact
that the algorithm is evaluated based on the success
rate. Discretizing the temperature makes design-
ing efficient algorithms possible too as we will show
in Section 4. Our main result is an upper bound
of Õ(

√
m) for the sample complexity which is ex-

plained in details later in Section 3.3. Here we start
as a warm-up by giving an upper bound of Õ(m).

Theorem 3.1. The sample complexity of comput-
ing an ε-approximately optimal cooling schedule with
length m is bounded by O

(
ε−2

(
m log(memax

ε)
))

.

Roughly speaking, the total number of samples we
need in order to approximate the optimal cooling
schedule is logarithmic in terms of the number of
candidate solutions we have. Initially, the space of
cooling schedules is infinitely large, however, a dis-
cretization technique can reduce the space of can-

didate solutions to 2Õ(m) many. More precisely,
we define a discretized temperature set T whose
size is Õ(m) and show that there is an almost op-
timal solution that only uses the temperatures in
T . This reduces the space of candidate solutions

to (O(m))m ≤ 2Õ(m) which implies that the sample

complexity is bounded by Õ(m).

The only non-trivial part of the above analysis is to
show that a discretized set of temperatures with size
Õ(m) is enough to approximate the optimal cooling
schedule within an arbitrarily small additive error.
Let us fix an ε > 0 and assume that the goal is to
construct a discretized set of temperatures T such
that there is a cooling schedule that only uses the
temperatures of T and its score is at most ε smaller

than the optimal solution. One convenient way to
construct such a set is to make sure for each t > 0
there is a t′ ∈ T such that for any 1 ≤ x ≤ emax

we have |e−x/t − e−x/t′ | ≤ ε/m. Then we can im-
ply that if we replace every temperature ti of the
optimal solution with its corresponding t′i of the dis-
cretized set, each step we make a different decision
with probability at most ε/m and thus the total er-
ror is bounded by ε. That is, with probability 1− ε
our algorithm traverses the exact same path as had
we not modified the optimal cooling schedule. It is
not hard to prove that such a condition can be met
by having O(m log emax) elements in |T | which gives
us an almost linear bound on the sample complexity.

Up to this point we show that an almost linear
number of queries is sufficient for approximating
an optimal cooling schedule. This raises two ques-
tions: i) Can we improve the bound such that the
dependence on m is subpolynomial? In particular,
do polylogarithmically many samples suffice for our
purpose? ii) If the answer to the first question is
negative, can we prove a linear lower bound on the
sample complexity? As we show in the following,
the answer to both questions is negative!

3.2 A Polynomial Lower Bound

We present a negative answer to the first question
above. Although this section gives us a lower bound,
our improved upper bound in the next section is ac-
tually inspired by this lower bound. The first at-
tempt to prove a lower bound is to understand the
limit of the discretization technique explained above.
Therefore, we ask the following question: “assuming
that our algorithm first constructs a discretized set
of temperatures and then seeks to find an optimal
solution that only uses the discretized temperatures,
how many samples do we need?” Indeed, the answer
to this question does not imply a lower bound in gen-
eral, but it does give us an insight into the problem
which leads to a general lower bound.

To answer the above question, we need to under-
stand what is the smallest set T of temperatures that
can be used to make a cooling schedule whose score
is very close to the optimal solution? The search
graph shown in Figure 2 proves that |T | should be

at least as large as Ω̃(
√
m), otherwise the guarantee

may not hold.

In the search graph of Figure 2, we set m′ = m/100.
For a fixed τ , we set x in a way that e−x/τ = 1/2,
that is if the temperature is equal to τ the prob-

5

ability of making a downhill move is exactly equal
to 1/25. The goal of this search graph is to start
the SA algorithm from the initial node and the only
acceptable solution node is the final node.

0 x 2x
. . . √

m′x

√
m′ + 1

3x (
√
m′ − 1)x

0 x 2x
. . . √

m′x3x (
√
m′ − 1)x

0

0

initial

final

upper path

lower path

Figure 2: The search graph is depicted for a fixed
temperature τ . x = τ ln 0.5 is chosen in a way that
e−x/τ = 1/2 holds.

The search graph of Figure 2 is particularly inter-
esting because of the following observations: i) A
cooling schedule of length m only having temper-
ature τ is guaranteed to reach the final node with
high probability. ii) A cooling schedule of length
m that does not contain any temperature in range
[τ(1 − Ω̃(m−1/2)), τ(1 + Ω̃(m−1/2))] has very little
chance to reach the final node. As a consequence,
if the multiplicative distance between two consecu-
tive temperatures in our discretized set is more than
1+Ω̃(m−1/2), one can delicately design such a search
graph for which our discretization performs poorly
while the optimal solution gets a score close to 1.
This implies that the size of the discretized set has
to be at least Ω̃(

√
m) to prove a bound.

While the above argument shows that our specific
algorithm definitely needs Õ(

√
m) samples6, it does

not give a lower bound for general algorithms beyond
our discretization approach. However, we show in
Section B with a slightly more advanced analysis
that any algorithm requires at least Ω̃(m1/3) samples
from the distribution in order to guarantee a non-
trivial bound. While the heart of the proof is based
on the same search graph, in order to extend the
observation to all algorithms, we slightly lose on the
exponent of m in the lower bound.

Theorem 3.2. Even if emax = 2Θ̃(1), any learning
algorithm requires at least Ω̃(m1/3) samples from the
distribution in order to obtain an additive error less
than 0.5.

Before proceeding to the main result (Õ(
√
m)

5For now, we assume x can be an arbitrary real num-
ber but this comes without loss of generality.

6See the proof of Theorem 3.3 for more details.

sample complexity upper bound), we would like to
note an implication of this result in the context
of simulated annealing. There have been several
attempts in the literature to understand the com-
plexity of simulated annealing. One question asked
in the literature from both theoretical and practical
standpoints is if there is a meaningful difference
between Simulated Annealing and the Metropolis
Algorithm [15, 36]. Metropolis is a special case
of simulated annealing where the temperature
does not change by time. That is the cooling
schedule repeats a single temperature m times.
While this observation was made previously, our
lower bound also implies that (from a theoretical
standpoint) there is a meaningful difference between
the two algorithms as Metropolis can be learned
with much fewer samples which shows there are
cases for which simulated annealing performs much
better. Another example is when the temperature
drops linearly for which the sample complexity is
small. More generally, this lower bound actually
shows a gap between SA and any special case
of SA whose cooling schedule has complexity
smaller than m1/3. For instance, it shows that an
extended version of Metropolis that uses m1/3−ε

many different temperatures in the cooling sched-
ule is not competitive with the general SA algorithm.

3.3 Tightening the Upper Bound

Perhaps the more surprising result of this paper
is that the sample complexity can be improved to
Õ(
√
m):

Theorem 3.3. The sample complexity of comput-
ing an ε-approximately optimal cooling schedule with
length m is bounded by O(ε−2

√
m log(memax

ε)).

Our algorithm is almost identical to the one ex-
plained in Section 3.1 except that we construct a
smaller set T whose size is bounded by Õ(

√
m).

Then we argue that the total number of cooling
schedules with this temprature set is bounded by

2Õ(
√
m) which leads to sample complexity Õ(

√
m).

Below we provide a sketched version of the proof.
A complete version can be found in appendix. The
first pointer to this result is that there is no clear way
to improve the lower bound of Section 3.2. Keep in
mind that for the lower bound, we construct a search
graph for which a particular cooling schedule works
well, but if we multiply (or divide) each temperature

by a small factor 1+Ω̃(m−1/2), the score of the algo-
rithm drops significantly. Obviously, if one comes up

6

with a better search graph for which a multiplicative
factor of 1+Ω̃(m−1/2−ε) breaks the solution, then it
shows that it is impossible to obtain an upper bound
of Õ(

√
m) with the discretization technique. Failure

to make a better bad instance brings us to the pos-
sibility that maybe massaging each temperature by
a multiplicative factor of 1 + Õ(m−1/2) cannot hurt
the score of the cooling schedule significantly. We
show that this is indeed the case!

Recall that in Section 3.1, in order to prove that
the discretized cooling schedules perform almost op-
timally, we show that there is a discretized cooling
schedule that behaves the same as the optimal cool-
ing schedule with probability 1 − ε. That is, in the
unlikely event of making a different decision (we call
it a mistake) we give 0 credit to our discretized cool-
ing schedule, yet we prove that the score is pretty
close to that of the optimal. Clearly, this is a loose
upper bound as we do not expect to lose too much
by making a single mistake.

We illustrate the idea with a toy problem. Consider
a complete binary tree of depth m. The root has
depth 0 and the leaves have depth m. Each leaf is
attributed to a score which is either 0 or 1. The score
of each non-leaf node is the average of the scores of
its children. In other words, if we make a random
walk towards the leaves with equal probability of
going to each child, the score of a node is equal to
the probability of reaching a leaf with score 1 us-
ing the random-walk. Let us call this even-random-
walk and consider a different type of random-walk,
namely uneven-random-walk. The uneven-random-
walk is pretty much the same as the even random
walk, except that at some depth i uniformly drawn
from [1,m], an adversary may change the decision
of which child to go to. The toy-problem is to un-
derstand how much the score of a node hurts by re-
placing even-random-walk by uneven-random-walk.

To study this, we attribute to each node a devia-
tion value which is equal to the absolute value of
the difference between the scores of it children. This
roughly captures an upper bound of the score we
lose, if we traverse the edges of that node with a
different criteria (other than 1/2, 1/2). Thus, we
need to know what is the average deviation values
of the nodes in an even-random-walk? This roughly
tells us how much we lose in the score, if an adver-
sary changes the criteria of the walk at some random
point!

The upper bound on the answer is O(1/
√
m) no

matter how the leaves are scored. It goes beyond
the scope of this paper, but we mention the idea

in the hope that it helps a mindful reader decipher
some of steps that we take in the proof of Lemma
C.1. Define a deviation function f(x) : [0, 1] →
[0, 0.25] = x − x2. One can show by induction that
starting from each node v of depth i, the average
sum of deviations in a random walk is bounded by
O((f(sv) + (m− i)/m)

√
m) where sv is the score of

node v (obtained via even-random-walk).

The toy problem illustrates that in the event that
our optimal solution makes decisions with probabil-
ity 1/2, 1/2 (which is indeed the case for our lower
bound), we can afford to make O(

√
m) mistakes and

not lose much in the average score. This does not
hold if the decisions are made with different proba-
bilities. To see this, consider the case that only the
rightmost leaf has a score 1 and the rest of the leaves
have scores 0. Moreover, the probability of going to
the right child in the random walk is 1−ε/m and the
probability of going to the left child is ε/m. In this
case, the average deviation is Ω(1) when we start
from the root and make a random walk according to
the probabilities.

The next observation is that when the decisions are
not necessarily 1/2, 1/2 say p, 1− p, multiplying the
temperature by a factor of 1 + x changes the proba-
bilities by at most max{ln 1/p, 1}min{p, 1−p}x (see
Observation C.5). That is, as the probabilities de-
viate from 1/2, the probability of making a “mis-
take” drops linearly. More precisely, the multiplica-
tive term min{p, 1− p} gives us extra power to deal
with these situations. For instance, if p < 1/

√
m

or p > 1 − 1/
√
m then the probabilities change by

an additive error of Õ(1/m) when we multiply the

temperature by a factor of 1+ Õ(m−1/2). This error
is tolerable since we can afford to have an error of
ε/m for each decision we make.

The proof is based on the above ideas but the anal-
ysis is quite involved and rather cryptic by nature.
We show in Section C that if the temperatures in
the discretized set are at most 1 + Õ(m−1/2) away
from each other (multiplicative), then one can make
a cooling schedule by the discretized temperatures
whose score is arbitrarily close to that of the opti-
mal solution. This then can be used to obtain an
upper bound of Õ(

√
m) on the sample complexity

of the problem.

4 Simulation Complexity

The second part of the paper is concerned with the
computational aspects of the learning problem. Al-
though we prove that the sample complexity is poly-

7

nomial without any assumptions, it seems that extra
assumptions are necessary for the runtime concerns.
Notice that we make no assumption on the under-
lying problem and the only information available to
us when we sample an instance of the problem is
a huge search graph containing exponentially many
vertices. Even if we bring the underling problem into
the setting, it is not clear how we can make use of
the conditions of a problem such as SAT to find the
right cooling schedule. Keep in mind that the com-
plexity of the underlying problem is the reason we
use simulated annealing in the first place. Therefore,
we introduce a stylized model to make the problem
more tractable. We call our model the monotone sta-
tionary graph. Although the model relies on extra
assumptions, it features nice properties that make it
particularly suitable for our purpose.

First, it gives a compact representation for every in-
stance of the problem. Up to this point, we treated
each problem instance as a huge search graph with
exponentially many vertices which is too big to store
in the memory let alone optimizing the solution over
it. Our model represents the search graphs in a more
efficient way. Next, notice that even if we fix a well-
defined representation for a search graph, one should
be able to recover the new representation of a prob-
lem instance without spending too much time (and
of course without taking a complete look at the al-
ready exponentially large search graph). Our model
makes it possible to recover the stationary graph in
polynomial time. Finally, the any model used for
our problem has to give us enough structure so that
finding an approximately optimal cooling schedule
becomes polynomially tractable in the new setting.
This is the most important feature of our model.

In our model, we represent each instance of the prob-
lem as a graph. Vertices of this graph correspond to
the temperatures in our discretized set. Intuitively,
for a temperature t ∈ T , its corresponding vertex in
the graph represent the state of an SA algorithm that
runs infinitely many steps with temperature t. Thus,
when the state of our algorithm is close to such a sta-
tionary distribution, we assume that our algorithm
is pointing at the corresponding vertex in the mono-
tone stationary graph. We draw edges between the
vertices to specify how many steps we need to take
in the SA algorithm to move between the stationary
distributions. Since in our model, the state of an
algorithm can be approximated with a node in this
graph, we can also determine its score by examining
the corresponding stationary distribution.

Therefore, given n instances of the underlying prob-

lem, our goal is to find a cooling schedule that ob-
tains the highest average score for these instances by
our model. We consider the following three settings
and provide a solution for each one of them:

(i). identical-paths: in this setting, we assume that
the optimal cooling schedule traverses the same
path for all n instances.

(ii). separate-paths: in this setting, we allow the op-
timal solution to use different paths for different
instances.

(iii). separate-paths + all-satisfied: This is a special
case of the second setting where we know that
there exists a cooling schedule of length m that
is optimal for all instances and brings us to the
last node for each monotone stationary graph.

We refer the readers to Section D for the details
of the computational model. To obtain polynomial
time solutions, we introduce the notion of an (α, ε)-
approximate cooling schedule. In such a solution we
allow the cooling schedule to violate the size con-
straint by a factor of α with the promise that its
score is no more than ε smaller than the score of the
optimal cooling schedule of length m. With this no-
tation, we present computational results below (also
summarized in Table 1):

(i). identical-paths: This is the simplest one among
the three settings - we achieve an exact algo-
rithm which runs in poly(m,n, |T |) and maxi-
mizes the average score for the n instance.

(ii). separate-paths: in this setting, we again achieve
an exact algorithm which runs in poly(m, |T |)
for any fixed n. However, the runtime is expo-
nential in n.

(iii). separate-paths + all-satisfied: To overcome the
exponential dependency in n, we design an ef-
ficient approximation algorithm which runs in
poly(m,n, |T |), but achieve an O(log(n|T |), 0)
approximation instead of exact solution in the
previous settings. The algorithm is based on LP
relaxation of an integer program.

Due to the space limitations, we refer the readers
to Section E in the appendix for the details of the
algorithm and analysis.

5 Conclusion

In this paper, we proposed a PAC-Learning frame-
work for estimating a near optimal cooling sched-

8

ule in simulated annealing. We provided non-trivial
upper and lower bounds on the sample complexity.
Our techniques may also be relevant to other prob-
lems with a random walk on search space. We also
introduced the monotone stationary graph model for
which we are able to find a near-optimal cooling
schedule in polynomial time based on rounding lin-
ear programs.

We conclude with two open questions due to the
limitations of this work. First, finding near optimal
cooling schedules in poly-time (beyond our mono-
tone stationary graph model) is an important ques-
tion in both theory and practice. Our statistical
results showed that the sample complexity of learn-
ing a good schedule is polynomial in m, however, the
analysis is based on a discretization over the search
space which has a size exponential in m and it’s un-
clear how to design an efficient algorithm based on
the large discretization. This is, in fact, a common
issue in the data-driven algorithm design commu-
nity: the sample complexity scales logarithmically
with the search space, while the search space may
be exponentially large. See e.g. Page 5 of [6], and
Theorem 17 of [9] where their sample complexity
is O(n), but computational complexity is Ω(n232n).
In certain simpler settings, it’s possible to polynomi-
ally upper bound the search space and get efficient
algorithms, e.g. it was shown in [6] that learning
a single hyperparameter in linkage-based clustering
can be solved in O(n8), but even in their setting
the algorithm is based on enumeration. Since sim-
ulated annealing is a very complicated problem and
it’s unlikely to have efficient learning algorithm for
the general setting, we seek to find approximation al-
gorithms under additional assumptions and restric-
tions in the monotone stationary graph model. De-
signing efficient algorithms beyond this model is def-
initely an important future direction, and perhaps of
interest broadly to the data-driven algorithm design
community as well.

Second, designing a better energy function for simu-
lated annealing remains an open question. Through-
out the paper, we assumed that the energy function
is given apriori, and our goal is to learn a cooling
schedule using the given energy function so that the
score of learned schedule is at least OPT− ε. While
the sample complexity bounds derived in this paper
depend on emax, which varies from different choices
of energy function, we believe that the choice of en-
ergy function plays a more important role, as it de-
cides the optimal score OPT among all possible cool-
ing schedules E . Consequently, we should expect
OPT to be smaller (and empirical performance to

be better) when energy function is chosen carefully.
Since we are only considering additive approxima-
tion to OPT, the value of OPT itself has no effect
on the sample complexity, but it is definitely a useful
quantity in practice. Thus, finding a better energy
function (with a smaller OPT) is an interesting di-
rection for future works.

Acknowledgement We thank the annonymous
reviewers for many helpful suggestions for improv-
ing the exposition of this work. Part of this work
was done when CD and SS were visiting students
at TTIC. This work was supported in part by the
National Science Foundation under grants CCF-
1733556, CCF-1800317, and CCF-1815011.

9

References

[1] E. Aarts and J. Korst. Simulated annealing and
boltzmann machines. 1988.

[2] E. H. Aarts et al. Simulated annealing: Theory
and applications. 1987.

[3] C. Aragon, D. Johnson, L. McGeoch, and
C. Schevon. Simulated annealing performance
studies. In Workshop on Statistical Physics in
Engineering and Biology, pages 865–892, 1984.

[4] N. Azizi and S. Zolfaghari. Adaptive tempera-
ture control for simulated annealing: a compar-
ative study. Computers & Operations Research,
31(14):2439–2451, 2004.

[5] M.-F. Balcan, D. DeBlasio, T. Dick, C. Kings-
ford, T. Sandholm, and E. Vitercik. How much
data is sufficient to learn high-performing al-
gorithms? arXiv preprint arXiv:1908.02894,
2019.

[6] M.-F. Balcan, T. Dick, and M. Lang. Learning
to link. arXiv preprint arXiv:1907.00533, 2019.

[7] M.-F. Balcan, T. Dick, and M. Lang. Learning
to link. In ICLR, 2020.

[8] M.-F. Balcan, T. Dick, T. Sandholm, and
E. Vitercik. Learning to branch. In Interna-
tional Conference on Machine Learning, pages
353–362, 2018.

[9] M.-F. Balcan, V. Nagarajan, E. Vitercik, and
C. White. Learning-theoretic foundations of al-
gorithm configuration for combinatorial parti-
tioning problems. In Conference on Learning
Theory, pages 213–274, 2017.

[10] R. Eglese. Simulated annealing: a tool for op-
erational research. European journal of opera-
tional research, 46(3):271–281, 1990.

[11] A. E.-S. Ezugwu, A. O. Adewumi, and M. E.
Fr̂ıncu. Simulated annealing based symbiotic
organisms search optimization algorithm for
traveling salesman problem. Expert Systems
with Applications, 77:189–210, 2017.

[12] A. M. Fathollahi-Fard, K. Govindan,
M. Hajiaghaei-Keshteli, and A. Ahmadi.
A green home health care supply chain: New
modified simulated annealing algorithms.
Journal of Cleaner Production, 240:118200,
2019.

[13] D. A. Freedman et al. On tail probabilities
for martingales. the Annals of Probability,
3(1):100–118, 1975.

[14] R. Gupta and T. Roughgarden. A PAC ap-
proach to application-specific algorithm selec-
tion. SIAM Journal on Computing, 46(3):992–
1017, 2017.

[15] B. Hajek. Cooling schedules for optimal an-
nealing. Mathematics of operations research,
13(2):311–329, 1988.

[16] D. Henderson, S. H. Jacobson, and A. W. John-
son. The theory and practice of simulated an-
nealing. In Handbook of metaheuristics, pages
287–319. Springer, 2003.

[17] L. Ingber. Simulated annealing: Practice versus
theory. Mathematical and computer modelling,
18(11):29–57, 1993.

[18] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by simulated annealing. science,
220(4598):671–680, 1983.

[19] J. Lam and J.-M. Delosme. An efficient simu-
lated annealing schedule: derivation. Yale Uni-
versity, New Haven, Connecticut, Technical Re-
port, 8816, 1988.

[20] J. Lam and J.-M. Delosme. Performance of a
new annealing schedule. In Proceedings of the
25th ACM/IEEE Design Automation Confer-
ence, pages 306–311. IEEE Computer Society
Press, 1988.

[21] F. Lu, H. Bi, M. Huang, and S. Duan. Simu-
lated annealing genetic algorithm based sched-
ule risk management of it outsourcing project.
Mathematical Problems in Engineering, 2017,
2017.

[22] M. M. Mafarja and S. Mirjalili. Hybrid whale
optimization algorithm with simulated anneal-
ing for feature selection. Neurocomputing,
260:302–312, 2017.

[23] J. Matejka and G. Fitzmaurice. Same stats,
different graphs: generating datasets with var-
ied appearance and identical statistics through
simulated annealing. In Proceedings of the 2017
CHI Conference on Human Factors in Comput-
ing Systems, pages 1290–1294, 2017.

[24] D. Mitra, F. Romeo, and A. Sangiovanni-
Vincentelli. Convergence and finite-time behav-
ior of simulated annealing. Advances in applied
probability, 18(3):747–771, 1986.

[25] M. Mitzenmacher and E. Upfal. Probability
and computing: randomization and probabilis-
tic techniques in algorithms and data analysis.
Cambridge university press, 2017.

10

[26] M. Nieto-Vesperinas, R. Navarro, and
F. Fuentes. Performance of a simulated-
annealing algorithm for phase retrieval. JOSA
A, 5(1):30–38, 1988.

[27] Y. Nourani and B. Andresen. A comparison of
simulated annealing cooling strategies. Jour-
nal of Physics A: Mathematical and General,
31(41):8373, 1998.

[28] J. D. Nulton and P. Salamon. Statistical me-
chanics of combinatorial optimization. Physical
Review A, 37(4):1351, 1988.

[29] T. Roughgarden. Beyond the Worst-Case Anal-
ysis of Algorithms. Cambridge University Press,
2020.

[30] M. Sacco. Stochastic relaxation, gibbs distribu-
tions and bayesian restoration of images. 1990.

[31] P. Serafini. Simulated annealing for multi ob-
jective optimization problems. In Multiple cri-
teria decision making, pages 283–292. Springer,
1994.

[32] E. Triki, Y. Collette, and P. Siarry. A theoreti-
cal study on the behavior of simulated anneal-
ing leading to a new cooling schedule. European
Journal of Operational Research, 166(1):77–92,
2005.

[33] J. Tropp et al. Freedman’s inequality for ma-
trix martingales. Electronic Communications in
Probability, 16:262–270, 2011.

[34] P. J. Van Laarhoven, E. H. Aarts, and J. K.
Lenstra. Job shop scheduling by simulated an-
nealing. Operations research, 40(1):113–125,
1992.

[35] L. Wang, M. Goh, R. Ding, and L. Preto-
rius. Improved simulated annealing based risk
interaction network model for project risk re-
sponse decisions. Decision Support Systems,
122:113062, 2019.

[36] I. Wegener. Simulated annealing beats
metropolis in combinatorial optimization. In
International Colloquium on Automata, Lan-
guages, and Programming, pages 589–601.
Springer, 2005.

11

A Proof of Theorem 3.1

Recall that m is the length of the random walk in the search graph. We will show that Õ(m) samples from
the distribution suffice to approximate the optimal cooling schedule within a small additive error. Notice
that Õ hides the polylogarithmic factors (both in terms of m and emax). This basically gives an almost linear
upper bound on sample complexity based on the number of steps of the algorithm.

Theorem 3.1, restated: The sample complexity of computing an ε-approximately optimal cooling schedule
with length m is bounded by O

(
ε−2

(
m log(memax

ε)
))

.

Proof. Recall that we assume that the energies of the nodes are in set {0, 1, 2, · · · , emax}. The proof can
be divided into the following steps:

• We start by showing that it is possible to discretize the temperatures to T = {d1, d2, d3, . . . , d|T |}, such
that for any sequence of m temperatures E = 〈t1, t2, . . . , tm〉, there exists a sequence of m discrete
temperatures E ′ = 〈t′1, t′2, . . . , t′m〉 ∈ Tm, such that

|score(I, E)− score(I, E ′)| ≤ ε/3

for any instance I of the problem. In other words, the discretized temperatures preserve the score
approximately.

• Then, we show the sample complexity of learning an ε/3-approximately optimal temperature EOPT in
Tm is polynomial. This is achieved by standard concentration results in finite hypothesis space since
Tm has only a finite number of cooling schedules.

• Finally, we conclude that EOPT is ε-approximately optimal in Rm≥0.

Define a parameter δ in a way that (1− δ)m = 1− ε/3, that is, δ = Θ(εm). We first construct our discretized
temperatures as T = T1 ∪ T2 ∪ · · · ∪ Temax , where

Tj = { j

ln(1/(iδ))
| ∀ integer 1 ≤ i ≤ d1/δe}. (1)

Roughly speaking, this discretization has the nice property that for any 1 ≤ j ≤ emax, set {ej/t | ∀t ∈ Tj}
evenly divides [0, 1]. Therefore, for each temperature t, we can find a nearest neighbor t̃ in T defined as

t̃ := arg min
t′∈T
|t− t′| ,

which implies
∣∣∣ej/t̃ − ej/t∣∣∣ ≤ δ for any 0 ≤ j ≤ emax. Notice that the value of ∆(E) in our SA algorithm is

always in range {0, 1, . . . , emax} and thus for t and t̃, e∆(E)/t and e∆(E)/t̃ are always within an additive range
of δ regardless of the value of ∆(E). Our key observation is that for any sequence E = 〈t1, t2, . . . , tm〉 ∈ Rm≥0,
there exists a sequence of m temperatures E ′ = 〈t′1, t′2, . . . , t′m〉 ∈ Tm, such that running the simulated
annealing algorithms with discrete temperature in E ′ keeps the trajectories the same as E with probability
at least 1− δ. To this end, we define t′i = t̃i. Assuming the two runs share the same randomness, then these
two runs are the same at each step with probability at least 1 − δ. We only need to check the correctness
for two cases, when a move is a downhill move or a uphill move.

For an uphill move, the correctness is obvious since both runs accept the move with probability 1. For a
downhill move, the accepting probabilities are e∆(E)/ti and e∆(E)/t′i , respectively. By choosing t′i = t̃i, the
difference is at most

|e∆(E)/ti − e∆(E)/t′i | ≤ δ. (2)

Therefore, we have proved that for each step, the two runs are the same with probability 1− δ, hence they
remain the same at all steps with probability at least (1 − δ)m = 1 − ε/3. Assuming the score function is

12

bounded in [0, 1], then the scores are different with at most 1 when the two runs are different. Hence, the
expectation of difference is upper bounded by

|score(I, E)− score(I, E ′)| ≤ 1− (1− δ)m =
ε

3

Next, we will show that finding a near-optimal cooling schedule in Tm requires polynomial sample complexity.
The technique is based on standard Hoeffding and union bounds. We define n as the upper bound on the
number of samples and let I1, I2, · · · , In be n problem instances sampled i.i.d. from D and S be a uniform
distribution over {I1, I2, · · · , In}. For a given sequence of temperatures E ∈ Tm, by Hoeffding’s Inequality we
have 7

|EI∼Dscore(I, E)− EI∼Sscore(I, E)| ≤ ε

3

with probability at least 1 − e− 2
9nε

2

. Therefore, by union bound, this inequality holds for all E ∈ Tm with
probability at least 1− |T |me− 2

9nε
2

. Since we would like this event to happen with high probability, we wish
to give a value to n to make sure

1− |T |me− 2
9nε

2

≥ 1−m−10 (3)

Define EOPT(S) = arg minE∈Tm EI∼Sscore(I, E) be the empirically best discretized cooling schedule, and
EOPT(D) = arg minE∈Tm EI∼Dscore(I, E) be the population best discretized cooling schedule. Conditioning
on the two events, we have:

EI∼Dscore(I, EOPT(S))− sup
E∈Rm≥0

EI∼Dscore(I, E)

= EI∼Dscore(I, EOPT(S))− EI∼Sscore(I, EOPT(S))
+ EI∼Sscore(I, EOPT(S))− EI∼Sscore(I, EOPT(D))

+ EI∼Sscore(I, EOPT(D))− EI∼Dscore(I, EOPT(D))

+ EI∼Dscore(I, EOPT(D))− sup
E∈Rm≥0

EI∼Dscore(I, E)

≥− ε

3
+ 0− ε

3
− ε

3
≥ −ε

Hence, we have proved
EI∼Dscore(I, EOPT(S)) ≥ sup

E∈Rm≥0

EI∼Dscore(I, E)− ε (4)

In other words, OPT(S) is ε-approximately optimal.

Sample complexity: we need to set n in a way that meets Inequality (3), i.e. |T |me− 2
9nε

2 ≤ m−10.
Therefore, we have

n = Θ
(
ε−2m log(|T |)

)
= Θ

(
ε−2m log(

memax

ε
)
)
.

�

The dependence of the above bound on emax is logarithmic which is loose when emax can obtain exponentially
large values. We show that this can be further improved. More precisely, we show this by a more careful

construction of T , such that |T | = Θ(m log(emax)
δ) = Θ(m

2 log(emax)
ε). Therefore, we can improve the upper

bound on the sample complexity to

n = O
(
ε−2m log(|T |)

)
= O

(
ε−2m log

(
m log(emax)

ε

))
.

We construct the discretized temperatures as T =
⋃
j∈J Tj , where J = {1, (1+δ), (1+δ)2, (1+δ)3, · · · , emax}

and Tj defined as (1). In order to improve the sample complexity, it suffices to show that for each temperature
t there is a t̃ in T such that ∣∣∣e∆(E)/t̃ − e∆(E)/t

∣∣∣ ≤ O(δ)

7Hoeffding’s Inequality: Let X1, X2, · · · , Xn ∼i.i.d. P and Xi ∈ [0, 1], then | 1
n

∑n
i=1Xi − E[1

n

∑n
i=1Xi]| ≤ ε holds

with probability at least 1− 2e−2nε2

13

holds for all and ∆(E) ∈ [0, emax].

By the definition of J , there always exists a j∗ ∈ J , such that ∆(E) ≤ j∗ ≤ (1 + δ)∆(E). Recall that our
discretization has the nice property that for any j ∈ J , set {ej/t | ∀t ∈ Tj} evenly divides [0, 1]. Therefore,

there exists a t̃ ∈ Tj∗ , such that |ej∗/t − ej∗/t̃| ≤ δ.

Using Observation C.4, now we can bound the difference
∣∣∣e∆(E)/t̃ − e∆(E)/t

∣∣∣:
∣∣∣e∆(E)/t̃ − e∆(E)/t

∣∣∣
≤
∣∣∣e∆(E)/t̃ − ej

∗/t̃
∣∣∣+
∣∣∣ej∗/t̃ − ej∗/t∣∣∣+

∣∣∣ej∗/t − e∆(E)/t
∣∣∣

≤O(
j∗

∆(E)
− 1) + δ +O(

j∗

∆(E)
− 1)

=O(δ)

and the rest of the proof remains the same.

Corollary A.1 (of Theorem 3.1). The sample complexity of computing an ε-approximately optimal cooling

schedule with length m is bounded by O
(
ε−2

(
m log(m log emax

ε)
))

.

14

B Proof of Theorem 3.2

This section is dedicated to proving a lower bound for the sample complexity of any algorithm. Similar to
our upper bound, our lower bound is also very general and without any assumptions. We show that any
algorithm that approximates the optimal schedule within a small additive error requires at least Ω̃(m1/3)
samples from the distribution.

The overall idea of the proof is summarized in the following. We construct l = |L| = Ω̃(m1/3) different
search graphs L = {s1, s2, . . . , sl}. Our construction has a nice property that each search graph requires a
certain sequence of temperatures to be present in the cooling schedule in order to find a desirable solution
after at most m steps. We refer to such sequences as keys. For each search graph, having its key in the
cooling schedule guarantees that the search graph is traversed successfully with high probability when we use
that cooling schedule. However, the length of each key is smaller than m which allows us to bring multiple
keys in an almost optimal solution. The keys are designed in a way that they do not share any elements in
common. That is, a temperature used for a key specific to a search graph offers little benefit to the other
search graphs. Our distribution D is a uniform distribution over a subset LD ⊆ L which contains Θ̃(l) (but
much smaller than l) search graphs from L. The crux of the argument is that by knowing LD, one can
construct a sequence of size m which includes all the keys of the search graphs in LD that achieves a score
close to 1 on average. However, LD is unknown to the learner and if we draw fewer than Ω̃(l) samples, there

is no hope to get any score more than 0.1. Therefore, any learning scheme needs at least Ω̃(l) = Ω̃(m1/3)
samples from the distribution to report an approximate solution.

Let c = 100 be a large constant. Recall that m is the length of the optimal solution. We define a parameter
m′ = Θ̃(m2/3) which determines both the width of each gadget and the size of the key for each gadget. More
precisely, we set the width of each gadget to

√
m′ and the size of the key for each gadget to 2cm′. Let us

first explain how each gadget is constructed and then show how the gadgets can be used to prove a lower
bound on the sample complexity.

0 x 2x
. . . √

m′x

√
m′ + 1

3x (
√
m′ − 1)x

0 x 2x
. . . √

m′x3x (
√
m′ − 1)x

0

0

initial

final

upper path

lower path

Figure 3: The search graph is depicted for a fixed temperature τ . x = τ ln 0.5 is chosen in a way that
e−x/τ = 1/2 holds.

Each gadget is made for a specific temperature. We fix the temperature to be τ and construct the corre-
sponding gadget, namely G(τ) in the following way: As shown in Figure 3, our gadget is constructed of two
identical paths. In the upper path, the first node has an energy of 0 and has an outgoing edge to the second
vertex. For the next

√
m′ − 2 vertices, vertex i + 1 has an energy of ix and three outgoing edges: 1) two

edges to vertex i and one edge to vertex i + 2. Finally, the last node has an energy of
√
m′x and has two

outgoing edges to vertex
√
m′. x = (ln 1/2)τ is set in a way that when the temperature is equal to τ the

15

probability of accepting a downhill move is exactly equal to 1/2.

The lower path is constructed exactly the same way as the upper path. To connect the two paths together,
we put an edge from the last node of the upper path to the last node of the lower path. Finally we add
two dummy nodes to the search graph. The first dummy node has a single outgoing edge to the first vertex
of the upper path and the second dummy node has a single incoming edge from the first node of the lower
path. The goal of the gadget is to start from the first dummy node and reach the second dummy node. We
call the first and the second dummy nodes the initial and final nodes respectively.

We define the key K(τ) to be a sequence of size 2cm′ only containing temperature τ . As shown in Lemma
B.1, starting from an arbitrary node of G(τ) and running the SA algorithm on cooling schedule K(τ) our
algorithm ends at the final node with probability at least 0.9.

Before bringing the proof, we state an observation for which we provide a proof in the appendix.

Observation B.1. Let c = 100, x0 = 0 and x1, x2, . . . , xk be k variables constructed in the following way:
xi−1 − 1 with probability pb,

xi−1 with probability ps,

xi−1 + 1 with probability pf .

Then we have:

(i). For pb = ps = pf = 1/3 we have max{xi} ≥
√
k/c+ 2 with probability at least 0.95.

(ii). For pb = ps = pf = 1/3 we have max{xi} <
√
ck log k with probability at least 1− 1/k2.

(iii). For any k′ ≤ k, pb ≥ 1/3 + c log k′√
k′

, pf ≤ 1/3− c log k′√
k′

, ps = 1− pb − pf we have max{xi} <
√
k′/2 with

probability at least 1− 1/k′2.

Lemma B.1. An SA algorithm that starts from any node of G(τ) and runs on cooling schedule K(τ) ends
at the final node with probability at least 0.9.

Proof. We prove the lemma for an SA algorithm that starts from the initial node. Indeed this implies the
lemma for any other starting node since in order to reach the final node, one needs to traverse all nodes of
the search graph starting from the initial node.

To this end, we show that after cm′ steps our SA algorithm reaches the last node of the lower-path with
probability at least 0.95. With a similar analysis, one can show that starting from the last node of the
lower-path, after cm′ steps our algorithm reaches the final node with probability at least 0.95 after cm′

steps. Then, by applying the union bound, we imply that after 2cm′ steps, our algorithm reaches the final
node with probability at least 0.9.

From here on, our aim is to prove that starting from the initial node, our algorithm reaches the last node
of the lower-path with probability at least 0.95 after cm′ steps. Notice that since the temperature is always
equal to τ , in every step, our node in the search graph gets closer to the destination with probability at least
1/3 and get farther from the destination with probability at most 1/3. Due to Observation B.1 (item (i))
after cm′ steps, with probability at least 0.95 at some point the number of times we go forward is at least√
m′ + 2 more than the number of times we go backward which means we reach the last node of the lower-

path. This implies that with probability at least 0.95 our algorithm reaches the last node of the lower-path
after cm′ steps. A similar analysis proves that the next cm′ steps take us to the final node with probability
at least 0.9 which implies that 2cm′ steps suffices to reach the final node with probability at least 0.9. �

We also show that any cooling schedule needs a certain amount of temperatures close to τ to reach the final
node with a considerable probability.

Lemma B.2. Let E be a cooling schedule of length m containing no more than m′

4c log2m′
temperatures in

range [τ
√
m′−c2 logm′√

m′
, τ
√
m′+c2 logm′√

m′
]. If an SA algorithm starts from the initial node and runs with cooling

schedule E, the probability that it reaches the final node is at most 0.1.
16

Proof. The intuition behind the proof is the following: For the upper-path, we would like to go to the right
and thus a low temperature is desirable. For the lower-path however, since we would like to go to the left,
we would like the temperature to be as high as possible. The key point is that in the cooling schedule, the
temperatures are decreasing, thus either all the temperatures we use for traversing the upper-path are at
least τ or all of the temperatures we use for traversing the lower-path are bounded by τ . Any one of the two
events makes it unlikely to get a high score.

We assume w.l.o.g that we would like to traverse the upper-path with temperatures higher than τ . Notice
however that except for m′

4c log2m′
temperatures, all the rest are more than τ by a multiplicative factor of

√
m′+c2 logm′√

m′
. Since we strictly favor lower temperatures, the most desirable cooling schedule in this case is

a sequence of m− m′

4c log2m′
temperatures τ

√
m′+c2 logm′√

m′
followed by m′

4c log2m′
temperatures τ . We show that

it is still very unlikely to traverse the upper-path using this sequence.

To keep the analysis simple, we avoid the edge cases and assume that the goal is to start from the second
vertex and never go back to the first vertex. This way, the probability of going forward or going backward
only depends on the temperature and does not depend on the current vertex. If the temperature is equal
to τ then with probability pf = 1/3 we go forward and with probability pb = 1/3 we go backward. If the

temperature is τ
√
m′+c2 logm′√

m′
we go backward and with probability at least pb ≥ 1/3 + c logm′√

m′
we go forward

with probability at most pf ≤ 1/3 − c logm′√
m′

. Due to Observation B.1, if we proceed m′

4c log2m′
steps with

temperature τ or m steps with temperature τ
√
m′+c2 logm′√

m′
, our position does not improve by more that

√
m′/2 with probability at least 1 − Õ(1)/m′2. Thus, in total the amount of improvement is bounded by√
m′ with probability at least 1− Õ(1)/m′2.

The above analysis fails when we bring in to the setting the first node of the upper-path since the probability
of going to the right at this node is more than other nodes. However, we make the following argument: in
order to traverse the upper-path, at some point we reach the second node of the upper-path and never go
back. Let us say this happens at step i. Thus, from step i on, we never go backwards and therefore all the
probabilities are only a function of the temperature (and not the current node). The downside however, is
that there are m different possible choices for i which multiplies the bad event probability by m. However,
since we show in the above that increasing the position by an additive term of

√
m′ is not possible with

probability 1 − Õ(1)/m′2, we can imply by union bound that starting from any position i, increasing the

position by an additive term
√
m′ is not possible with probability at least 1− Õ(m)/m′2 << 0.1 (for a large

enough choice of m) which completes the proof. �

Now we are ready to prove the lower bound using Lemmas B.1 and B.2.

Theorem 3.2, restated. Any learning algorithm that approximates the solution within an additive error of
0.5 needs at least Ω̃(m1/3) samples from the distribution.

Proof. As mentioned earlier, we have l, |LD| = θ̃(m1/3) and m′ = Θ̃(m2/3). To be more precise, we set
l = 40cm1/3 logm, m′ = m2/3 logm/2c and |LD| = m1/3/ logm.

Assume for now that we have l different temperatures 1 ≤ τ1 < τ2 < . . . < τl such that their multiplicative

distance is at least
√
m′+10c2 logm′√

m′
.

As outlined earlier, LD is a uniform distribution over m1/3/ logm search graphs corresponding to temper-
atures τ1, τ2, . . . , τl. Each combination has equal probability of forming LD. Distribution D is a uniform
distribution over the search graphs corresponding to the elements of LD. The optimal solution consists of
the keys for all the search graphs corresponding to the temperatures of LD. Since the size of the key for each
search graph is 2cm′ = m2/3 logm and |LD| = m1/3/ logm, this makes a cooling schedule of size m. Lemma
B.1 implies that the score of such a cooling schedule is at least 0.9 on average.

On the other hand, after drawing fewer than m1/3/(100 logm) samples, we can get a score of 1 for at most
a 0.01 fraction of the search graphs of LD but the average score for the rest of the instances would be
smaller than 0.2 by Lemma B.2 (Notice that the gap between the temperatures is large enough). Thus,

17

Ω(m1/3/ logm) samples are necessary to obtain an additive error smaller than 0.5.

To construct the temperatures we do the following: We set x1 = 1 and for 1 < i ≤ l we set

xi = dxi−1

√
m′+10c2 logm′√

m′
+ 1e. Finally we set τi = xi/ ln 2 to obtain e−xi/τi = 0.5. To make sure all

the energies are non-zero, we add 1 to the energy of all nodes in all gadgets. �

18

C Proof of Theorem 3.3

We show in this section that the bound of Theorem 3.1 can be significantly improved: Theorem 3.3,
restated. The sample complexity of computing an ε-approximately optimal cooling schedule with length m is
bounded by Oε(

√
m(logm+ log emax)).

The proof is based on two observations: 1) first we show that the discretized set of temperatures can be
made smaller while keeping the additive error small and 2) the proof can be modified to improve the sample
complexity using the new discretized set. We first start by explaining the former.

Our discretization is very similar to that of Theorem 3.1 except that in the construction of the temperatures
we allow for a multiplicative error of Θ̃(m−1/2) instead of Θ(1/m). This implies that the multiplicative

distance between consecutive elements of T is bounded by 1 + Θ̃(m−1/2) (instead of 1 + Θ(1/m)). This
obviously leaves us with a smaller set of temperatures which later can be used to improve the sample
complexity but the crucial part of the analysis is to show this smaller set suffices to bound the error by a
small ε. We prove that for any sequence of temperatures E = 〈t1, t2, . . . , tm〉, there exists another sequence
E ′ = 〈t′1, t′2, . . . , t′m〉 such that t′i ∈ T for all 1 ≤ i ≤ m and that the scores of E and E ′ are very close for
every search graph. Obviously we set t′i as the largest element of T which is not greater than ti. Therefore

we have 1 ≤ ti/t′i ≤ 1 + Õ(m−1/2).

Let us introduce a deviation function f(x) : [0, 1]→ [0, 0.25] = x− x2 which plays an important role in the
proof of Lemma C.1. The proof of this section is rather mathematical and unintuitive. For more intuition
and as to why such a strange function is necessary for the proof we encourage the reader to review Section 1.
Before proceeding to the proof of Lemma C.1, we state some properties of function f as auxiliary observations
as well as some mathematical inequalities which are used in the proof of the bound. We defer the proofs of
these observations to the appendix.

Observation C.1. Let x, y ∈ [0, 1] be two real values and 0 ≤ p ≤ 1 be a multiplicative factor. Then we
have:

pf(x) + (1− p)f(y) ≤ f(px+ (1− p)y)−min{p, 1− p}(x− y)2.

Since (x−y)2 is always non-negative therefore Observation C.1 implies that pf(x)+(1−p)f(y) ≤ f(px+(1−
p)y) always holds. By recursing on this inequality we can extend it to the case of more than two variables.

Observation C.2 (as a corollary of Observation C.1). Let p1, p2, . . . , pk be non-negative probabilities whose
total sum is equal to 1 and x1, x2, . . . , xk be k real values in range [0, 1] . Then we have:∑

pif(xi) ≤ f(
∑

pixi).

Also, we show that for two real numbers 0 ≤ x, y ≤ 1 we have |x− y| ≥ |f(x)− f(y)|.
Observation C.3. For any two real numbers 0 ≤ x, y ≤ 1 we have |x− y| ≥ |f(x)− f(y)|.
Observation C.4. For any 0 ≤ p ≤ 1 and any 0 ≤ x we have

p− p1+x ≤ x.

We also present a slightly modified version of Observation C.4 which provides a better bound for limited p.

Observation C.5. For any 0 < p < 1 and any 0 ≤ x ≤ 1 we have

p− p1+x ≤ max{ln 1/p, 1}min{p, 1− p}x.

Now we are ready to prove Lemma C.1.

Lemma C.1. Let I be an instance of the underlying problem and E = 〈t1, t2, . . . , tm〉 and E ′ = 〈t′1, t′2, . . . , t′m〉
be two cooling schedules such that 1 ≤ ti/t′i ≤ 1 + εm−1/2

4 logm for some ε > 0. Then we have

score(I, E ′) ≥ score(I, E)− ε.
19

Proof.

Our proof is based on induction. Define E+k (E ′+k) to be a cooling schedule starting from element k + 1
of E (E ′) (E+0 = E and E ′+0 = E ′). We denote the vertices of the search graph by u1, u2, . . . (their number
may be exponentially large) and define scoreui(I, E+k) as the average score we obtain if we initiate the search
on node ui and run the algorithm using cooling schedule E+k. When k = m, then E+k is empty which
means scoreui(I, E+k) is either equal to 0 or 1 depending on whether ui is an acceptable solution node in
the search graph. A similar notation also holds for E ′. Our aim is to prove that for any ui and k we have
scoreui(I, E ′+k) ≥ scoreui(I, E+k)− ε which immediately implies score(I, E ′) ≥ score(I, E)− ε. However, to use
induction, we strengthen the hypothesis. We show that

scoreui(I, E ′+k) ≥ scoreui(I, E+k)− ε′
[
f(scoreui(I, E+k)) +

m− k
m

]
, (5)

where ε′ = ε/2. Notice that since the value of f is always in range [0, 0.25], Inequality (5) is already stronger
than what we wish to prove in the end. The base case is when k = m which means the random walk has
terminated and that scoreui(I, E ′+k) = scoreui(I, E+k). Thus, for a fixed k < m, provided that Inequality (5)
holds for any vertex ui and k′ = k + 1, we show Inequality (5) holds for any pair (ui, k).

Recall that in every step of the SA algorithm, we first randomly draw an outgoing edge of the current node
and then decide whether we traverse through that edge or not. Therefore

scoreui(I, E ′+k) = Euj∼N(ui)[scoreui,uj (I, E ′+k)],

where N(ui) denotes the set of neighbors of vertex ui and scoreui,uj (I, E ′+k) is the score of node ui for the
event that the drawn edge is (ui, uj).

Let us first fix an edge (ui, uj) and introduce an edge variant of Inequality (5), namely Inequality (6) for
which we give a proof in the following.

scoreui,uj (I, E ′+k) ≥ scoreui,uj (I, E+k)− ε′
[
f(scoreui,uj (I, E+k)) +

m− k
m

]
. (6)

For simplicity of notation, let us define a = scoreui(I, E+(k+1)) and b = scoreuj (I, E+(k+1)). Similarly, define

a′ = scoreui(I, E ′+(k+1)) and b′ = scoreuj (I, E ′+(k+1)). If the energy of node uj is more than the energy of
node ui then the decision is deterministic regardless of the temperature and we have

scoreui,uj (I, E+k) = b,

and
scoreui,uj (I, E ′+k) = b′.

This implies that

scoreui,uj (I, E+k)− scoreui,uj (I, E ′+k) = b− b′

≤ ε′
[
f(b) +

m− k − 1

m

]
(7)

= ε′
[
f(scoreui,uj (I, E+k)) +

m− k − 1

m

]
≤ ε′

[
f(scoreui,uj (I, E+k)) +

m− k
m

]
,

where Inequality (7) follows from the induction hypothesis. This basically means that

scoreui,uj (I, E ′+k) ≥ scoreui,uj (I, E+k)− ε′
[
f(scoreui,uj (I, E+k)) +

m− k
m

]
,

which is desired. Thus, it only remains to prove Inequality (6) for the cases that the energy decreases. This
is the only case where E and E ′ behave differently. In this case, depending the temperatures tk+1 and t′k+120

our SA algorithm moves to node uj or stays at node ui. Let p be the probability of rejecting the downhill
move to node uj when the temperature is equal to tk+1 and p′ the same probability for the case that the

temperature is t′k+1. Recall that the acceptance probabilities are equal to 1−e−∆(E)/tk+1 and 1−e−∆(E)/t′k+1

(for E and E ′ respectively) where ∆(E) is the difference between the energies of nodes ui and uj . Thus,

p = e−∆(E)/tk+1 and p′ = e−∆(E)/t′k+1 and since 1 ≤ tk+1/t
′
k+1 ≤ 1 + εm−1/2

4 logm then we have

p1+ εm−1/2

4 logm ≤ p′ ≤ p.

Note that scoreui,uj (I, E+k) and scoreui,uj (I, E ′+k) can be formulated as

scoreui,uj (I, E+k) = pa+ (1− p)b (8)

and

scoreui,uj (I, E ′+k) = p′a′ + (1− p′)b′ (9)

due to the acceptance probabilities. Thus, we have:

scoreui,uj (I, E ′+k) = p′a′ + (1− p′)b′

≥ p′
[
a− ε′[f(a) +

m− k − 1

m
]

]
by induction hypothetis

+ (1− p′)
[
b− ε′[f(b) +

m− k − 1

m
]

]
= p′ [a− ε′f(a)]

+ (1− p′) [b− ε′f(b)]

− ε′m− k − 1

m
= p [a− ε′f(a)]

+ (1− p) [b− ε′f(b)]

− ε′m− k − 1

m
− (p− p′)([a− ε′f(a)]− [b− ε′f(b)])

≥ p [a− ε′f(a)] p ≥ p′

+ (1− p) [b− ε′f(b)]

− ε′m− k − 1

m
− (p− p′)(|a− b|+ ε′|f(a)− f(b)|)

≥ p [a− ε′f(a)] p ≥ p′

+ (1− p) [b− ε′f(b)] and ε′ ≤ 1

− ε′m− k − 1

m
− (p− p′)(|a− b|+ |f(a)− f(b)|)

≥ p [a− ε′f(a)] p ≥ p′

+ (1− p) [b− ε′f(b)] and |a− b| ≥ |f(a)− f(b)|

− ε′m− k − 1

m
(Observation C.3)

− 2(p− p′)|a− b|
≥ [pa+ (1− p)b]− ε′f([pa+ (1− p)b]) Observation C.1

+ ε′min{p, 1− p}(a− b)2

21

− ε′m− k − 1

m
− 2(p− p′)|a− b|

= scoreui,uj (I, E+k)− ε′f(scoreui,uj (I, E+k)) by Equation (8)

+ ε′min{p, 1− p}(a− b)2

− ε′m− k − 1

m
− 2(p− p′)|a− b|

= scoreui,uj (I, E+k)− ε′
[
f(scoreui,uj (I, E+k)) +

m− k
m

]
+ ε′

[
min{p, 1− p}(a− b)2 + 1/m

]
− 2(p− p′)|a− b|,

which is exactly the same as (6) except for additional additive expressions of the last two lines. Thus, to
complete the proof of Inequality (6) we need to show

ε′
[
min{p, 1− p}(a− b)2 + 1/m

]
≥ 2(p− p′)|a− b|. (10)

Based on the values of p and a− b we consider the following three cases separately:

(i). 0 ≤ |a− b| ≤ m−1/2

(ii). 0 ≤ p ≤ m−1/2

(iii). m−1/2 ≤ |a− b| ≤ 1 and m−1/2 ≤ p ≤ 1

Case (i): 0 ≤ |a − b| ≤ m−1/2: By Observation C.4 and the fact that p1+ εm−1/2

4 logm ≤ p′ ≤ p we can imply

p− p′ ≤ εm−1/2

4 logm . Therefore the right hand side of Inequality (10) is bounded by

2(p− p′)
∣∣a− b∣∣ ≤ 2

εm−1/2

4 logm

∣∣a− b∣∣
=
εm−1/2

2 logm

∣∣a− b∣∣
≤ εm−1/2

2 logm
m−1/2 since |a− b| ≤ m−1/2

=
ε

2m logm

=
ε′

m logm

≤ ε′

m
.

which implies Inequality (10) since the left hand side is at least ε′/m.

22

Case (ii): 0 ≤ p ≤ m−1/2: Let us first give a bound on the value of p− p′.

p− p′ ≤p− p1+ εm−1/2

4 logm

≤max{ln 1/p, 1}min{p, 1− p}εm
−1/2

4 logm
by Observation C.5 (11)

≤(ln
√
m)m−1/2 εm

−1/2

4 logm
(11) is maximized for p = m−1/2

≤m−1/2 εm
−1/2

4
since logm ≥ ln

√
m

=
ε

4m

=
ε′

2m
since ε′ = ε/2.

Also, |a − b| is bounded by 1 so the the right hand side is bounded by ε′/m. Since the left hand side is at
least ε′/m then Inequality (10) holds.

Case (iii): m−1/2 ≤ |a − b| ≤ 1 and m−1/2 ≤ p ≤ 1: In this case, we leverage Observation C.5 to show
that

p− p′ ≤p− p1+ εm−1/2

4 logm

≤max{ln 1/p, 1}min{p, 1− p}εm
−1/2

4 logm
by Observation C.5

≤(ln
√
m) min{p, 1− p}εm

−1/2

4 logm
since p ≥ m−1/2

≤min{p, 1− p}εm
−1/2

4
since logm ≥ ln

√
m

= min{p, 1− p}ε
′m−1/2

2
since ε′ = ε/2.

Therefore, the right hand side of Inequality (10) can be bounded by

2(p− p′)|a− b| ≤2 min{p, 1− p}ε
′m−1/2

2
|a− b|

= min{p, 1− p}(ε′m−1/2)|a− b|

≤min{p, 1− p}(ε′m−1/2)|a− b| |a− b|
m−1/2

since |a− b| ≥ m−1/2

=ε′min{p, 1− p}|a− b|2

=ε′min{p, 1− p}(a− b)2.

which proves Inequality (10) since the left hand side is lower bounded by ε′min{p, 1− p}(a− b)2.

So far, we have proven that Inequality (6) holds for every pair of vertices (ui, uj). All that remains is to
show that Inequality (6) implies Inequality (5). To show this, we point out that by definition we have

scoreui(I, E ′+k) = Euj∼N(ui)[scoreui,uj (I, E ′+k)].

By applying Inequality (6) we obtain:

scoreui(I, E ′+k) =Euj∼N(ui)

[
scoreui,uj (I, E ′+k)

]
23

≥Euj∼N(ui)

[
scoreui,uj (I, E+k)− ε′[f(scoreui,uj (I, E+k)) +

m− k
m

]

]
=Euj∼N(ui)

[
scoreui,uj (I, E+k)

]
− Euj∼N(ui)

[
ε′[f(scoreui,uj (I, E+k)) +

m− k
m

]

]
=Euj∼N(ui)

[
scoreui,uj (I, E+k)

]
− ε′Euj∼N(ui)

[
f(scoreui,uj (I, E+k))

]
− ε′m− k

m

≥Euj∼N(ui)

[
scoreui,uj (I, E+k)

]
(12)

− ε′f
(
Euj∼N(ui)[scoreui,uj (I, E+k)]

)
− ε′m− k

m

=Euj∼N(ui)

[
scoreui,uj (I, E+k)− ε′scoreui,uj (I, E+k)

]
− ε′m− k

m

=scoreui(I, E+k))− ε′
[
f(scoreui(I, E+k)) +

m− k
m

]
,

which implies Inequality (5). Inequality (12) follows from Observation C.2. �

Lemma C.1 suggests that we can have a discretized temperature set T with size |T | ≤ O(
√
m logm log emax)

that can make an almost optimal cooling schedule for any search graph. If we naively count the number of
possible cooling schedules, then we obtain a bound of (

√
m logm log emax)m which gives us the same upper

bound as Corollary A.1. However, a better analysis can show that the number of possible cooling schedules
limited to the temperatures in T is bounded by

(
√
m logm log emax)

√
m logm log emax

(
m√

m logm log emax

)
which gives us a sample complexity of Oε(

√
m(logm + log emax)). Since |T | << m and the temperature is

non-increasing over time, there are at most |T | steps in which the temperature changes. Thus, there are at
most

(
m
|T |
)

choices for the places where the temperature changes. Moreover, each change has at most |T |
different possibilities since there are at most |T | distinct temperatures. Thus, the total number of cooling
schedules is bounded by (

m

|T |

)
|T ||T |,

and we get the desired bound by using the upper bound |T | ≤ O(
√
m logm log emax). Therefore we have

completed the proof.

24

D A Computational Model to Evaluate SA Algorithms

In this section, we introduce a model to evaluate the performance of an SA algorithm. The purpose of this
model is to study the computational aspects of finding an optimal cooling schedule. We call this model the
monotone stationary graph. For simplicity, (and indeed without loss of generality as we show in Section A8),
we narrow down the space of the temperatures used in any algorithm to a finite set T = {d1, d2, d3, . . . , d|T |}.
Therefore from here on, we focus our attention on the discretized temperatures in T and assume that any
algorithm (including any optimal solution) only uses temperatures in set T . Recall that every instance I of the
underlying problem translates to a search graph for our SA algorithm. The goal of the monotone stationary
graph is to represent the search graph in a compact manner so that we can evaluate the performance of a
cooling schedule on each instance. Thus, the monotone stationary graph is made by the search graph and
may differ between different instances of the problem.

Recall that every state of an SA algorithm A corresponds to a distribution RA over the vertices of the search
graph. Initially, RA is the same for all algorithms and shows the probability distribution over the vertices
on which our algorithm initiates the search. One example is when our algorithm starts with a fixed node
of the search graph in which case RA is a deterministic distribution. Alternatively, RA may be a uniform
distribution when our algorithm starts with a random node of the search graph. As we perform more steps
of the algorithm, RA changes based on the criteria of the random walk and we hope that the correlation
between RA and the energy of the nodes becomes stronger. Ideally, we would like our algorithm to end up
with a distribution RA highly concentrated on the solution nodes.

Let us for every temperature t ∈ |T |, define a stationary distribution St which is a distribution of probabilities
over the nodes of the search graph that an SA algorithm converges to after infinitely many steps of running
on temperature t. Stationary distributions of simulated annealing are important and have been subject to
a plethora of studies in the past decades [2, 10, 16, 24, 31, 34]. Intuitively, stationary distributions have
positive correlation with the score of the nodes and as the temperature drops we expect the stationary
distributions to provide higher (average) scores. Thus, the ideal case is when the state of our algorithm
is very close to the stationary distribution for the lowest temperature for which the average score is the
highest. The computational barrier is the convergence rate of the distributions. An algorithm that starts
from an initial distribution and runs on a temperature t may need exponentially many steps to converge
to the stationary distribution St whereas an algorithm that first reaches a stationary distribution St′ for a
higher temperature and then attempts to reach St may only need a small number of steps. This is perhaps
best shown by the work of Wegener [36] wherein the author showed that for the minimum spanning tree
problem, a cooling schedule that gradually decreases the temperature is exponentially faster than a cooling
schedule that repeats a certain temperature. Thus, moving to intermediate stationary distributions may
significantly improve the convergence rate of the algorithm.

Motivated by the above argument, we consider a model in which the states of any algorithm move between
the stationary distributions. Let d1 > d2 > d3 > . . . > d|T | be all the distinct temperatures in T . We
construct a graph with |T |+ 1 nodes v0, v1, v2, . . . , v|T | such that node vi corresponds to the set of all states
close enough to the stationary distribution of temperature di. Also, v0 is a special node corresponding to the
initial distribution of the starting nodes. We assume that for every node vi, the distances to the stationary
distribution of temperature di are so small such that the difference in the performance is negligible. Due
to this assumption, our model features monotonicity. More precisely, a cooling schedule that repeats a
temperature t for 100 times is no better than the same cooling schedule that repeats t for 101 times.

In our model, we add edges between the nodes to denote transitions between stationary distributions. The
labels of these edges indicate the number of steps needed for transition between a node vi to a node vj .

vi vj
〈dj , dj , dj , . . . , dj〉

Figure 4: A transition is shown between two graph nodes.

8A loss of ε > 0 is incurred to the score of any algorithm in the discretized setting.
25

Finally, we make one more assumption to complete the notion of monotonicity. If we have three temperatures
di > dj > dk the length of the edge from vi to vk is not smaller than the length of the edge from node vj to
node vk. Another interpretation of this property is the following: in order to reach the stationary distribution
of a temperature dk, it is easier to start from the stationary distribution of a temperature closer to dk rather
than a temperature with a much higher difference. Although for some very delicately constructed examples
this may fail, the assumption is along the common perception for the behavior of the SA algorithms [1, 2].

With the above definition, every path in the monotone stationary graph corresponds to a sequence of tem-
perature which is made by the concatenation of the labels of the edges. A path can be traversed with a
sequence of temperatures E if its corresponding label is a subsequence of E . Given a sequence of temperatures
E = 〈t1, t2, . . . , tm〉, one can travel from node v0 of the stationary distribution graph to a set of nodes via E .
In order to model the score of a cooling schedule E , we assume that it takes us to the right most node vi such
that there is a path from v0 to vi whose label is a subsequence of E . Implicit to our model is the assumption
that stationary distributions become better9 as the temperature drops. Thus, the scoring function gives us
higher scores for lower temperatures.

For our computational results, we assume that the score of each cooling schedule is evaluated based on the
above model. We compete against an optimal cooling schedule that uses a sequence of at most m moves.
Thus, we can assume w.l.o.g that the length of every (existing) edge is bounded by m. This along with the
monotonicity property of our model implies that there is a trivial cooling schedule with |T |m many moves
that performs at least as well as the optimal schedule with m steps. That is, in our model, a cooling schedule
that contains m copies of each temperature performs always as well as any cooling schedule of length m.
Although we allow the size constraint to be violated by a small factor, our aim is to keep the length of our
approximately optimal cooling schedule close to m.

Our model may raise a concern for a thoughtful reader. We only incorporate the types of algorithms whose
states move between the stationary distributions. What if the optimal solution never gets close enough to
some of the stationary distributions, yet moves towards them in order to reach the stationary distributions
for lower temperatures (see Figure 5)?

vi vj
〈dj , dj , dj , dj , dj , dj , dj , dj〉

〈dj , dj , dj 〉

vk
〈dk, dk, dk〉

〈dk, dk
, dk, dk

, dk, dk
〉

Figure 5: Red edges show the cooling schedule of the optimal solution. In this case, the optimal solution
moves toward the stationary distribution of temperature dj without getting close enough to its stationary
distribution.

Although this may very well be the case in practice, the goal of this model is competing with the optimal
algorithm that moves between the stationary distributions (and thus such a scenario is ruled out). We
justify our model by the following intuitive argument: If moving towards a stationary distribution Sdj
makes a significant difference in the convergence rate for stationary distribution Sdk , it should be the case
that a considerable portion of the path to the stationary distribution of Sdj is already traversed. Thus,
if we multiply the number of dj steps of the algorithm by a small constant, this algorithm should reach
the stationary distribution of Sdj . In other words, the optimal algorithm that adheres to our model may
not necessarily be the optimal algorithm, however, if we allow for more steps (by a multiplicative constant
factor), we expect that the optimal algorithm of our model performs as well as the optimal algorithm in the

9More concentration on the solution nodes.
26

unrestricted setting.

D.1 Computational Results

Although our model is general, we use the SAT problem to explain the terminology. Assume that the search
graph contains 2k vertices where every vertex is a true/false assignment to k variables of the underlying
problem. Every node of the search graph is associated with a value which we refer to as energy. This
concept reflects how close this node is to a solution. One example of such energy function is the amount of
clauses satisfied by that solution. Also, the score of a cooling schedule E is equal to the probability of finding
a solution for the problem via simulated annealing using E as a cooling schedule. We model this quantity
with the monotone stationary graph.

Recall that we are given a distribution D over a class of SAT instances and our aim is to design a learning
algorithm that computes/approximates a cooling schedule with the highest average score. In other words,
our goal is to find a cooling schedule E for simulated annealing that maximizes

EI∼D[score(I, E)].

We model the performance of a simulated annealing algorithm by the monotone stationary graph explained
previously. We compete against the score of the optimal cooling schedule with at most m steps subject to
our model. Notice that, the optimal cooling schedule may in fact get a higher score than what our model
suggests but we only give credit to that schedule based on our model and not the actual likelihood of finding
a solution. Nonetheless, our hope is that the difference between the practical results and our model is
negligible.

We assume throughout this paper that the number of steps of the optimal cooling schedule is equal to m.
However, in order to compete with the optimal solution, we allow more steps for our algorithm. We define
an algorithm A to be (α, ε)-approximate, if the number of steps of A is bounded by αm and the average
score of A differs from the optimal solution by at most an additive error of ε.

We show in Section A that from a sample-complexity standpoint, a learning algorithm only needs Õ(
√
m)

samples from D (Theorem 3.3). This result is indeed not dependent on the monotone stationary graph.
However, the computational complexity of the solution requires more assumption on the score of cooling
schedules. To this end, we define four scoring systems and analyze each of the systems separately.

Our results in Section A show that if we draw n = Õ(
√
m) samples from D and find the solution that

maximizes the average score on these n samples, the objective is approximately maximized for D. Therefore,
in the computational results, we assume that n problem instances I1, I2, . . . , In are given and our goal is to
find a sequence that maximizes the average score for those instances. We consider the following two settings
for our problem:

• separate paths: For each instance I, the optimal cooling schedule runs on a sequence of temperatures
that move between the nodes of the stationary distribution graph. However, the sequence of stationary
nodes may vary between different instances.

• identical paths: The optimal cooling schedule chooses a sequence va1 , va2 , . . . , vax of the nodes and does
the following: starts and runs the algorithm by temperature da1 so long as all instances reach stationary
distribution va1 . Then, proceeds with applying temperature da2 until all input instances reach stationary
distribution va2 and so on. In this case, the path taken in the stationary distribution graph is the same
for all instances of the problem.

We bring an example to illustrate the difference of the two models. Consider a distribution D of the SAT
instances which returns instances I1 and I2 with equal probabilities. Let us assume that the monotone station-
ary graphs of the two instances are as shown in Figure 6. In the separate paths setting, the optimal sequence
of temperatures that reaches the lowest stationary distribution for both instances is 〈d1, d2, d2, d2, d2〉. Notice
that in this case, for I1 the path to v2 is through v1 but for I2 the path consists of a direct edge from v0 to v2.

27

However, the choice of separate paths is not allowed in the identical paths model. Therefore, in the identical
paths setting, the optimal solution is 〈d1, d1, d1, d1, d2, d2, d2, d2〉 which is through v1 for both instances.

v0 v1

〈d1〉
v2

〈d2, d2, d2, d2〉

〈d2, d2, d2, d2, d2, d2, d2, d2〉

(a) Monotone stationary graph for I1

v0 v1

〈d1, d1, d1, d1〉
v2

〈d2, d2, d2, d2〉

〈d2, d2, d2, d2〉

(b) Monotone stationary graph for I2

Figure 6: An example to show the difference between the separate paths setting and identical paths setting.

Moreover, we also study a more restricted setting, in which in the optimal solution, all instances of the
problem reach the stationary distribution for the lowest temperature. We call this setting the all-satisfied
setting.

For each combination of the settings we provide an algorithm along with its analysis. Table D.1 summarizes
the time complexity of our algorithm in each setting.

identical paths separate paths separate paths + all-satisfied
exact solution exact solution (O(log n|T |), 0) approximation

in time in time in time
poly(m,n, |T |) poly(m,n, |T |n) poly(m,n, |T |)

One last thing to keep in mind before we go to the technical discussion is that monotone stationary graphs
are not available to our algorithms. Therefore, the first step is to learn such a graph for a given instance I
of the problem. We begin by explaining this in Section D.2 and then bring our algorithms in Section E.

v0 v1

〈d1, d1, d1〉
v2

〈d2, d2〉

〈d2, d2, d2, d2〉

v3

〈d3, d3, d3, d3〉

〈d3, d3〉
v4

〈d4, d4, d4〉
v5

〈d5, d5〉

〈d5, d5, d5, d5, d5, d5〉

Figure 7: An example of the monotone stationary graph is shown. Only non-trivial edges are shown in this
figure. For instance, an edge of length 6 from v3 to v5 can be implied from the edge (v1, v5).

To remind the reader of our assumptions, we bring a list of assumptions that we make for the model and
the results:

• (for the model): The state of any algorithm moves between stationary distributions.

• (for the model): For i < j < k the length of the edge from vi to vk is not smaller than that of vj to vk.

• (for the model): For any path P , a cooling schedule that contains the labels of the edges of the path as
subsequence can take us to the end vertex. The score of a cooling schedule is equal to that of the best
stationary distribution reachable via that schedule.

28

• (for the model): The score improves as i increases for vi.

• (in order to learn the monotone stationary graph): For every instance of the problem, there is a cooling
schedule of length m that takes us to node v|T |.

• (in order to learn the monotone stationary graph): There is a noticeable difference between the scores
of the nodes of the monotone stationary graph. That is, by running poly(n,m, |T |) experiments we can
tell whether two cooling schedules E1 and E2 take us to the same node or not.

D.2 Learning A Monotone Stationary Graph

In this section, we show how one can learn the monotone stationary graph for a particular instance of the
problem in polynomial time. Recall that score(E , I) denotes the success probability of finding a solution to
the problem. We make two assumptions to learn the monotone stationary graph. The first assumption is
that for every instance there exists a sequence of length m that takes us to the optimal node (corresponding
to the lowest temperature) in the monotone stationary graph. The second assumption is that there is a
noticeable difference between the score of the nodes. That is, for any two cooling schedules E1 and E2 we
can tell whether they take us to the same node in the monotone stationary graph or they take us to different
nodes by running the SA algorithm several times and comparing their success ratios.

The discretization of the the temperatures is w.l.o.g as we show in Section A. Also, we ignore all edges whose
sizes are more than m. This obviously does not hurt the optimal solution since its length is bounded by m.

Observation D.1. Given a sequence E of temperatures, we can verify in polynomial time whether E takes
us to v|T |. That is, we can answer in polynomial time whether E is at least as good as any other sequence or
not.

Proof. By the above assumptions, a sequence that contains m repetitions of each temperature has to take
us to node v|T | (otherwise there is no path of length m to v|T |). Thus, by running the algorithm on this
sequence, we can learn the average score of that node in time poly(m, |T |). Now, for a sequence E , we just
need to run the algorithm several times and verify whether the success rate is close to s|T | or not. �

Using Observation D.1, we can construct the monotone stationary graph for an instance I of the problem.

Lemma D.1. Given an instance I of the problem, one can construct the underlying graph G(I) in time
poly(m, |T |).

Proof. We assume that there is a path of length m from node v0 to node v|T |. Thus, a sequence containing
m repetitions of each temperature takes us there. Now, imagine we wish to answer the following question:

“Is there an edge from node vi to node v|T | with label

k︷ ︸︸ ︷
〈d|T |, d|T |, . . . , d|T |〉?”

To answer the above question, we can construct a sequence of temperatures that contains m repetitions of
all temperatures d1, d2, . . . , di. Next, we add k repetitions of temperature d|T | to the end of this sequence. If
this sequence takes us to node v|T |, then there is an edge from vi to v|T | with a label that contains at most
k copies of d|T |. Thus, we can answer the query with a binary search.

Using the above machinery, we can extract all the edges that end at node v|T |. Based on this information,
we can find the smallest path that takes us from node v|T |−1 to node v|T | and then recursively solve the
problem for node v|T |−1. With the same argument, we can discover all of the edges for all vertices of the
graph. �

E Computing/Approximating the Optimal Cooling Schedule

The problem that we are concerned with in this section is computing (or approximating) the optimal cooling
schedule for a set of problem instances. More precisely, let I1, I2, . . . , In be n instances of the problem whose

29

monotone stationary graphs are available. The goal here is to find a cooling schedule whose size is close to
m and and whose average score for the n instances is close to the optimal solution.

E.1 Identical Paths

The easier setting that we study is identical paths. In this setting, we compete with the optimal solution
that chooses the same path for all instances. In other words, in such solutions, we fix a set of nodes
va1 , va2 , . . . , vak and find a cooling schedule that takes all instances through this path. More precisely, we
put enough temperatures da1 to make sure all instance reach vertex va1 . Next, we proceed by doing the
same thing for va2 and so on.

We show that in this setting the problem of finding the optimal cooling schedule reduces to shortest path.
Construct a graph G with the same vertex set as the monotone stationary graphs. We put a directed edge
from vertex vi to vertex vj of G, if and only if such an edge exists in the corresponding monotone stationary
graphs of all instance. Moreover, we set the length of this edge as the largest length in all the graphs. Finally,
we find the lowest temperature di (meaning that i is maximized) such that vertex vi is reachable from vertex
v0 via a path of length at most m. We prove that this algorithm is optimal.

Algorithm 1: Exact algorithm for the identical paths setting.

1: for 1 ≤ k ≤ n do
2: Let r

(k)
i,j be the minimum number of repetitions for temperature dj to make a transition from node vi

to vj on the k-th monotone stationary graph.

3: ri,j := maxk∈[n] r
(k)
i,j .

4: Let ri,j = 0 when i ≥ j.
5: Construct a graph with vertices v0, · · · , v|T | and pairwise distances ri,j .
6: Find the the shortest paths from v0 to all nodes of the graph.
7: Find the largest q such that node vq is within a distance of m from v0.
8: Output the optimal sequence of temperatures made by this path.

Theorem E.1. Given n monotone stationary graphs for n instances of the problem, one can find in poly-
nomial time a cooling schedule of length m that maximizes the average score for the n instances in the same
paths setting

Proof. The proof is based on the fact that the path is the same for all instances. Thus, in order to make a
transition from vertex vi to vertex vj , one needs to add as many copies of temperature dj as the size of the
largest label among all instances. Thus, the furthest we can get from node v0 is a node vi whose distance
from v0 is bounded by m on the graph we make. �

E.2 Separate Paths

The more challenging setting is when we allow the instances to have different paths in the optimal solution.
In this case, the problem is much harder since we have to consider n different monotone stationary graphs
and solve the problem with respect to all of them. However, it is not hard to see that if n is constant, one
can find the optimal cooling schedule of length m in polynomial time.

Lemma E.2. Given n monotone stationary graphs for n instances of the problem, one can find in time
Õ(m|T |n+1) a cooling schedule of length m that maximizes the average score for the n instances in the
separate paths setting

Proof. The proof is similar to the proof of Theorem E.1. However, since we may traverse a different path
for every graph, we need to construct our graph more carefully. To this end, our vertex set would be the
multiplication of the vertex sets for the monotone stationary graphs. That is, we put (|T | + 1)n different
vertices in our graph such that every vertex shows one combination of the nodes for the instances.

Every vertex has O(m|T |) different edges that shows how the combination changes by adding 1 ≤ i ≤ m
copies of temperature dj to the sequence. Finally, we compute the distances of all vertices from node

30

v0 v1

〈d1, d1, d1〉
v2

〈d2, d2〉

〈d2, d2, d2, d2〉

v3

〈d3, d3, d3, d3〉

〈d3, d3〉
v4

〈d4, d4, d4〉
v5

〈d5, d5〉

〈d5, d5, d5, d5, d5, d5〉

Figure 8: All the dashed edges are crossing for vertex v2. Moreover, sequence
〈d1, d1, d2, d2, d2, d2, , d3, d3, d3, d3, , d4, d4, d4, d4, d5, d5〉 is an acceptable sequence that encompasses all
the red edges. The edges that are not drawn are implied by the edges depicted in the figure.

(v0, v0, . . . , v0) and find the one whose distance is bounded by m and its score is maximized. Then, we
recover the path to that node and report it. �

Obviously, the runtime of Lemma E.2 is not polynomial when n is super constant. Therefore, for asymp-
totically larger n’s, we present a polynomial time algorithm that approximates the solution. Our algorithm
works for the all-satisfied setting, which means that there is an optimal solution that brings all instances to
the vertex corresponding to the lowest temperature. Our algorithm loses a polylogarithmic factor in the size
of the sequence but obtains the same score as the optimal solution with high probability.

Let us assume for simplicity that the score for each instance Ik is equal to 1 if and only if our sequence takes
us to node v|T | in its monotone stationary graph. Otherwise the score is equal to 0. Our algorithm is not
dependent on this assumption, yet it makes the explanation much simpler. We begin by an observation that
translates the definition of score into the set cover setting.

We say a cooling schedule E is an acceptable cooling schedule for an instance I of the problem if E takes us
all the way to node v|T | in its monotone stationary graph. Define an edge from a vertex vi to a vertex vj to
be crossing for a vertex vk if i < k ≤ j holds. Moreover, we say a sequence E encompasses an edge from vi
to vj from a particular monotone stationary graph if E contains at least as many repetitions of temperature
dj as the label of the edge from vi to vj . An example of the definitions is shown in Figure 8.

Now, we are ready to state an observation that plays an important role in our algorithm.

Observation E.1. A sequence of temperatures E is acceptable for an instance I of the problem if and only
if for every 1 ≤ i ≤ |T |, E encompasses at least one crossing edge with vi.

Proof. The necessity of the condition is trivial. If E does not encompass a crossing edge for a vertex vi,
then E cannot reach vertex vi in monotone stationary graph. The vice versa also holds. Suppose for the
sake of contradiction that a sequence E encompasses a crossing edge for every vertex but it does not take us
to node v|T |. In this case, there exists a vertex vi, such that all vertices vi−1 is reachable but none of the
vertices vj is reachable for j ≥ i are reachable using E . This means that E does not encompass an edge that
crosses vertex vi otherwise we could have reached vertex vi using E . �

We are now ready to state the main theorem of this section.

Theorem E.3. Let I1, I2, . . . , In be n monotone stationary graph with the guarantee that there exists a cooling
schedule of length m that is acceptable for all instance. One can find in polynomial time a cooling schedule
for the SA algorithm whose average score is equal to that of the optimal cooling schedule of size m. Our
algorithm is randomized and gives a solution with probability at least 1− e−100. Also, the average size of the
cooling schedule is bounded by O(m(log |T |+ log n)).

31

v0 v1

〈d1, d1, d1〉
v2

〈d2, d2〉

〈d2, d2, d2, d2〉

v3

〈d3, d3, d3, d3〉

〈d3, d3〉
v4

〈d4, d4, d4〉
v5

〈d5, d5〉

〈d5, d5, d5, d5, d5, d5〉

Figure 9: For m = 9 the optimal sequence of temperatures is 〈d1, d1, d1, d5, d5, d5, d5, d5, d5〉. All the edges
skipped in the figured can be implied from the edges shown by monotonicity.

Proof. Observation E.1 gives us a strong tool to analyze the solution. Let OPT be the optimal cooling
schedule of size m which is acceptable for all instances. Due to Observation E.1, OPT encompasses at least
one crossing edge for all vertices of all monotone stationary graphs. To formalize this, define a set

S ={〈d1〉, 〈d1, d1〉, . . . ,
m︷ ︸︸ ︷

〈d1, d1, . . . , d1〉}∪

{〈d2〉, 〈d2, d2〉, . . . ,
m︷ ︸︸ ︷

〈d2, d2, . . . , d2〉}∪
...

{〈d|T |〉, 〈d|T |, d|T |〉, . . . ,
m︷ ︸︸ ︷

〈d|T |, d|T |, . . . , d|T |〉}

to be the set of all possible repetitions for all temperatures and for each element e ∈ S, define `(e) to be the
size of e. In addition to this, for each element e ∈ S, define ce = {0, 1} to be equal to 1 if and only if OPT
contains `(e) repetitions of the character corresponding to e.

To clarify the definitions, consider an example with only a single instance shown in Figure 9. In this case,
m = 9 and the optimal sequence of temperatures is OPT = 〈d1, d1, d1, d5, d5, d5, d5, d5, d5〉. In this case S
contains 45 = m|T | elements out of which only c〈d1,d1,d1〉 and c〈d5,d5,d5,d5,d5,d5〉 are equal to 1. Moreover,
`(〈d1, d1, d1〉) = 3 and `(〈d5, d5, d5, d5, d5, d5〉) = 6 hold.

For a vertex vi in graph Ik, define crossingl(Ik, vi) to be the set of elements in S that correspond to the
crossing edges of vi. This way, the optimal solution of the problem can be formulated via the following
integer feasibility program:

constraints:
∑
`(e)ce ≤ m∑
e∈crossingl(vi,Ik) ce .≥ 1 ∀1 ≤ k ≤ n and 1 ≤ i ≤ |T |

ce ∈ {0, 1} ∀e ∈ S,
(13)

where the variables of the program are ce’s. Indeed by relaxing the conditions of IP 13 we can obtain LP 14.

constraints:
∑
`(e)ce ≤ m∑
e∈crossingl(vi,Ik) ce .≥ 1 ∀1 ≤ k ≤ n and 1 ≤ i ≤ |T |

0 ≤ ce ≤ 1 ∀e ∈ S
(14)

Now we solve LP 14 and construct a solution as follows: for each element e ∈ S, we add e to our solution
independently with probability min{αce, 1}, where α = 100(log |T |+ log n).

32

First, it’s easy to see the expected length of our solution is bounded by αm:

E[length] =
∑
e∈S

Pr[e is picked]`(e) =
∑
e∈S

min(αce, 1)`(e) ≤
∑
e∈S

αce`(e) ≤ αm,

where the last step is due to the constraint in LP.

Next, we will show that with high probability, the resulting sequence is acceptable for each instance Ik.
Consider the case when the resulting sequence is not acceptable for Ik. By Observation E.1, there exists a
vi such that none of the edges in crossingl(vi, Ik) were encompassed in our solution. By union bound, the
probability of this bad event can be upper bounded by

Pr[Ik is not satisfied] ≤
|T |∑
i=1

Pr[∀e ∈ crossingl(vi, Ik) wasn’t picked]. (15)

Now we focus on the probability inside the summation. Since each element was selected independently, this
probability equals to

Pr[∀e ∈ crossingl(vi, Ik) wasn’t picked] =
∏

e∈crossingl(vi,Ik)

Pr[e wasn’t picked]

=
∏

e∈crossingl(vi,Ik)

max(1− αce, 0).

If αce ≥ 1 for some e ∈ crossingl(vi, Ik), then the probability is 0. Otherwise, since 1− x ≤ e−x, we have∏
e∈crossingl(vi,Ik)

max(1− αce, 0) ≤ e−
∑
e∈crossingl(vi,Ik) αce ≤ e−α.

Therefore, by 15
Pr[Ik is not satisfied] ≤ |T |e−α

Using union bound again, we have

Pr[any instance Ik is not satisfied] ≤
∑

1≤k≤n

Pr[Ik is not satisfied]

≤|T |ne−α

≤e−100.

Hence, we proved that with probability 1− e−100, the resulting sequence is acceptable for each instance Ik.�

33

F Omitted Proofs of Section B

Proof of Observation B.1: For Observation B.1.(i), define τr = {arg mini≥0 : xi = r}. We would like to
prove that,

Pr[τ√
k/c
≤ k] ≥ 0.95. (16)

By the Markov property, τr is the sum of r independent copies of τ1. Let the probability generating function
of τr be Fr(z) := E[zτr] =

∑∞
j=0 Pr(τr = j)zj , then we have Fr(z) = F1(z)r. Furthermore, we have the

following recurrence about F1(z) :

F1(z) =
z

3

(
1 + F1(z) + F1(z)2

)
. (17)

Hence,

F1(z) =
(3− z)−

√
3(z + 3)(1− z)
2z

. (18)

One important property about F1(z) is that for all z ∈ [0, 1],

F1(z) ≤ 1−
√

1− z. (19)

By Markov’s inequality,

Pr[τr ≥ k] ≤ inf
z

E[zτr]

zk
(20)

= inf
z

(1−
√

1− z)r

zk
(21)

(z := 1− 1

k
) = (1− 1√

k
)r(1− 1

k
)−k (22)

(r := c
√
k) ≤ exp(−c− 1). (23)

Hence we have completed the proof.

For Observation B.1.(ii) and (iii), we need a classical result in martingale concentration inequalities, the
Freedman’s inequality for scalar martingales [13, Thm. (1.6)], see also [33, Thm. (1.1)].

Theorem F.1 (Freedman). Consider a real-valued martingale {Yk : k = 0, 1, 2, . . . } with difference sequence
{Xk : k = 1, 2, 3, . . . }. Assume that the difference sequence is uniformly bounded:

|Xk| ≤ R almost surely for k = 1, 2, 3,

Define the predictable quadratic variation process of the martingale:

Wk :=
∑k

j=1
Ej−1

(
X2
j

)
for k = 1, 2, 3,

Then, for all t ≥ 0 and σ2 > 0,

Pr[∃k ≥ 0 : Yk ≥ t and Wk ≤ σ2] ≤ exp

{
− t2/2

σ2 +Rt/3

}
.

When the difference sequence {Xk} consists of independent random variables, the predictable quadratic
variation is no longer random. In this case, Freedman’s inequality reduces to the usual Bernstein inequality.

To prove B.1, we let yk = xk + kγ where γ = pb − pf , then yk is a martingale since the difference sequence
∆k = yk − yk−1 has expectation zero. Furthermore, the difference sequence ∆k is uniformly bounded with

|∆k| ≤ R := 1 + |γ|, and Wk =
∑k
j=1 Ej−1(∆2

k) ≤ kR2. By the Freedman’s inequality,
34

Pr[max
k

yk ≥ t] ≤ exp

{
− t2/2

kR2 +Rt/3

}
. (24)

Since we have R = 1 + |γ| and yk = xk + kγ, (24) is equivalent to

Pr[max
k

xk ≥ t− kγ] ≤ exp

{
− t2/2

kR2 + tR/3

}
. (25)

Let t = 3R
√
k log k, we have

t2/2

kR2 +Rt/3
=

t2/(2R2)

k + t/(3R)
≥ t2/(2R2)

k + k
=

t2

4kR2
≥ 2 log k.

Rearranging terms gives

Pr[max
k

xk ≥ 3(1 + |γ|)
√
k log k − kγ] ≤ 1

k2
. (26)

When pf = pb = ps = 1
3 , we have γ = 0 and the above inequality is equivalent to

Pr[max
k

xk ≥ 3
√
k log k] ≤ 1

k2
. (27)

This proves (ii). For (iii), we note that γ = pb − pf ≥ 2c log k′√
k′

and we only needs to prove that

3(1 + |γ|)
√
k log k − kγ ≤

√
k′

2
. (28)

Note that

3(1 + |γ|)
√
k log k − kγ ≤ 3

√
k log k − k

2
γ. (29)

When γ ≥ 6
√

log k√
k

, RHS is negative so the inequality holds trivially. Otherwise, we have γ = 2c log k′√
k′

< 6
√

log k√
k

,

hence k′ ≥ O(1) k
log2 k

>
√
k. By AM-GM inequality,

3
√
k log k ≤ k

2
γ +

9 log k

γ
, (30)

Therefore, we have

3(1 + |γ|)
√
k log k − kγ ≤ 9 log k

γ
=

9 log k

2c log k′

√
k′ ≤ 9

c

√
k′. (31)

Hence, letting c = 9 completes the proof. �

35

G Omitted Proofs of Section C

Proof of Observation C.1: The proof is given below:

pf(x) + (1− p)f(y) =p
[
x− x2

]
+ (1− p)

[
y − y2

]
=(px+ (1− p)y)− (px+ (1− p)y)2 −

[
(p− p2)(x2 + y2 − 2xy)

]
=(px+ (1− p)y)− (px+ (1− p)y)2 −

[
(p− p2)(x− y)2

]
≤(px+ (1− p)y)− (px+ (1− p)y)2 −

[
min{p, 1− p}(x− y)2

]
(32)

=f(px+ (1− p)y)−
[
min{p, 1− p}(x− y)2

]
.

Inequality (32) follows from the fact that both p and 1−p are in range [0, 1] and thus p(1−p) ≤ min{p, 1−p}.
�

Proof of Observation C.3:

|f(x)− f(y)| =|[x− x2]− [y − y2]|
=|(x− y)− (x2 − y2)|
=|(x− y)− (x− y)(x+ y)|
=|(x− y)(1− (x+ y))|
=|x− y||(1− (x+ y))|
≤|x− y|

where the last inequality holds since 0 ≤ x + y ≤ 2 and therefore −1 ≤ 1 − (x + y) ≤ 1 which implies
0 ≤ |1− (x+ y)| ≤ 1. �

Proof of Observation C.4: To prove the observation, we take the first derivative of p − p1+x which is
equal to

d

dp

[
p− p1+x

]
= 1− (1 + x)px

which means that the function is maximized (or minimized) at p0 = (1 + x)−1/x. It is easy to see that since
p− p1+x is non-negative in range [0, 1] and is equal to 0 at both p = 0 and p = 1 then the expression should
be maximized at p0. Thus, the maximum value for p− p1+x is bounded by

p0 − p1+x
0 = p0(1− px0)

≤ 1− px0
= 1− ((1 + x)−1/x)x

= 1− (1 + x)−1

= 1− 1/(1 + x)

= x/(1 + x)

≤ x.

�

Proof of Observation C.5: We first show the proof for the case of p ≤ 1/2. We start by the famous
inequality 1+y ≤ ey [25] which holds for any y ∈ R. Therefore, we have 1−ey ≤ −y. By setting y = −x ln 1/p
we obtain

1− e−x ln 1/p ≤ x ln 1/p
36

Notice that e−x ln 1/p can be written as (e− ln 1/p)x = (eln p)x = px. Thus, we have

1− px ≤ x ln 1/p

Multiplying both sides by p gives us
p− p1+x ≤ p(ln 1/p)x

which proves the observation for p ≤ 1/2. Next, we show the statement for p ≥ 1/2. In this case, we prove
p− p1+x ≤ (1− p)x which implies the observation. Our goal here is to prove p− p1+x− (1− p)x ≤ 0 for any
p ∈ [0.5, 1] and any 0 ≤ x ≤ 1. Thus, we take the derivative of p to bound its maximum value.

d

dp

[
p− p1+x − (1− p)x

]
= 1− (1 + x)px + x

which is equal to 0 only at p0 = 1. At p0 we have p − p1+x − (1 − p)x = 0 which is not greater than 0.
Also, since for p = 0 the expression p − p1+x − (1 − p)x is equal to −x which is negative, it means that
the function is maximized at p = 1. Thus, p− p1+x − (1− p)x is always upper bounded by 0 which means
p− p1+x ≤ (1− p)x. �

37

	Introduction
	Prelimnaries
	Sample Complexity
	Warm-Up: A Crude Upper Bound
	A Polynomial Lower Bound
	Tightening the Upper Bound

	Simulation Complexity
	Conclusion
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3
	A Computational Model to Evaluate SA Algorithms
	Computational Results
	Learning A Monotone Stationary Graph

	Computing/Approximating the Optimal Cooling Schedule
	Identical Paths
	Separate Paths

	Omitted Proofs of Section B
	Omitted Proofs of Section C

