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Simulated annealing is an effective and gen-
eral means of optimization. It is in fact
inspired by metallurgy, where the temper-
ature of a material determines its behav-
ior in thermodynamics. Likewise, in sim-
ulated annealing, the actions that the al-
gorithm takes depend entirely on the value
of a variable which captures the notion of
temperature. Typically, simulated anneal-
ing starts with a high temperature, which
makes the algorithm pretty unpredictable,
and gradually cools the temperature down
to become more stable.

A key component that plays a crucial role
in the performance of simulated annealing
is the criteria under which the tempera-
ture changes, namely, the cooling schedule.
Motivated by this, we study the following
question in this work: “Given enough sam-
ples to the instances of a specific class of
optimization problems, can we design near-
optimal cooling schedules that minimize the
runtime or mazimize the success rate of
the algorithm on average when the underly-
ing problem is drawn uniformly at random
from the same class?”

We provide positive results both in terms of
sample complexity and simulation complex-
ity B For sample complexity, we show that
O(y/m) samples suffice to find an approx-
imately optimal cooling schedule of length
m. We complement this result by giving
a lower bound of Q(m!/3) on the sample

1We call the overall runtime of the algorithm that de-
termines the cooling schedule the simulation complexity
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provides an almost optimal cooling sched-
ule. These results are general and rely on
no assumption. For simulation complexity,
however, we make additional assumptions
to measure the success rate of an algorithm.
To this end, we introduce the monotone
stationary graph that models the perfor-
mance of simulated annealing. Based on
this model, we present polynomial time al-
gorithms with provable guarantees for the
learning problem.

1 Introduction

The goal of this work is to better understand how we
can design efficient simulated annealing (SA) algo-
rithms. Simulated annealing is a well-known heuris-
tic method to tackle hard problems. Term anneal-
ing originates from thermodynamics, referring to the
way that metals cool and anneal. Instead of the en-
ergy of the material, simulated annealing utilizes the
objective function of an optimization problem. Sur-
prisingly, the implementation of SA is very simple
as it is very similar to hill-climbing. The only differ-
ence is that instead of picking the best move in every
step, simulated annealing picks a random move. If
the selected move improves the quality of the solu-
tion, then the move is always accepted. Otherwise,
the algorithm makes the move anyway with some
probability less than 1. The probability decreases
exponentially with the badness of the move, which is
the amount by which the solution is worsened. This
is shown by A(F). One example of the annealing
criteria is given below:

Prlaccepting downhill move at step 4] ~ 1—eR BN/t

where parameter ¢; is the temperature of the algo-
rithm at step ¢ which is used to determine this prob-
ability. The ¢; parameter is analogous to temper-



Sample complexity

(for any learning algorithm)

Upper bound: O(v/m)
Lower bound: Q(v/m)
(for our discretization approach)

Lower bound: Q(m'/?)

Simulation complexity

identical paths

separate paths

separate paths + all-satisfied

exact solution
in time
poly(m, n, |T)

exact solution
in time
poly(m,n,|T|™)

(O(logn|T1),0) approximation
in time
poly(m,n, |T)

Table 1: Overview of our results.

Here, m denote the length of cooling schedule. In the computational

results, T' is the set of the discretized temperatures and n is the number of samples used in the learning

algorithm.

ature in an annealing system at time step i. At
higher values of temperature, downhill moves are
more likely to occur. As the temperature tends
to zero, they become more and more unlikely, un-
til the algorithm behaves more or less like hill-
climbing. In a typical SA optimization, the tem-
perature starts at a high value and is gradually
decreased according to a cooling schedule. Simu-
lated annealing is used for a broad class of com-
putational problems ranging from SAT to travelling
salesman problem, to VLSI routing, etc. as experi-
ments strongly support the efficiency of simulated
annealing in practice |Aragon et al.| (1984); Kirk-
patrick et al.| (1983); Ingber|(1993); Nieto-Vesperinas
et al.| (1988)), and still achieving empirical success in
various applications recently |Mafarja and Mirjalili
2017); [Fathollahi-Fard et al| (2019); Wang et al.
2019)); Ezugwu et al.| (2017)); [Lu et al.|(2017); Mate-
[jka and Fitzmaurice| (2017)).

Indeed the efficiency of an SA algorithm signifi-
cantly depends on its cooling schedule
Delosme, (1988blla)); [Nourani and Andresen| (1998);
Kirkpatrick et al| (1983); |Sacco (1990)); Nulton
and Salamon| (1988); [Triki et al.| (2005); |Azizi and
Zolfaghari (2004); Aarts and Korst| (1988). One sim-
ple cooling schedule is to start with a single temper-
ature tg and decrease the temperature linearly with
a rate of a to obtain lower temperatures gradually.
We use this simple cooling strategy to present il-
lustrating examples, nonetheless we consider a more
generalized setting in this work. The literature has
also gone beyond simple cooling schedules and sev-
eral non-linear methods have been proposed so far
[Lam and Delosme| (1988bla)); Nourani and Andresen
(1998); Kirkpatrick et al.| (1983)); |Sacco| (1990)); [Nul-

ton and Salamon| (1988)); Triki et al.| (2005); |Azizi

and Zolfaghari| (2004); |Aarts and Korst| (1988). It is

not hard to imagine that even for different instances
of the same problem, the optimal cooling schedules
may vary significantly.

In our setting, we focus on a family of problem
instances (available via sample access to an un-
known distribution) and tend to maximize the av-
erage score over all instances. This approach is
known as the PAC-style modeling which has been
used to analyze a variety of other application-specific
algorithms, including branch and bound algorithms,
center-based/linkage-based clustering, and combina-
torial auctiongGupta and Roughgarden| (2017); Bal-|
ccan et al.| (2017, 2018, |20192). We refer the readers
to [Roughgarden| (2020) for a more comprehensive
review of this area. Generally in algorithm design,
we need to incorporate an unknown set of instances,
since otherwise for any given instance there is an al-
gorithm that has the solution memorized. Typically
one does this worst-case over an instance family, and
with this analysis we are at least aiming to bring
that closer to the specific instances by performing
near-optimally with respect to the actual distribu-
tion over instances at hand.

Therefore in this work, we take a learning approach
towards designing simulated annealing algorithms,
using the PAC-style model for data-driven algorithm
design introduced in|Gupta and Roughgarden| (2017))
and used to analyze a wide range of important fam-
ilies of algorithms and heuristics in
(2017, 2018, |20194), [2020). In brief, we consider a
distribution D over a specific class of instances of a
presumably hard problem (such as SAT) and aim
to design near-optimal cooling schedules for such
instances, analyzing both sample complexity (the
number of instances from D we need to observe) and
simulation complexity (runtime) needed for learning.




Our approach is particularly motivated by the work
of Balcan et al.| (2017).

2 Prelimnaries

As aforementioned, an SA algorithm makes a ran-
dom walk on the nodes of a search graph. Each
node of this graph represents a potential (not neces-
sarily optimal) solution for the underlying problem
and the energy of a node is a value reflecting how
close this solution is to an optimal solution. We as-
sume that for each node, its energy and neighbors
are available via oracle queries. One thing to keep
in mind is that the number of nodes in this huge
search graph may be exponentially large and that
we only have local views on the nodes of the graph.
For instance, when the underlying problem is SAT,
we may have 2¥ nodes where k is the number of vari-
ables in the SAT problem and each node represent
an assignment of true/false to the variables.

Crucial to any cooling schedule are the parameters
that maximize its performance. This could be as
simple as just a real value specifying the cooling rate
or as complicated as a sequence of variables deter-
mining the exact value of the temperature at every
step. Take for instance, the simplest case in which a
parameter ty and linear cooling rate « formulate the
temperature at every step. In this case, at step i,
t; = to(1 — ai) formulates the temperature. There-
fore, the learning algorithm has to find the optimal
pair (tp,«) that maximizes efficiency. It is an easy
exercise to see that the learning problem is actu-
ally not very challenging in this case. Although this
simple formulation involves infinitely many (¢o, @)
pairs that need to be searched over, via careful dis-
cretization techniques, one can narrow down the set
of possible (tg, ) pairs to polynomially many can-
didates and iterate over them to find the optimal
cooling scheduleﬂ Samples are used to determine
how well each cooling schedule performs in practice.
More precisely, samples are used to approximate the
score of a cooling schedule.

However, we go beyond linear cooling schedules and
include more sophisticated systems (i.e., non-linear
cooling schedules). Our setting is pretty general:
we denote the cooling schedule by a vector £ =
(t1,to,...,tm) where m is the number of steps our
algorithm takes and t; specifies the temperature at
time ¢. Any non-increasing sequence of values makes
a valid cooling schedule. The problem becomes more

2This improvement comes with a small error to the
quality of the solution.

challenging with this representation; Even after dis-
cretizing the temperatures, still there are exponen-
tially many cooling schedules and determining an
approximately optimal schedule is non-trivial.

Recall that each node of the search graph corre-
sponds to a potential solution for the underlying
problem. In case of SAT for instance, each node
can be an assignment of the true/false values to the
variables. We label a subset of nodes in the search
graph as acceptable solution nodes. These nodes cor-
respond to solutions that are acceptable for the un-
derlying problem. In the case of SAT, a node whose
corresponding solution satisfies all of the clauses is
a solution node. The score of an SA algorithm with
a specific cooling schedule is the likelihood of reach-
ing an acceptable solution node after a fixed number
of steps. We would like to point out that although
a reasonable energy function for the nodes of the
search graph gives higher energies to the acceptable
solution nodes, we make no particular assumption
on the energies in our setting. We remark that if
the cooling schedule is available, it is computation-
ally easy to evaluate the score of the algorithm. We
run the SA algorithm according to the cooling sched-
ule and once it terminates we find out if the solution
found by the algorithm is acceptable for the prob-
lem. By repeating this process enough times, we
can estimate the score of the cooling schedule very
accurately.

Indeed the optimal parameters may vary for different
problems or even for different instances of the same
problem and therefore we need to also incorporate
the problem instances in our setting. To illustrate
the importance of the cooling schedule, consider the
example shown in Figure 2] In the example shown
in Figure [2| there is one solution node (colored in
red) which has an energy of 3n and the search graph
consists of a clique of vertices with distinct energies
one of whose vertices has a path to the solution node.
The energies of the nodes of this path are increasing.
Let us assume that the initial state of the algorithm
is the node colored in green. It is easy to verify
that an extreme strategy that never accepts down-
hill moves has zero chance of reaching the solution
node and another extreme strategy that always ac-
cepts all downhill moves requires a cubic number of
steps to reach the solution node. However, a strat-
egy that accepts each downhill move with probabil-
ity 1/2 only requires O(n?) steps in expectation to
reach the solution node.

Motivated by this example, we define our general
problem in the following way:



Figure 1: A search graph with 3n nodes is illustrated
in this figure. The numbers on the nodes show their
energy or in other words goodness of the nodes. In
this example, we consider the red node to be the
only solution of the problem.

Problem Let D be a distribution over a specific
class of instancesﬁ of a hard problem (such as SAT).
Denote the set of valid (combination of) parameters
for the SA algorithm by F = {&;,&,,...,}. More-
over, let for an instance | ~ D and a set of parame-
ters £ € F, score(l, £) be a function that reflects how
well an SA algorithm with parameters & works on in-
stance |. This is basically the likelihood of finding
a solution, if our SA algorithm uses £ as its cooling
schedule. Our goal is to find a set of parameters
&€ € F that maximizes efficiency. In other words,

E .p[score(l, £)]

is (approximately) maximized. We assume through-
out this paper that the scores improve as energy in-
creases. Also, a downhill move is a move which hurts
the energy of a node and thus is accepted with some
probability smaller than 1. However, whenever the
score of a node does not hurt in a move, such a move
is always made.

We clarify the notation by a simple example. Let us
go back to the basic setting in which we formulate
the temperature at each step with a pair (¢, «). In
this case, F = RT x (0,1/m) would be the set of
all valid parameters. Moreover, a natural example
for score is the probability of finding a correct so-
lution after a given (say m) number of steps. This
way, the problem is to find a temperature ¢ty and a
cooling rate o that maximize the success probabil-
ity after performing m moves of SA. Our attention
in this work is focused on an even more general set-
ting. We denote the cooling schedule by a sequence
of non-increasing temperatures (t1,to, ..., ;) for a

3For instance industrial instances of SAT.
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fixed m. Thus, in our setting we have F C (RT)™
subject to the temperatures being non-increasing.
For simplicity, and without loss of generality, we as-
sume that the energies of the nodes are integer num-
bers in range {1,2,...,emax}-

Any SA algorithm basically makes a random walk
on a search graph in which every node represents a
potential /partial solution for the problem. For in-
stance, when the underlying problem is SAT, every
node of the search graph is a true/false assignment
to the variables of the program. The energy of each
node is a local guess on how well that solution sat-
isfies the goals of the problem. For the case of SAT
for instance, one simple energy function for a node
is the number of clauses the corresponding solution
satisfies. In our setting, we make no assumption on
the energy of the nodes though in practice we expect
that a higher energy signals a better solution. Since
an SA algorithm makes a random walk, its state at
every step can be shown via a distribution over the
nodes of the search graph. Initially, this distribu-
tion shows the likelihood of each node being used as
the starting solution and as the algorithm proceeds,
the distribution changes based on the criteria of the
random walk. The final state of the algorithm rep-
resents the likelihood of each node reported as the
final solution. Thus, we wish the final distribution
of our algorithm to be highly concentrated on the
solution nodes.

We evaluate our learning algorithm based on two
quantities: sample complexity and simulation com-
plemitﬂ The former measures the number of sam-
ples one needs in order to find an (approximately)
optimal cooling schedule and the latter measures the
runtime of the learning algorithm in order to find an
optimal cooling schedule.

Our main results are concerned with the sample
complexity of the learning problem. As a typical
challenge for learning problems, we have to face the
issue that the space of the problem is infinitely large
as there are infinitely many cooling schedules for an
SA algorithm. In order to prove a bound on the
sample complexity, the first step is to show that by
losing a small additive error, we can bound the space
of the solutions to a finite set. We begin by explain-
ing this in Section We also propose a computa-
tional model for evaluating the simulation complex-
ity of the problem and design efficient algorithms
with theoreteical guarantees in Section [4]

4This is equivalent to the notion of running time if we
assume that our SA procedure halts after a polynomial
number of steps.



3 Sample Complexity

In this section, we give an analysis for the sample
complexity of the problem. Recall that, for any
problem instance | and any sequence of m tem-
peratures & = (ty,ta,...,tn), we define score(l, &)
to be the probability of finding an acceptable so-
lution of | using temperatures in £&. We say &
is e-approximately optimal, if Ej.pscore(l,€) >
supg Epscore(l,£") — e. That is, no other cool-
ing schedule of the same length can achieve a signif-
icantly higher success rate. Our goal is to provide
upper and lower bounds on the number of i.i.d. sam-
ples from D required for learning an e-approximately
optimal cooling schedule.

3.1 Warm-Up: A Crude Upper Bound

We first show that although the space of the prob-
lem is infinitely large, only a polynomial number of
samples suffice to approximate the optimal solution
within desirable guarantees. This step is quite clas-
sic as discretization is the typical approach to bound
the solution set. One of the difficulties in finding
near-optimal cooling schemes is that there are in-
finitely many options available. We show that by
discretizing the temperatures into O(m/e) different
values, we only lose an additive error of ¢ in the
success rate when running the algorithm on any in-
stance of the problem. Note that, we are not mak-
ing any assumptions yet: we only rely on the fact
that the algorithm is evaluated based on the success
rate. Discretizing the temperature makes design-
ing efficient algorithms possible too as we will show
in Section [ Our main result is an upper bound
of O(y/m) for the sample complexity which is ex-
plained in details later in Section [3-3] Here we start
as a warm-up by giving an upper bound of O(m).

Theorem 3.1. The sample complezity of comput-
ing an e-approximately optimal cooling schedule with
length m is bounded by O (6*2 (m log(%))).

Roughly speaking, the total number of samples we
need in order to approximate the optimal cooling
schedule is logarithmic in terms of the number of
candidate solutions we have. Initially, the space of
cooling schedules is infinitely large, however, a dis-
cretization technique can reduce the space of can-
didate solutions to 2°(") many. More precisely,
we define a discretized temperature set 7' whose
size is O(m) and show that there is an almost op-
timal solution that only uses the temperatures in
T. This reduces the space of candidate solutions

5

to (O(m))™ < 20(m) which implies that the sample

complexity is bounded by 6(m)

The only non-trivial part of the above analysis is to
show that a discretized set of temperatures with size
O(m) is enough to approximate the optimal cooling
schedule within an arbitrarily small additive error.
Let us fix an € > 0 and assume that the goal is to
construct a discretized set of temperatures T such
that there is a cooling schedule that only uses the
temperatures of T and its score is at most ¢ smaller
than the optimal solution. One convenient way to
construct such a set is to make sure for each ¢t > 0
there is a ¢ € T such that for any 1 < z < ey
we have |e=%/t — ¢=#/t'| < ¢/m. Then we can im-
ply that if we replace every temperature t; of the
optimal solution with its corresponding ¢, of the dis-
cretized set, each step we make a different decision
with probability at most €/m and thus the total er-
ror is bounded by e. That is, with probability 1 — €
our algorithm traverses the exact same path as had
we not modified the optimal cooling schedule. It is
not hard to prove that such a condition can be met
by having O(mlog enax) elements in |T'| which gives
us an almost linear bound on the sample complexity.

Up to this point we show that an almost linear
number of queries is sufficient for approximating
an optimal cooling schedule. This raises two ques-
tions: i) Can we improve the bound such that the
dependence on m is subpolynomial? In particular,
do polylogarithmically many samples suffice for our
purpose? 1ii) If the answer to the first question is
negative, can we prove a linear lower bound on the
sample complexity? As we show in the following,
the answer to both questions is negative!

3.2 A Polynomial Lower Bound

We present a negative answer to the first question
above. Although this section gives us a lower bound,
our improved upper bound in the next section is ac-
tually inspired by this lower bound. The first at-
tempt to prove a lower bound is to understand the
limit of the discretization technique explained above.
Therefore, we ask the following question: “assuming
that our algorithm first constructs a discretized set
of temperatures and then seeks to find an optimal
solution that only uses the discretized temperatures,
how many samples do we need?” Indeed, the answer
to this question does not imply a lower bound in gen-
eral, but it does give us an insight into the problem
which leads to a general lower bound.



To answer the above question, we need to under-
stand what is the smallest set T" of temperatures that
can be used to make a cooling schedule whose score
is very close to the optimal solution? The search
graph shown in Figure [2| proves that |T'| should be
at least as large as Q(\/M), otherwise the guarantee
may not hold.

In the search graph of Figure [2l we set m’ = m/100.
For a fixed 7, we set = in a way that e=%/7 = 1/2,
that is if the temperature is equal to 7 the prob-
ability of making a downhill move is exactly equal
to 1/ ﬂ The goal of this search graph is to start
the SA algorithm from the initial node and the only
acceptable solution node is the final node.

* upper path

+ lower path

Figure 2: The search graph is depicted for a fixed
temperature 7. £ = 71n0.5 is chosen in a way that
e~*/T =1/2 holds.

The search graph of Figure [2] is particularly inter-
esting because of the following observations: i) A
cooling schedule of length m only having temper-
ature 7 is guaranteed to reach the final node with
high probability. ii) A cooling schedule of length
m that~does not contain any temperature in range
[7(1 — Q(m~Y2)),7(1 + Q(m~2))] has very little
chance to reach the final node. As a consequence,
if the multiplicative distance between two consecu-
tive temperatures in our discretized set is more than
1+Q(m~1/2), one can delicately design such a search
graph for which our discretization performs poorly
while the optimal solution gets a score close to 1.
This implies that the size of the discretized set has
to be at least Q(y/m) to prove a bound.

While the above argument shows that our specific
algorithm definitely needs O(y/m) samplesﬁ it does
not give a lower bound for general algorithms beyond
our discretization approach. However, we show in
Section [B] with a slightly more advanced analysis

that any algorithm requires at least ﬁ(ml/ 3) samples

For now, we assume x can be an arbitrary real num-
ber but this comes without loss of generality.
5See the proof of Theorem for more details.
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from the distribution in order to guarantee a non-
trivial bound. While the heart of the proof is based
on the same search graph, in order to extend the
observation to all algorithms, we slightly lose on the
exponent of m in the lower bound.

Theorem 3.2. Even if epq, = Qé(l), any learning
algorithm requires at least Q(m'/®) samples from the
distribution in order to obtain an additive error less

than 0.5.

Before proceeding to the main result (O(y/m)
sample complexity upper bound), we would like to
note an implication of this result in the context
of simulated annealing. There have been several
attempts in the literature to understand the com-
plexity of simulated annealing. One question asked
in the literature from both theoretical and practical
standpoints is if there is a meaningful difference
between Simulated Annealing and the Metropolis
Algorithm |Wegener| (2005)); [Hajek| (1988). Metropo-
lis is a special case of simulated annealing where
the temperature does not change by time. That is
the cooling schedule repeats a single temperature m
times. While this observation was made previously,
our lower bound also implies that (from a theoretical
standpoint) there is a meaningful difference between
the two algorithms as Metropolis can be learned
with much fewer samples which shows there are
cases for which simulated annealing performs much
better. Another example is when the temperature
drops linearly for which the sample complexity is
small. More generally, this lower bound actually
shows a gap between SA and any special case
of SA whose cooling schedule has complexity
smaller than m!'/3. For instance, it shows that an
extended version of Metropolis that uses ml/3—¢
many different temperatures in the cooling sched-
ule is not competitive with the general SA algorithm.

3.3 Tightening the Upper Bound

Perhaps the more surprising result of this paper
is that the sample complexity can be improved to

O(v/m):

Theorem 3.3. The sample complexity of comput-

ing an e-approximately optimal cooling schedule with
y -2 max

length m is bounded by O(e™*y/m log(™mes)).

Our algorithm is almost identical to the one ex-
plained in Section [3.1] except that we construct a

smaller set T whose size is bounded by O(y/m).
Then we argue that the total number of cooling



schedules with this temprature set is bounded by
20(v'™) which leads to sample complexity O(y/m).

Below we provide a sketched version of the proof.
A complete version can be found in appendix. The
first pointer to this result is that there is no clear way
to improve the lower bound of Section Keep in
mind that for the lower bound, we construct a search
graph for which a particular cooling schedule works
well, but if we multiply (or divide) each temperature
by a small factor 1-+Q(m~1/2), the score of the algo-
rithm drops significantly. Obviously, if one comes up
with a better search graph for which a multiplicative
factor of 1+Q(m~'/27¢) breaks the solution, then it
shows that it is impossible to obtain an upper bound
of O(y/m) with the discretization technique. Failure
to make a better bad instance brings us to the pos-
sibility that maybe massaging each temperature by
a multiplicative factor of 1 + O(m~'/2) cannot hurt
the score of the cooling schedule significantly. We
show that this is indeed the case!

Recall that in Section in order to prove that
the discretized cooling schedules perform almost op-
timally, we show that there is a discretized cooling
schedule that behaves the same as the optimal cool-
ing schedule with probability 1 — e. That is, in the
unlikely event of making a different decision (we call
it a mistake) we give 0 credit to our discretized cool-
ing schedule, yet we prove that the score is pretty
close to that of the optimal. Clearly, this is a loose
upper bound as we do not expect to lose too much
by making a single mistake.

We illustrate the idea with a toy problem. Consider
a complete binary tree of depth m. The root has
depth 0 and the leaves have depth m. Each leaf is
attributed to a score which is either 0 or 1. The score
of each non-leaf node is the average of the scores of
its children. In other words, if we make a random
walk towards the leaves with equal probability of
going to each child, the score of a node is equal to
the probability of reaching a leaf with score 1 us-
ing the random-walk. Let us call this even-random-
walk and consider a different type of random-walk,
namely uneven-random-walk. The uneven-random-
walk is pretty much the same as the even random
walk, except that at some depth ¢ uniformly drawn
from [1,m], an adversary may change the decision
of which child to go to. The toy-problem is to un-
derstand how much the score of a node hurts by re-
placing even-random-walk by uneven-random-walk.

To study this, we attribute to each node a devia-
tion wvalue which is equal to the absolute value of
the difference between the scores of it children. This

roughly captures an upper bound of the score we
lose, if we traverse the edges of that node with a
different criteria (other than 1/2,1/2). Thus, we
need to know what is the average deviation values
of the nodes in an even-random-walk? This roughly
tells us how much we lose in the score, if an adver-
sary changes the criteria of the walk at some random
point!

The upper bound on the answer is O(1/y/m) no
matter how the leaves are scored. It goes beyond
the scope of this paper, but we mention the idea
in the hope that it helps a mindful reader decipher
some of steps that we take in the proof of Lemma
Define a deviation function f(z) : [0,1] —
[0,0.25] = 2 — 2%, One can show by induction that
starting from each node v of depth 4, the average
sum of deviations in a random walk is bounded by
O((f(sy) + (m —1i)/m)\/m) where s, is the score of
node v (obtained via even-random-walk).

The toy problem illustrates that in the event that
our optimal solution makes decisions with probabil-
ity 1/2,1/2 (which is indeed the case for our lower
bound), we can afford to make O(y/m) mistakes and
not lose much in the average score. This does not
hold if the decisions are made with different proba-
bilities. To see this, consider the case that only the
rightmost leaf has a score 1 and the rest of the leaves
have scores 0. Moreover, the probability of going to
the right child in the random walk is 1—¢/m and the
probability of going to the left child is ¢/m. In this
case, the average deviation is (1) when we start
from the root and make a random walk according to
the probabilities.

The next observation is that when the decisions are
not necessarily 1/2,1/2 say p, 1 — p, multiplying the
temperature by a factor of 14 x changes the proba-
bilities by at most max{In1/p, 1} min{p, 1 —p}x (see
Observation . That is, as the probabilities de-
viate from 1/2, the probability of making a “mis-
take” drops linearly. More precisely, the multiplica-
tive term min{p, 1 — p} gives us extra power to deal
with these situations. For instance, if p < 1/y/m
or p > 1 —1/y/m then the probabilities change by
an additive error of O(1/m) when we multiply the
temperature by a factor of 1+O(m~1/2). This error
is tolerable since we can afford to have an error of
e/m for each decision we make.

The proof is based on the above ideas but the anal-
ysis is quite involved and rather cryptic by nature.
We show in Section [C] that if the temperatures in
the discretized set are at most 1 + O(m~1/?) away
from each other (multiplicative), then one can make



a cooling schedule by the discretized temperatures
whose score is arbitrarily close to that of the opti-
mal solution. This then can be used to obtain an
upper bound of O(y/m) on the sample complexity
of the problem.

4 Simulation Complexity

The second part of the paper is concerned with the
computational aspects of the learning problem. Al-
though we prove that the sample complexity is poly-
nomial without any assumptions, it seems that extra
assumptions are necessary for the runtime concerns.
Notice that we make no assumption on the under-
lying problem and the only information available to
us when we sample an instance of the problem is
a huge search graph containing exponentially many
vertices. Even if we bring the underling problem into
the setting, it is not clear how we can make use of
the conditions of a problem such as SAT to find the
right cooling schedule. Keep in mind that the com-
plexity of the underlying problem is the reason we
use simulated annealing in the first place. Therefore,
we introduce a stylized model to make the problem
more tractable. We call our model the monotone sta-
tionary graph. Although the model relies on extra
assumptions, it features nice properties that make it
particularly suitable for our purpose.

First, it gives a compact representation for every in-
stance of the problem. Up to this point, we treated
each problem instance as a huge search graph with
exponentially many vertices which is too big to store
in the memory let alone optimizing the solution over
it. Our model represents the search graphs in a more
efficient way. Next, notice that even if we fix a well-
defined representation for a search graph, one should
be able to recover the new representation of a prob-
lem instance without spending too much time (and
of course without taking a complete look at the al-
ready exponentially large search graph). Our model
makes it possible to recover the stationary graph in
polynomial time. Finally, the any model used for
our problem has to give us enough structure so that
finding an approximately optimal cooling schedule
becomes polynomially tractable in the new setting.
This is the most important feature of our model.

In our model, we represent each instance of the prob-
lem as a graph. Vertices of this graph correspond to
the temperatures in our discretized set. Intuitively,
for a temperature t € T, its corresponding vertex in
the graph represent the state of an SA algorithm that
runs infinitely many steps with temperature ¢t. Thus,
when the state of our algorithm is close to such a sta-

tionary distribution, we assume that our algorithm
is pointing at the corresponding vertex in the mono-
tone stationary graph. We draw edges between the
vertices to specify how many steps we need to take
in the SA algorithm to move between the stationary
distributions. Since in our model, the state of an
algorithm can be approximated with a node in this
graph, we can also determine its score by examining
the corresponding stationary distribution.

Therefore, given n instances of the underlying prob-
lem, our goal is to find a cooling schedule that ob-
tains the highest average score for these instances by
our model. We consider the following three settings
and provide a solution for each one of them:

(). identical-paths: in this setting, we assume that
the optimal cooling schedule traverses the same
path for all n instances.

(ii). separate-paths: in this setting, we allow the op-
timal solution to use different paths for different
instances.

(iii). separate-paths + all-satisfied: This is a special
case of the second setting where we know that
there exists a cooling schedule of length m that
is optimal for all instances and brings us to the
last node for each monotone stationary graph.

We refer the readers to Section [D] for the details
of the computational model. To obtain polynomial
time solutions, we introduce the notion of an («, €)-
approximate cooling schedule. In such a solution we
allow the cooling schedule to violate the size con-
straint by a factor of o with the promise that its
score is no more than e smaller than the score of the
optimal cooling schedule of length m. With this no-
tation, we present computational results below (also
summarized in Table :

(i). identical-paths: This is the simplest one among
the three settings - we achieve an ezxact algo-
rithm which runs in poly(m,n,|T|) and maxi-
mizes the average score for the n instance.

(ii). separate-paths: in this setting, we again achieve
an ezact algorithm which runs in poly(m, |T)
for any fixed n. However, the runtime is expo-
nential in n.

(iii). separate-paths + all-satisfied: To overcome the
exponential dependency in n, we design an ef-
ficient approximation algorithm which runs in
poly(m,n,|T|), but achieve an O(log(n|T]),0)
approximation instead of exact solution in the



previous settings. The algorithm is based on LP
relaxation of an integer program.

Due to the space limitations, we refer the readers
to Section [E] in the appendix for the details of the
algorithm and analysis.

5 Conclusion

In this paper, we proposed a PAC-Learning frame-
work for estimating a near optimal cooling sched-
ule in simulated annealing. We provided non-trivial
upper and lower bounds on the sample complexity.
Our techniques may also be relevant to other prob-
lems with a random walk on search space. We also
introduced the monotone stationary graph model for
which we are able to find a near-optimal cooling
schedule in polynomial time based on rounding lin-
ear programs.

We conclude with two open questions due to the
limitations of this work. First, finding near optimal
cooling schedules in poly-time (beyond our mono-
tone stationary graph model) is an important ques-
tion in both theory and practice. Our statistical
results showed that the sample complexity of learn-
ing a good schedule is polynomial in m, however, the
analysis is based on a discretization over the search
space which has a size exponential in m and it’s un-
clear how to design an efficient algorithm based on
the large discretization. This is, in fact, a common
issue in the data-driven algorithm design commu-
nity: the sample complexity scales logarithmically
with the search space, while the search space may be
exponentially large. See e.g. Page 5 of |Balcan et al.
(2019b), and Theorem 17 of Balcan et al. (2017)
where their sample complexity is O(n), but compu-
tational complexity is Q(n?32"). In certain simpler
settings, it’s possible to polynomially upper bound
the search space and get efficient algorithms, e.g.
it was shown in [Balcan et al.|(2019b)) that learning
a single hyperparameter in linkage-based clustering
can be solved in O(n®), but even in their setting
the algorithm is based on enumeration. Since sim-
ulated annealing is a very complicated problem and
it’s unlikely to have efficient learning algorithm for
the general setting, we seek to find approximation al-
gorithms under additional assumptions and restric-
tions in the monotone stationary graph model. De-
signing efficient algorithms beyond this model is def-
initely an important future direction, and perhaps of
interest broadly to the data-driven algorithm design
community as well.

Second, designing a better energy function for simu-

lated annealing remains an open question. Through-
out the paper, we assumed that the energy function
is given apriori, and our goal is to learn a cooling
schedule using the given energy function so that the
score of learned schedule is at least OPT —e. While
the sample complexity bounds derived in this paper
depend on ey, which varies from different choices
of energy function, we believe that the choice of en-
ergy function plays a more important role, as it de-
cides the optimal score OPT among all possible cool-
ing schedules £. Consequently, we should expect
OPT to be smaller (and empirical performance to
be better) when energy function is chosen carefully.
Since we are only considering additive approxima-
tion to OPT, the value of OPT itself has no effect
on the sample complexity, but it is definitely a useful
quantity in practice. Thus, finding a better energy
function (with a smaller OPT) is an interesting di-
rection for future works.
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