
Stochastic Linear Bandits Robust to Adversarial Attacks

Ilija Bogunovic Arpan Losalka Andreas Krause Jonathan Scarlett

ETH Zürich National Univ. of Singapore ETH Zürich National Univ. of Singapore

Abstract

We consider a stochastic linear bandit prob-
lem in which the rewards are not only subject
to random noise, but also adversarial attacks
subject to a suitable budget C (i.e., an up-
per bound on the sum of corruption magni-
tudes across the time horizon). We provide
two variants of a Robust Phased Elimination
algorithm, one that knows C and one that
does not. Both variants are shown to at-
tain near-optimal regret in the non-corrupted
case C = 0, while incurring additional addi-
tive terms respectively having a linear and
quadratic dependency on C in general. We
present algorithm-independent lower bounds
showing that these additive terms are near-
optimal. In addition, in a contextual set-
ting, we revisit a setup of diverse contexts,
and show that a simple greedy algorithm is
provably robust with a near-optimal additive
regret term, despite performing no explicit
exploration and not knowing C.

1 Introduction

Over the past years, bandit algorithms have found ap-
plication in computational advertising, recommender
systems, clinical trials, and many more. These algo-
rithms make online decisions by balancing between
exploiting previously high-reward actions vs. exploring
less known ones that could potentially lead to higher re-
wards. Bandit problems can roughly be categorized [18]
into stochastic bandits, in which subsequently played
actions yield independent rewards, and adversarial

bandits, where the rewards are chosen by an adversary,
possibly subject to constraints. A recent line of works
has sought to reap the benefits of both approaches by
studying bandit problems that are stochastic in na-
ture, but with rewards subject to a limited amount of

Proceedings of the 24
th

International Conference on Artifi-

cial Intelligence and Statistics (AISTATS) 2021, San Diego,

California, USA. PMLR: Volume 130. Copyright 2021 by

the author(s).

adversarial corruption. Various works have developed
provably robust algorithms [12, 24, 4, 21], and attacks
have been designed that cause standard algorithms to
fail [10, 12, 13, 22].

While near-optimal theoretical guarantees have been
established in the case of independent arms [12], more
general settings remain relatively poorly understood
or even entirely unexplored; see Section 1.2 for details.
Our primary goal is to bridge these gaps via a detailed
study of stochastic linear bandits with adversarial cor-
ruptions. In the case of a fixed finite (but possibly
very large) set of arms, we develop an elimination-
based robust algorithm and provide regret bounds with
a near-optimal joint dependence on the time horizon
and the adversarial attack budget, demonstrating dis-
tinct behavior depending on whether the attack budget
is known or unknown. In addition, we introduce a
novel contextual linear bandit setting under adversarial
corruptions, and show that under a context diversity
assumption, a simple greedy algorithm attains near-
optimal regret under adversarial corruptions, despite
having no built-in mechanism that explicitly encourages
exploration or robustness.

1.1 Problem Setting

We consider the stochastic linear bandit setting with
a given set of arms A0 ⇢ Rd of finite size k, and
adversarially corrupted rewards. At each round t 2
{1, . . . , T}:

• The learner chooses an action At 2 A0.
• The adversary observes At and decides upon the

attack/corruption ct(At); in addition, ct(·) may
(implicitly) depend on other problem parameters,
as detailed below.

• The learner receives a corrupted reward Yt:

Yt = h✓, Ati+ ✏t + ct(At), (1)

where ✓ 2 Rd is an unknown parameter vector, and
(✏t)Tt=1 is a random noise term, which is assumed
to be zero-mean and 1-sub-Gaussian.

We assume that the action feature vectors are unique,
span Rd, and are bounded, i.e., kak2  1, 8a 2 A0.

Stochastic Linear Bandits Robust to Adversarial Attacks

We similarly make the standard assumption k✓k2  1,
which implies that |h✓, ai|  1, 8a 2 A0.

We consider an adversary/attacker that has complete
knowledge of the problem – it knows both A0 and ✓, and
observes both the precise arm pulled and the noise re-
alization ✏t before choosing its attack. The total attack

budget of the adversary is given by
PT

t=1 |ct(At)|  C.
We will consider both the cases that C is known and
unknown to the learner.

The goal of the learner is to minimize the cumulative

regret, defined as

RT =
TX

t=1

max
a2A0

h✓, a�Ati. (2)

Broadly speaking, we say that an algorithm that at-
tains low regret (e.g., sublinear scaling RT = o(T)) is
corruption-tolerant or robust to adversarial attacks.

As noted in [24], one could alternatively count the
corruption as being part of the reward and define regret
with the corruption included. Both notions are of
interest depending on the application (e.g., depending
on whether a fake ad click is considered beneficial or
not). The two notions differ by at most O(C), whereas
our upper bounds will contain at least an O(C log T)
term. In addition, in the multi-armed bandit setting,
⌦(C) lower bounds were shown for both notions in [24].

1.2 Related Work

Recent surveys on bandit algorithms can be found in
[18, 28]; here we focus on the most relevant works con-
sidering stochastic settings with adversarial corruptions
and bandit attacks.

Adversarial attacks on standard bandit algorithms (e.g.,
UCB, ✏-greedy, and Thompson sampling) were intro-
duced for the case of independent arms (i.e., a classical
multi-armed bandit setting) in [13, 22, 23], and for
linear bandits in [10]. We will use the latter in our ex-
periments to test robustness of the proposed algorithms,
along with other heuristic attacks.

In the case of independent arms, Lykouris et al. [24]
show that a simple elimination algorithm with enlarged
confidence bounds is robust and near-optimal when the
attack budget C is known. For unknown C, random-
ized algorithm is given whose regret bound roughly
amounts to scaling the uncorrupted regret by C, i.e.,
multiplicative dependence. Subsequently, Gupta et

al. [12] gave an improved algorithm whose regret is
near-optimal, with an additive dependence on C.

Bogunovic et al. [4] consider corruption-tolerant ban-
dits for functions with a bounded RKHS norm, which
includes linear bandits as a special case. The algorithm

of [4] is based on that of [24], and has analogous guar-
antees. However, even in the case of known C, the best
dependence obtained is multiplicative; the possibility
of additive dependence was left as an open problem,
which we resolve in this work in the linear case.

Li et al. [21] also study stochastic linear bandits with
adversarial corruptions. A distinction in [21] is that
the regret bounds are instance-dependent, relying on
positive gaps between the function values at corner
points of the polyhedral domain. These results are
distinct from the instance-independent bounds with a

finite number of arms that we seek in this paper, and
neither can be deduced from the other; see [4, App. K]
for further discussion, as well as Remark 1 below.

It is worth noting that the above-mentioned works
[24, 12, 4, 21] consider a weaker adversary that can-
not observe the current action, and this has often also
been assumed when designing efficient bandit attacks
[13, 22]. Our more powerful adversary has also been
considered previously (e.g., see [22, Fig. 2]), and natu-
rally, any given upper bound on regret is stronger the
more powerful of an adversary it applies to.

In Appendix F, we discuss further existing works that
are less directly related to ours compared to those above,
including distinct adversarial settings (e.g., handled by
the EXP2 and EXP3 algorithms), “best of both worlds”
results for stochastic and adversarial bandits, model
mismatch and misspecification, and fractional/Huber-
like contamination models.
Remark 1. Returning to the results in [21], one may

note that instance-dependent bounds can potentially be

transferred to instance-independent bounds. However,

we show in Appendix G that doing this for the results

in [21] would at best lead to RT = O(T 2/3 +
p
CT),

which is strictly higher than than our analogous result

(Theorem 2) whenever C = o(T 1/3). This is despite

the fact that we are considering a stronger adversary.

However, it should be kept in mind that the domains

adopted are different (polyhedral vs. finite), posing an-

other hurdle that would need to be overcome to transfer

results from one setting to the other.

1.3 Contributions

Our main contributions are as follows:

• For known C, we present a Robust Phased Elim-
ination algorithm, and show that it recovers a
near-optimal regret bound when C = 0, while
incurring an additive O(d3/2C log T) term (up to
log log(dT) factors) more generally. A standard
lower bound argument [24] shows that ⌦(C) de-
pendence is unavoidable, thus certifying the upper
bound as being optimal up to logarithmic factors
when d = O(1) (the precise d dependence is not a

Ilija Bogunovic, Arpan Losalka, Andreas Krause, Jonathan Scarlett

main focus of our work).
• For unknown C, we modify our algorithm to grad-

ually decrease its confidence bound enlargement
term over time, and show that we only pay a
further O(C2) term compared to the known C
case. While this limits the regime of sublinear
regret to C = o(

p
T) (in contrast with C = o(T)

when C is known), we additionally provide a novel
algorithm-independent lower bound showing that
this is unavoidable for any algorithm that achieves
a near-optimal non-corrupted (C = 0) bound.
Thus, we prove a fundamental difficulty in being
robust against our strong adversary when C is
unknown, and demonstrate a fundamental gap
between the known C and unknown C settings.

• We introduce a linear contextual problem with ad-
versarial attacks, and show that under the model
of diverse contexts from [14], the greedy algorithm
not only attains near-optimal regret in the uncor-
rupted setting (as shown in [14]), but is also robust

to adversarial attacks.

2 Algorithm and Regret Bounds

We present our Robust Phased Elimination algorithm
in Algorithm 1, which builds on non-robust elimination
algorithms [18, 19, 30], with some important differences
outlined in Remark 3 below. The known C vs. unknown
C variants only differ on Line 1. The algorithm runs in
epochs of exponentially increasing length and maintains
a set of potentially optimal actions. In every epoch,
the following steps are performed: (i) compute a near-
optimal experimental design over a set of potentially
optimal actions, and play each action from this subset
in proportion to the computed design (Lines 2-4); (ii)
compute an estimate of ✓, and use it to eliminate actions
that appear suboptimal (Lines 5-6). We proceed by
describing these steps in more detail.

Action selection. To introduce the action selection
procedure, consider the problem of finding a probability
distribution ⇣ : A! [0, 1] that solves the following:

minimize⇣ maxa2Akak2�(⇣)�1 s.t.
X

a2A
⇣(a) = 1,

(3)
where �(⇣) =

P
a2A ⇣(a)aaT , and kakM =

p
aTMa.

A classical result from [16] states that the optimal
solution ⇣⇤ exists, and achieves maxa2A kak2�(⇣⇤)�1 = d

with |supp(⇣⇤)|  d(d+1)
2 . For our purposes, however, it

suffices to solve the problem in (3) only near-optimally.
As noted in [19], there exists a near-optimal design of
smaller support than d(d + 1)/2. In particular, if A
spans Rd,1 then we can efficiently compute ⇣ : A !

1
See Remark 2 below for the general case.

[0, 1] such that

max
a2A
kak2�(⇣)�1  2d, |supp(⇣)|  4d(log log d+ 18)

(4)
This follows from [29, Proposition 3.17], who provide a
polynomial-time Frank-Wolfe algorithm.

Hence, in every epoch h, the algorithm recomputes a
near-optimal design from (4) over a subset of the ac-
tions that are still potentially optimal, i.e., Ah. It then
plays each action from this subset in proportion to the
computed design, but it also makes sure that every arm
in its support is played at least some minimal number
of times d⌫mhe, where ⌫ is an input truncation param-
eter to be chosen below, and mh is an exponentially
increasing parameter with respect to the epoch length.

Parameter estimation and arm elimination.

Consider the estimator given in (6). This estimator
only depends on the observations received in the cur-
rent epoch, and hence, it is not affected by attacks
suffered during previous epochs. However, it can still
be biased due to the adversarial attacks suffered in the
current epoch, and we need to account for this bias.
In Lemma 4 (Appendix A), for any of the remaining
potentially optimal actions, we bound the difference
of the true mean reward and estimated one, and show
that this error grows linearly with the total attack bud-
get C. Hence, the algorithm makes use of the enlarged
confidence bounds in (8) to retain potentially optimal
arms. Moreover, we show that when C is known, our
estimator is guaranteed to have sufficient accuracy so
that the optimal arm is always retained in (8) with
high probability. For unknown C, this is not always
the case, but we can control the level of suboptimality
of the arms that are retained.

The estimator of ✓ is robust due to the fact that it
averages the rewards corresponding to the same played
action, reducing the effect of the attack. Intuitively,
actions that have higher importance according to the
found near-optimal design are played more times than
others. Consequently, it is harder for the adversary
to corrupt them as it needs to use more of the attack
budget. In addition, due to the introduced truncation,
the algorithm plays each arm in the support of the
computed design a fixed minimum number of times.
Remark 2. The following observations from [19] are

useful: (i) While (4) is stated assuming the arms span

Rd
, we can simply work in the lower-dimensional sub-

space otherwise (e.g., when k < d); (ii) We can extend

the algorithm and its analysis to infinite-arm settings

using a covering argument.

Remark 3. Phased elimination algorithms (without

robustness to adversarial attacks) have previously been

considered in various settings, including the standard

setting [18, Ch. 22], misspecified setting [19], and graph

Stochastic Linear Bandits Robust to Adversarial Attacks

Algorithm 1 Robust Phased Elimination

Require: Actions A0 ⇢ Rd, confidence � 2 (0, 1), trun-
cation parameter ⌫ 2 (0, 1), time horizon T

1: Initialize2 m0 = 4d(log log d+18), and for each h 2
{0, 1, . . . , log2 T � 1}, set Ĉh = C for known C, or
Ĉh = min{

p
T

m0 log2 T ,m0

p
d2log2 T�h} for unknown

C. Initialize h = 0.
2: Compute design ⇣h : Ah ! [0, 1] such that

max
a2Ah

kak2�(⇣h)�1  2d, and |supp(⇣h)|  m0. (5)

3: Set uh(a) = 0 if ⇣h(a) = 0, and uh(a) =
dmh max{⇣h(a), ⌫}e otherwise.

4: Take each action a 2 Ah exactly uh(a) times
with corresponding features (At)

uh

t=1 and rewards
(Yt)

uh

t=1 (implicitly depending on h), where uh =P
a2Ah

uh(a).
5: Estimate the parameter vector ✓̂h:

✓̂h = ��1
h

uhX

t=1

Atuh(At)
�1

X

s2T (At)

Ys, (6)

�h =
X

a2Ah

uh(a)aa
T , (7)

where T (a) =
�
s 2 {1, . . . , uh} : As = a

is the set

of times at which arm a is played.
6: Update the active set of arms:

Ah+1
n
a 2 Ah : max

a02Ah

h✓̂h, a0 � ai

 2
q

4d
mh

log
�
1
�

�
+ 2Ĉh

mh⌫

p
4d(1 + ⌫m0)

o
. (8)

7: Set mh+1 2mh, h h+ 1 and return to step 2
(terminating after T total arm pulls).

bandits [30]. Among these, our algorithm is most sim-

ilar to [19], but has several important differences: (i)

We use a different and more robust estimator of ✓; (ii)

The confidence bounds are enlarged in terms of Ĉh to

account for adversarial corruptions; (iii) The trunca-

tion parameter is introduced to ensure that each arm is

pulled enough; (iv) In the unknown C case, we need to

carefully choose the sequence Ĉh to trade off robustness

against aggressiveness in eliminating suboptimal arms;

(v) In contrast to the vast majority of existing elimi-

nation algorithms, the optimal arm may be eliminated

in the unknown C setting (i.e., the confidence bounds

may not be “valid”), but this only occurs when the best

remaining arm is still good enough to control the regret.

2.1 Upper Bounds on Regret

We first provide a regret bound for the known C case,
proved in Appendix A.
Theorem 1. For any attack budget C � 0, with proba-

bility at least 1 � �, the Robust Phased Elimination

algorithm with known C and truncation parameter

⌫ = 1
4d(log log d+18) satisfies

RT = Õ
⇣q

dT log
�
k
�

�
+ Cd3/2 log T

⌘
, (9)

where the notation Õ(·) hides log log(dT) factors.

When C = 0, we recover the scaling of [18, Thm. 22.1],
which is near-optimal in light of known lower bounds
[8]. In Section 2.2, we will argue that the second term
is also near-optimal.

Next, we consider the case that the total attack budget
C is unknown to the learner. We start by discussing
the choice of Ĉh in Algorithm 1. Let H be the number
of epochs, and note that H̃ = log2 T be a deterministic
upper bound on H (see Appendix A.2 for a short proof).
Then, the choice in Algorithm 1 can be rewritten as
Ĉh = min{

p
T

m0 log2 T ,m0

p
d2H̃�h}. Observe that the

epochs’ lengths uh and corruption thresholds Ĉh are
exponentially increasing and decreasing, respectively.
It follows that the algorithm is more cautious in early
epochs (i.e., uses larger thresholds). Our second main
result stated is as follows, and proved in Appendix A.

Theorem 2. For any C 
p
T

4d(log log d+18) log T , with

probability at least 1��, the Robust Phased Elimination

algorithm with unknown C and truncation parameter

⌫ = 1
4d(log log d+18) satisfies

RT = Õ
⇣q

dT log
�
k
�

�
+ Cd3/2 log T + C2

⌘
. (10)

This result matches that of Theorem 1, but with an
additional penalty of C2. In fact, due to this penalty,
the regret bound (10) trivially holds when C = ⌦(

p
T),

because we have RT  2T due to our assumption
of bounded rewards. If d = !(1), then there still
remains the regime where

p
T

(d log log d) log T ⌧ C ⌧
p
T ,

but in any case, one can slightly increase the final term
and state that RT = Õ

�q
dT log

�
k
�

�
+ Cd3/2 log T +

C2d2(log T)2
�

for arbitrary C.

At this stage, observing that our regret bound is not
sublinear in T when C = ⌦(

p
T), the natural question

arises as to whether attaining such a goal is impossible
for all robust bandit algorithms. In the following subsec-
tion, we use an algorithm-independent lower bound to

2
When d = 1, we have log log d = �1, but the results

hold with log log d replaced by log(1 + log d).

Ilija Bogunovic, Arpan Losalka, Andreas Krause, Jonathan Scarlett

provide a partial answer to this question; specifically,
such a goal is indeed impossible (up to logarithmic
factors) whenever the algorithm is required to have
order-optimal regret in the uncorrupted (C = 0) case.

2.2 Algorithm-Independent Lower Bounds

on Regret

Using the same reasoning as the standard multi-armed
bandit setting [24], it is straightforward to see that
⌦(C) regret is unavoidable: The adversary can simply
shift all rewards to zero for the first C rounds, and the
learner cannot do better than random guessing. For
completeness, this argument is given in more detail
in Appendix C. This argument holds even when C
is known, and thus, we see that the second term in
Theorem 1 is optimal up to at most an Õ(log T) factor
for fixed d. We expect that an improvement on the d3/2
dependence may be possible, but the following result,
proved in Appendix C, shows that at least ⌦(Cd) is
unavoidable.
Theorem 3. For any dimension d, there exists an

instance with k = d such that any algorithm (even

with knowledge of C) must incur ⌦(Cd) regret with

probability at least
1
2 .

Next, we provide another lower bound that will allow
us to show a sense in which the C2 term appearing
Theorem 2 cannot be significantly improved.
Theorem 4. For d = 2 and k = 2, for any algorithm

that guarantees RT  R̄(0)
T with probability at least 1��

for a given uncorrupted regret bound R̄(0)
T  T

16 when

C = 0, there exists an instance in which RT = ⌦(T)

with probability at least 1� � when C = 2R̄(0)
T .

The proof is given in Appendix C. While we focus on
the simplest case d = k = 2, the proof can also be
adapted to more general choices.

Discussion. Consider the general goal of attaining a
regret upper bound of the form

RT  R̄(0)
T + f(C) log T, (11)

for some f(·) satisfying f(0) = 0. Here we let the
second term contain a log T factor in accordance with
our upper bounds, but the following discussion still
applies with only minor modifications when the log T
factor is changed to poly(log T) or similar.

At first glance, it appears that f(C) should ideally
be linear in C, and R̄(0)

T should ideally be an order-
optimal regret bound for the non-corrupted setting.
However, Theorem 4 shows that we cannot have both
terms exhibiting their “ideal” behavior simultaneously.
To see this, note that the ideal uncorrupted regret
bound behaves as R̄(0)

T = ⇥̃(
p
T) (for fixed d, k, and

�) [8, 18]. Then, to be consistent with Theorem 4, we
require f(C) log T = ⌦̃(T) for C = ⇥(

p
T), and hence

f(C) = ⌦̃
�

C2

logC

�
.

On the other hand, it may be possible remove the C2

term from f(C) (i.e., improve robustness), and to attain
sublinear regret for certain cases with C = ⌦(

p
T), if

one is willing to pay the price of a worse uncorrupted
regret bound. This idea is left for future work.

2.3 Summary of Upper vs. Lower Bounds

We conclude this section with a short summary of how
the upper and lower bounds compare in various scaling
regimes of C and T , when the other parameters (d, k, �)
are held fixed:

• When C is known, the optimal regret is between
⌦(
p
dT+C

�
and Õ(

p
dT+C log T

�
for any C  T ;

• For C = O
�
T 1/4

log T

�
, the optimal regret scales as

⇥̃
�p

dT
�

for both known and unknown C;

• For C = ⌦(
p
T

log T), we do not provide any sublinear
regret bound for when C is unknown, but Theorem
4 shows that, in fact, such a bound cannot be
expected for C = ⌦(

p
T) unless the uncorrupted

regret increases significantly.
• For C in between the previous two dot points (e.g.,
C = ⇥(T a) with 1

4 < a < 1
2), our upper bound

for unknown C exhibits strictly higher scaling
than the uncorrupted regret (due to the C2 term),
and it remains open as to what extent this is
unavoidable.

3 Greedy Algorithm in the
Contextual Setting

In this section, we consider a k-arm linear contextual
bandit problem with a single unknown d-dimensional
parameter vector ✓ 2 Rd (e.g., see [14]). In each round
t, contexts a1,t, . . . , ak,t are presented to the learner,
each in Rd and associated to one action. The learner
then chooses an action indexed by It 2 {1, . . . , k} and
observes the corrupted reward

Yt = h✓, aIt,ti+ ✏t + ct(aIt,t), (12)

where the same assumptions from Section 1.1 hold for
both (✏t)Tt=1 and ct(·) (with attack budget C), and
k✓k2  1. Similar to (2), the cumulative regret is
RT =

PT
t=1 maxi2{1,...,k}h✓, ai,t � aIt,ti.

In general, the introduction of contexts may signifi-
cantly complicate the problem, with algorithms such
as the one in Section 2 being difficult to extend, partic-
ularly with unknown C. However, perhaps surprisingly,
a line of recent works has demonstrated that simple

Stochastic Linear Bandits Robust to Adversarial Attacks

exploration-free greedy methods can provably work well
(in the non-corrupted setting) under mildassumptions
on the contexts. These assumptions amount to kinds
of context diversity [3, 14, 26] ensuring that the col-
lected samples are sufficiently informative for learning
✓ accurately.

Most related to this paper is [14], who analyze the
greedy algorithm in the case that arbitrary context vec-
tors undergo small random perturbations. Motivated
by these results, we investigate the performance of the
greedy algorithm under the same assumption on the
contexts, but with the addition of adversarial attacks.
Our main finding is that the context diversity assump-
tion not only removes the need for explicit exploration
[14], but also automatically inherits near-optimal ro-
bustness to adversarial attacks, with no need to know
the attack budget C.

Context generation. In more detail, the setup
of [14] is introduced as follows: An arbitrary tuple
µ1,t, . . . , µK,t of mean context vectors is given (possibly
selected by an adaptive adversary based on the history
of contexts, actions, and rewards), such that kµi,tk2  1
for all i, t. For every available action, the context vector
is then generated as ai,t = µi,t + ⇠i,t, where the ran-
dom perturbation vectors ⇠i,t are drawn independently
from some zero-mean distributions D1,t, . . . , DK,t. We
consider perturbations that are (r, �)-bounded for some
r  1 according to the following definition [14]:

P[k⇠i,tk1  r for all arms i and rounds t] � 1� �.
(13)

As outlined above, we are interested in the diversity
of samples collected by the greedy algorithm (defined
below). The main idea is that the observed contexts
should cover all directions in order to enable good esti-
mation of the latent vector ✓. Consequently, we make
use of the notion of diversity from [14], which takes
into account that the learner observes rewards for con-
texts that are selected greedily and thus only observes
a conditional distribution of contexts. Specifically, fol-
lowing [14], a distribution D is called (r,�0)-diverse
with parameters r > 0 and �0 > 0 if, for a = µ + ⇠
with ⇠ ⇠ D and any µ 2 Rd, it holds for all ✓̂ 2 Rd and
b̂ 2 R satisfying b̂  rk✓̂k2 that

�min

⇣
E⇠⇠D

⇥
aaT

�� ✓̂T ⇠ � b̂
⇤⌘
� �0. (14)

The overall perturbations are (r,�0)-diverse if the dis-
tributions Di,t are (r,�0)-diverse for all i and t.

This diversity condition is the main component in [14]
for proving that the minimum eigenvalue of the em-
pirical covariance matrix �min(

Pt
⌧=1 aI⌧ ,⌧a

T
I⌧ ,⌧

) grows
linearly with t. In Lemma 6 (Appendix B), we demon-
strate that this is the main quantity that has an impact

on the accuracy of the estimator of ✓, and in turn, on
the regret bounds in the corrupted setting.

Greedy algorithm. In round t, the greedy algo-
rithm (see Algorithm 2) receives a set of contexts
{a1,t, . . . , ak,t}, and chooses the best action according
to the least squares estimate of ✓:

It = argmax
i2{1,...,K}

h✓̂t, ai,ti, (15)

✓̂t = argmin
✓0

t�1X

⌧=1

(h✓0, aI⌧ ,⌧ i � Y⌧)
2. (16)

Our regret bound for this setup is stated as follows,
and proved in Appendix B.
Theorem 5. Suppose that kai,tk2  1 for all i, t, the

random context perturbations are (r, 1/T)-bounded and

(r,�0)-diverse with r  1, the reward noise is 1-sub-

Gaussian, and the attack budget is C � 0. Then with

probability at least 1��, the greedy algorithm has regret

bounded by

RT = O

✓
1
�0

⇣q
dT log

�
dT
�

�
+ C log T + log

�
dT
�

�⌘

+
q
log(k�)

◆
. (17)

Under the mild assumptions � = e�O(dT) and k
� =

eO(dT), this bound simplifies to

RT = O

✓
1
�0

⇣q
dT log

�
Td
�

�
+ C log T

⌘◆
. (18)

In addition, when C = 0, Theorem 5 reduces to the
result of [14]. The additional 1

�0
C log T term is essen-

tially optimal when �0 = ⇥(1), since a simple argument
from [24] gives an ⌦(C) lower bound (see Appendix C).
In Corollary 1 (Appendix B), we specialize Theorem 5
to the case that the perturbations are Gaussian, i.e.,
every ⇠i,t is drawn independently from N (0, ⌘2I), and
show that the greedy algorithm has sublinear regret in
the low-⌘ regime.

Theorem 5 indicates that the greedy algorithm can
be robust despite being extremely simple, having no
explicit built-in mechanism for combating robustness,
and having no knowledge C. A caveat to this is the 1

�0

dependence, indicating that the regret can increase sig-
nificantly when the contexts are not sufficiently diverse.

4 Experiments

In this section, we evaluate the performance of the
algorithms studied in this paper, along with the base-
lines LinUCB [20, 18] and Thompson sampling [1].3

3
We use LinUCB as described in [18, Sec. 19.2] with

least-squares regularization parameter � = 1 and confidence

Ilija Bogunovic, Arpan Losalka, Andreas Krause, Jonathan Scarlett

Figure 1: Contextual synthetic experiment: (Left) Regret at time T = 3500 as a function of C with ⌘ = 0.5;
(Middle Two) Regret as a function of time with ⌘ = 0 and ⌘ = 0.5; (Right) Performance of Greedy at time
T = 3500 with C = 150 and varying ⌘.

Figure 2: MovieLens experiment: (Left 3) Regret as a function of time with C = 150 for Greedy, LinUCB, and
Thompson sampling; (Right) Regret of all algorithms under the Garcelon et al. attack.

We consider both the robust PE algorithm and the
contextual greedy algorithm, starting with the latter.

4.1 Choices of Attacks

We consider the following attack algorithms, each de-
pending on a target arm atarget and/or a target param-
eter vector ✓target. These are briefly outlined as follows,
with more details in Appendix D:

• Garcelon et al. attack. This attack is a minor
modification of that of [10], leaving pulls from
atarget uncorrupted, while pushing all other re-
wards down to the minimum value.

• Oracle MAB attack. This attack from [13]
pushes the reward of any a 6= atarget to some mar-
gin ✏0 below that of atarget, or leaves the reward
unchanged if such a margin is already met.

• Simple ✓-based attack. This attack acts in the
same way as that of Garcelon et al., but with
atarget always chosen as argmaxaha, ✓targeti. This
is equivalent to that of [10] in the non-contextual
setting, but otherwise may differ due to atarget
varying with time.

• Flip-✓ attack. This attack simply flips the re-
ward from h✓, ai to h�✓, ai.

Note that the terminology “oracle” refers to attacks that
use knowledge of ✓, which we assume to be permitted in
this paper (the Flip-✓ attack also falls in this category).
We set atarget to be the first arm, which will have
the same effect as choosing any fixed arm (since our
arm feature vectors will be generated in a symmetric
manner). In addition, we let ✓target be uniform on

parameter � = 0.1, and Thompson sampling [1] uses an

i.i.d. Gaussian prior with variance 0.5.

the unit sphere in the simple ✓-based attack, and set
✏0 = 0.01 in the Oracle MAB attack.

4.2 Contextual Setting

Synthetic Experiment. In this experiment, we con-
sider the contextual case with contexts having uni-
form entries and Gaussian perturbations with variance
⌘2 > 0; see Appendix E for the full details. We con-
sider k = 25 arms, T = 5000 rounds, and attack budget
C = 50. At each time instant, we plot the cumulative
regret averaged over 10 trials, and error bars indicate
one standard deviation. In Appendix E, we provide
analogous plots and discussion when C = 150.

In Figure 1 (Left), we plot the regret of Greedy at
T = 3500 as a function of C with ⌘ = 0.5. We observe
a linear increase, which is in agreement with our theory.
Analogous plots for LinUCB, Thompson sampling, and
⌘ 2 {0.2, 0.5} can be found in Appendix E. The middle
two plots in Figure 1 show the regret as a function of
time with the two most effective attacks, with ⌘ = 0
and ⌘ = 0.5. We see that the regret curves are still
increasing linearly under the Flip-✓ attack by time T =
5000 when ⌘ = 0, whereas they are nearly flat when
⌘ = 0.5. While our theory only supports the robustness
of Greedy, these experiments suggest that LinUCB and
Thompson sampling may also enjoy similar robustness
under context diversity. Finally, Figure 1 (Right) plots
the regret of Greedy at T = 3500 as a function of ⌘
when C = 150. We observe that once ⌘ moves past a
certain level, the performance remains fairly consistent,
with a general (but not definitive) trend of decreasing
regret. The greatest difference is at ⌘ = 0, particularly
when the standard deviation is considered.

MovieLens Experiment. We use the MovieLens-

Stochastic Linear Bandits Robust to Adversarial Attacks

Figure 3: Non-contextual synthetic experiment with 10 trials: (Left) Average regret as a function of time; (Middle)
Worst run among 10; (Right) Second-worst run among 10.

100K dataset in a similar manner to [5]; see Appendix E
for details. In each trial, we select a uniformly random
user and treat the 1682 movies as possible contexts. At
each time instant, k = 30 of these movies are chosen
uniformly at random and presented as the contexts.
Hence, a subset of the movie vectors form the contexts,
and a fixed user vector forms ✓. We set T = 20000 and
C = 150, and we plot the regret averaged over 10 trials
(each corresponding to a different user).

In Figure 2, we plot the regret as a function of time, for
Greedy, LinUCB, and Thompson sampling. Despite the
lack of explicit context perturbation in this experiment,
we see that the algorithms are again able to recover
from the attacks, suggesting that the various movies in
the data set are sufficiently diverse. On the other hand,
we do not claim the attacks here to be optimal, and it
is possible that stronger attacks may incur linear regret.
In Figure 2 (Right), we plot all three algorithms under
the strongest attack and under no attack. We see that
Greedy has very low regret when there is no attack,
but has slightly higher regret when attacked.

4.3 Non-Contextual Setting

We now turn to experiments for the robust PE algo-
rithm (Algorithm 1), with some minor practical changes
detailed in Appendix E. We use the above synthetic
experimental setup with the context perturbations re-
moved (i.e., ⌘ = 0), and with d = 5, k = 50, T = 40000,
and C = 150. For comparison, we also include non-
robust PE, which removes the second term in (8).

For LinUCB, Thompson sampling, and non-robust PE,
we continue to attack right from the start. However,
for robust PE, this is a poor attack strategy, since
the algorithm initially uses a very stringent condition
for elimination. Instead, following insight from the
proof of Theorem 2, we start the attack at the first
epoch for which Ĉh < C. We consider the Flip-✓ attack
of Section 4.1, as well as an additional Top-N attack

targeted at eliminating good arms: Whenever any of

the top N remaining arms are pulled, push the reward
to �1. We consider both N = 3 and N = 5. We focus
on the case of unknown C here, and present similar
plots for known C in Appendix E.

In Figure 3 (Left), we see that the average regret of all
algorithms is similar by the end of the time horizon;
however, an inspection of the error bars reveals that
this is not the full story. In particular, the regret of
LinUCB and Thompson sampling vary considerably
depending on whether the attack was successful or
not, whereas robust PE exhibits much lower variation.
To highlight this, we plot the regret from the worst
and second-worst runs out of 10 (as measured at time
T) in Figure 3 (Middle) and Figure 3 (Right). In
Appendix E, we provide analogous plots in the case
of 40 trials, showing the worst 4-out-of-40 runs and
observing similar behavior to Figure 3.

We see that LinUCB and Thompson sampling visibly
have linear regret, whereas the regret of robust PE flat-
tens out by the end of the time horizon even for these
worst-2-of-10 curves, indicating better high-probability

behavior. In contrast, these results suggest the possibil-
ity of algorithms with improved finite-time performance
guarantees, which was not the focus of our work.

5 Conclusion

We have considered the linear stochastic problem in
the presence of adversarial attacks/corruptions. We
provided novel algorithms in both the standard and
contextual settings that are provably robust against
such attacks. We demonstrated near-optimal regret
bounds in all cases, and to our knowledge, we are
the first to do so in each case. A possible direction
for future work is to consider a setting in which both
rewards and contexts can be altered by the adversary
subject to a limited attack budget.

Ilija Bogunovic, Arpan Losalka, Andreas Krause, Jonathan Scarlett

Acknowledgments

We are grateful to Akshay Krishnamurthy for helpful
discussions regarding the existing literature on contex-
tual bandit model selection.

This project has received funding from the European
Research Council (ERC) under the European Unions
Horizon 2020 research and innovation programme grant
agreement No 815943 and ETH Zürich Postdoctoral
Fellowship 19-2 FEL-47. J. Scarlett was supported by
the Singapore National Research Foundation (NRF)
under grant number R-252-000-A74-281.

References

[1] S. Agrawal and N. Goyal, “Thompson sampling for
contextual bandits with linear payoffs,” in Inter-

national Conference on Machine Learning, 2013.

[2] P. Auer and C.-K. Chiang, “An algorithm with
nearly optimal pseudo-regret for both stochastic
and adversarial bandits,” in Conference on Learn-

ing Theory, 2016.

[3] H. Bastani, M. Bayati, and K. Khosravi, “Mostly
exploration-free algorithms for contextual bandits,”
arXiv preprint arXiv:1704.09011, 2017.

[4] I. Bogunovic, A. Krause, and J. Scarlett,
“Corruption-tolerant Gaussian process bandit opti-
mization,” in Conference on Artificial Intelligence

and Statistics, 2020.

[5] I. Bogunovic, J. Scarlett, S. Jegelka, and
V. Cevher, “Adversarially robust optimization with
Gaussian processes,” in Advances in Neural Infor-

mation Processing Systems, 2018.

[6] S. Bubeck, N. Cesa-Bianchi, and S. M. Kakade,
“Towards minimax policies for online linear opti-
mization with bandit feedback,” in Conference on

Learning Theory, 2012.

[7] S. Bubeck and A. Slivkins, “The best of both
worlds: Stochastic and adversarial bandits,” in
Conference on Learning Theory, 2012.

[8] V. Dani, T. P. Hayes, and S. M. Kakade, “Stochas-
tic linear optimization under bandit feedback,” in
Conference on Learning Theory, 2008.

[9] D. Foster and A. Rakhlin, “Beyond ucb: Optimal
and efficient contextual bandits with regression
oracles,” in International Conference on Machine

Learning. PMLR, 2020, pp. 3199–3210.

[10] E. Garcelon, B. Roziere, L. Meunier, O. Tey-
taud, A. Lazaric, and M. Pirotta, “Adversarial at-
tacks on linear contextual bandits,” arXiv preprint

arXiv:2002.03839, 2020.

[11] A. Ghosh, S. R. Chowdhury, and A. Gopalan,
“Misspecified linear bandits,” in AAAI Conference

on Artificial Intelligence, 2017.

[12] A. Gupta, T. Koren, and K. Talwar, “Better algo-
rithms for stochastic bandits with adversarial cor-
ruptions,” arXiv preprint arXiv:1902.08647, 2019.

[13] K.-S. Jun, L. Li, Y. Ma, and J. Zhu, “Adversarial
attacks on stochastic bandits,” in Advances in

Neural Information Processing Systems, 2018.

[14] S. Kannan, J. H. Morgenstern, A. Roth, B. Wag-
goner, and Z. S. Wu, “A smoothed analysis of the
greedy algorithm for the linear contextual ban-
dit problem,” in Advances in Neural Information

Processing Systems, 2018.

[15] S. Kapoor, K. K. Patel, and P. Kar, “Corruption-
tolerant bandit learning,” Machine Learning, vol.
108, no. 4, pp. 687–715, Apr. 2019.

[16] J. Kiefer and J. Wolfowitz, “The equivalence of
two extremum problems,” Canadian Journal of

Mathematics, vol. 12, pp. 363–366, 1960.

[17] A. Krishnamurthy, Z. S. Wu, and V. Syrgkanis,
“Semiparametric contextual bandits,” in Interna-

tional Conference on Machine Learning, 2018.

[18] T. Lattimore and C. Szepesvári, “Bandit algo-
rithms,” preprint, vol. 28, 2018.

[19] T. Lattimore and C. Szepesvári, “Learning with
good feature representations in bandits and in
RL with a generative model,” in International

Conference on Machine Learning, 2020.

[20] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A
contextual-bandit approach to personalized news
article recommendation,” in International Confer-

ence on World Wide Web, 2010.

[21] Y. Li, E. Y. Lou, and L. Shan, “Stochastic linear
optimization with adversarial corruption,” arXiv

preprint arXiv:1909.02109, 2019.

[22] F. Liu and N. Shroff, “Data poisoning attacks on
stochastic bandits,” in International Conference

on Machine Learning, 2019.

[23] G. Liu and L. Lai, “Action-manipulation attacks
on stochastic bandits,” in IEEE International Con-

ference on Acoustics, Speech and Signal Processing

(ICASSP), 2020.

[24] T. Lykouris, V. Mirrokni, and R. Paes Leme,
“Stochastic bandits robust to adversarial corrup-
tions,” in ACM SIGACT Symposium on Theory

of Computing, 2018.

Stochastic Linear Bandits Robust to Adversarial Attacks

[25] G. Neu and J. Olkhovskaya, “Efficient and robust
algorithms for adversarial linear contextual ban-
dits,” in Conference on Learning Theory. PMLR,
2020, pp. 3049–3068.

[26] M. Raghavan, A. Slivkins, J. W. Vaughan, and
Z. S. Wu, “The externalities of exploration and how
data diversity helps exploitation,” arXiv preprint

arXiv:1806.00543, 2018.

[27] Y. Seldin and A. Slivkins, “One practical algorithm
for both stochastic and adversarial bandits.” in
International Conference on Machine Learning,
2014.

[28] A. Slivkins et al., “Introduction to multi-armed
bandits,” Foundations and Trends in Machine

Learning, vol. 12, no. 1-2, pp. 1–286, 2019.

[29] M. J. Todd, Minimum-Volume Ellipsoids.
Philadelphia, PA: Society for Industrial and
Applied Mathematics, 2016.

[30] M. Valko, R. Munos, B. Kveton, and T. Kocák,
“Spectral bandits for smooth graph functions,” in
International Conference on Machine Learning,
2014.

[31] A. Zanette, A. Lazaric, M. Kochenderfer, and
E. Brunskill, “Learning near optimal policies
with low inherent Bellman error,” arXiv preprint

arXiv:2003.00153, 2020.

	Introduction
	Problem Setting
	Related Work
	Contributions

	Algorithm and Regret Bounds
	Upper Bounds on Regret
	Algorithm-Independent Lower Bounds on Regret
	Summary of Upper vs. Lower Bounds

	Greedy Algorithm in the Contextual Setting
	Experiments
	Choices of Attacks
	Contextual Setting
	Non-Contextual Setting

	Conclusion
	Proofs for Section 2 (Robust Phased Elimination Algorithm)
	Single Epoch Analysis (Known Corruption Budget)
	Regret Analysis (Known Corruption Budget)
	Unknown Corruption Budget

	Proofs for Section 3 (Contextual Greedy Algorithm)
	Proofs of Lower Bounds
	Lower Bound for d = k = 2 (Unknown C)
	Lower Bound for d=1 and k=2 (Known C)
	Lower Bound for d = k > 2 (Known C)
	Lower Bound for Diverse Contexts (Known C)

	Attack Methods
	Additional Experimental Details and Results
	Additional Details
	Additional Results

	Additional Related Works
	Discussion on Instance-Dependent vs. Instance-Independent Bounds

