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Abstract

To address functional-output regression, we
introduce projection learning (PL), a novel
dictionary-based approach that learns to pre-
dict a function that is expanded on a dictio-
nary while minimizing an empirical risk based
on a functional loss. PL makes it possible to
use non orthogonal dictionaries and can then
be combined with dictionary learning; it is
thus much more flexible than expansion-based
approaches relying on vectorial losses. This
general method is instantiated with repro-
ducing kernel Hilbert spaces of vector-valued
functions as kernel-based projection learning
(KPL). For the functional square loss, two
closed-form estimators are proposed, one for
fully observed output functions and the other
for partially observed ones. Both are backed
theoretically by an excess risk analysis. Then,
in the more general setting of integral losses
based on differentiable ground losses, KPL is
implemented using first-order optimization for
both fully and partially observed output func-
tions. Eventually, several robustness aspects
of the proposed algorithms are highlighted on
a toy dataset; and a study on two real datasets
shows that they are competitive compared to
other nonlinear approaches. Notably, using
the square loss and a learnt dictionary, KPL
enjoys a particularily attractive trade-off be-
tween computational cost and performances.

1 INTRODUCTION

In a large number of fields such as Biomedical Sig-
nal Processing, Epidemiology Monitoring, Speech and
Acoustics, Climate Science, each data instance con-
sists in a high number of measurements of a common
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underlying phenomenon. Such high-dimensional data
generally enjoys strong smoothness across features. To
exploit that structure, it can be interesting to model
the underlying functions rather than the vectors of
discrete measurements we observe, opening the door to
functional data analysis (FDA;|Ramsay and Silverman)
2005)). In practice, FDA relies on the assumption that
the sampling rate of the observations is high enough to
consider them as functions. Of special interest is the
general problem of functional output regression (FOR)
in which the output variable is a function and the input
variable can be of any type, including a function.

While functional linear models have received a great
deal of attention—see the additive linear model and
its variations (Ramsay and Silverman, 2005 Morris),
2015, and references therein)—, nonlinear ones have
been less studied. Reimherr et al.|(2018) extend the
function-to-function additive linear model by consider-
ing a tri-variate regression function in a reproducing
kernel Hilbert space (RKHS). In non-parametric statis-
tics, [Ferraty and Vieu| (2006) introduce variations of
the Nadaraya-Watson kernel estimator for outputs in
a Banach space. [Oliva et al.| (2015 rather project
both input and output functions on orthogonal bases
and regress the obtained output coefficients separately
on the input ones using approximate kernel ridge re-
gressions (KRR). Finally, extending kernel methods
to functional data, [Lian| (2007)) introduces a function-
valued KRR. In that context Kadri et al.| (2010} [2016])
propose a solution based on the approximate inversion
of an infinite-dimensional linear operator and studies
richer kernels. We give more details on those methods
and compare them with our approach in Section [6.1

In this paper we introduce a novel dictionary-based
approach to FOR. We learn to predict a function that
is expanded on a dictionary while minimizing an em-
pirical risk based on a functional loss. We call this
approach projection learning (PL). It can be instanti-
ated with any machine learning algorithm outputting
vectors using a wide range of functional losses. PL
also makes it possible to use non-orthonormal dictio-
naries. It represents a crucial advantage as complex
functions generally cannot be well represented using
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few vectors in conventional bases. They can however
be compressed very efficiently using learnt redundant
dictionaries (Mallat, [2008). Then, to solve FOR prob-
lems with complex output functions, PL. combined with
dictionary learning (DL) algorithms (Dumitrescu and
Irofti, [2018) can be both fast and accurate. In practice
functions are not fully observed; discrete observations
are rather available. PL can accommodate such re-
alistic case without making any assumptions on the
sampling grids, either by learning with an estimated
gradient or by plugging in an estimator in a closed-form
functional solution.

Then, considering vector-valued RKHSs (vv-RKHS,
Micchelli and Pontil, [2005]), we introduce kernel-based
projection learning (KPL). Vv-RKHSs extend the scope
of kernel methods to vector-valued functions by means
of operator-valued kernels (OVK)—see Section A of
the Supplement for an introduction. They constitute a
principled way of performing vector-valued nonlinear
regression considering any type of input data for which
a kernel can be defined (Shawe-Taylor and Cristian,
ini, 2004). Learning typically relies on a representer
theorem which remains valid for the KPL problem.

Contributions. We introduce PL, a novel dictionary-
based approach to FOR. It can handle non orthonormal
dictionaries and can thus be combined with dictionary
learning. Then, we focus on KPL, an instantiation
based on vv-RKHSs. For the functional square loss, we
propose two estimators, one for fully observed output
functions and another for partially observed ones. Both
are backed with an excess risk bound. For an integral
loss based on a differentiable ground loss, we solve
KPL using first-order optimization and show that the
gradient can easily be estimated from partially observed
functions. Eventually, we study different robustness
aspects of the proposed algorithms on a toy dataset;
and demonstrate on two real datasets that they can be
competitive with other nonlinear FOR methods while
keeping the computational cost significantly lower.

Notations and context. We assimilate the spaces
(RY)™ and R4*"™.  The concatenation of vectors
(u)™, € R¥" is denoted vec((u;)?;) € R For
n € N*, we use the shorthand [n] for the set {1,...,n}.
We denote by F(X,)) the space of functions from X to
Y. For two Hilbert spaces U and Y, L(U,)) is the set
of bounded linear operators from U to Y and L(U) :=
L(U,U). The adjoint of a linear operator A is denoted
A#. For U = R%, we introduce A € L(R™ YY) as
Ay @ vec((ui)izy) — (Aug,...,Auy,) and Apae (n) €
L(RIx7 Yn) as Anat,n) + (ui)jzy — (Aug, ..., Auy).
For B € RPX4,C € R¥™*™, B® C € RP¥¥9" denotes
the Kronecker product. Finally L?(©) stands for the
Hilbert space of real-valued square integrable functions
on a given compact subset @ C RY; without loss of

generality we suppose that [©] := [ 1d6 = 1.

2 PROJECTION LEARNING

2.1 Functional output regression

Let X be a measurable space and (X,Y) be a couple of
random variables on Z := X' x L?(0) with joint proba-
bility distribution p. To introduce the FOR problem,
we define a functional loss ¢ as a real-valued function
over L2(0) x L2(©). Examples of functional losses in-
clude the functional square loss and more generally, any
integral of a ground loss [ : R x R — R. Particularly,
given such ground loss I, for (yo,y1) € L2(0) x L2(0),
a functional loss ¢ can be defined as:

Uyo, 1) = /@ o (0), 91 (6))d. (1)

Specifically, taking the square loss as ground loss
I(yo(0),y1(0)) = (yo(0) — y1(0))? we obtain the func-
tional square loss #3(yo, y1) = ||lyo — y1HE2(9), widely
used in the literature (Kadri et al., [2010).

Given such functional loss ¢ and a hypothesis class
G C F(X,L?(0)), we now define the FOR problem as

min R(f) = Eoo)mp (Y SN ()

However, we have access to the joint probability distri-
bution p only through an observed sample. The aim is
then to approximately solve the above problem using
the available data. We study two possible settings.

In the first one, the output functions are fully observed.
Our sample z := (x;,y;)""_, then consists of n € N i.i.d.
realizations drawn from p, this setting coincides with
the so-called dense one described in FDA (Kokoska and
Reimherr} |2017)). By contrast, in the partially observed
setting (also referred to as the sparse one, described and
studied in [Kokoska and Reimherr| (2017)); |Li and Hsing
(2010); |Cai and Yuan| (2011)), the output functions are
observed on grids which may be irregular, subject to
randomness and potentially different for each function.
Even though the former scenario is relatively frequent
in theoretical works, the latter can be more realistic.

In the partially observed setting, we suppose that we
only observe each y; on a random sample of locations,
0; := (0ip) ey € O™, drawn from a probability distri-
bution p. For the sake of simplicity, u is chosen as the
uniform distribution on © and the draws of locations
are supposed to be independent. The learning problem
depicted in Equation has now to be solved using a
partially observed functional output sample:

z = (i, (05, Ui)) i1, (3)
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where for all i € [n], §; € O™, y; € R™ with m; €
N* the number of observations available for the i-th
function, and for all p € [m;], 6;, € © and ;) € R.

In this paper, we propose a novel angle to address the
FOR problem using both types of samples.

2.2 Approximated FOR

To tackle Problem , we propose to learn to predict
expansion coefficients on a dictionary of functions ¢ :=
(d1), € L2(©)¢ with d € N* (considerations on the
choice of this dictionary are postponed to Section .
We then introduce the following linear operator:

Definition 2.1. (Projection operator) For a dictio-
nary ¢, the associated projection operator @ is defined
by ®: ueR— S we € L2(O).

We can give an explicit expression of ®# as well as a
matrix representation of ®#®.

Lemma 2.1. The adjoint of ® is given by ®# : g €
L2(©) — (¢, 9)12(0))i1 € R Thus we have

D#D = ((d1, ds)12(0))f =1

The core idea of PL is to define a simpler model f(z) =
®h(x) in Problem (2)), where h : X — R? is a vector-
valued function. This yields the problem

inR(®oh 4
min R(® o h), (4)
that we can solve using a sample from one or the other
of the two observation settings previously defined.

In the fully observed setting, we can minimize over
H C F(X,R%) the empirical counterpart of the true
risk based on z, R(® o h,z) = LS Uy, Ph(xy)),
with some additional penalty Q24 : H — R to control
the model complexity:

min R(®oh,z)+ A2y (h), (5)
with A > 0. In other words, we search a solution in the
hypothesis space {f : z — ®h(z), h € H} and solve
a function-valued problem at the price of solving a
vector-valued one in H. Even though a vector-valued
function is learned, the loss remains a functional one.
Moreover, any predictive model devoted to vectorial
output regression (e. g. neural networks, random
forests, kernel methods etc.) is eligible. We regularize
our model through the vector-valued function h.

To tackle the partially observed setting, rather than
formulating an empirical counterpart of the true risk
based on z, we exploit specific properties of the learning
algorithms proposed in Section[d Namely in our closed
form ridge estimator (Proposition |4.2)) or in the gradi-
ent (Equation ), the output functions only appear

through scalar products with elements of the dictionary.
We can then estimate those from ((6;, ;)" and use a
plug-in strategy. Interestingly, computing the gradient
for the data attach term in Problem shows that this
is a feature of projection learning which is not specific
to the vv-RKHS instantiation (see Section F.1 of the
Supplement for details).

3 DICTIONARIES

In solving Problem instead of Problem (2)), we
restrict the predictions of our model to Span(¢), the
space of linear combinations of functions of ¢. As a
result ¢ must be chosen so that the functions (y;)?_; can
be approximated accurately by elements from Span(¢).
To achieve this, several strategies are possible.

3.1 General dictionaries

Orthonormal and Riesz bases. We can consider
families of functions known to provide sharp approxi-
mations of functions belonging to L?(0). Orthogonal
bases such as Fourier bases or wavelets bases (DeVore
et al., |1992)), as well as Riesz bases (see Definition
such as splines (Oswald, [1990), have proved their ef-
ficiency in signal compression. In practice, a choice
among those families can be made from observed prop-
erties of the output functions or prior information on
the generating process. Then within a family, dictio-
naries with different parameters (number of functions
and/or other parameters) can be considered. A cross-
validation can be performed to select one.

Families of random functions, such as random
Fourier features (RFFs, Rahimi and Recht|, 2008a) can
enjoy good approximation properties as well. Through
the choice of such family, we approximate the output
functions in a space that is dense in a RKHS (Rahimi
and Recht], 2008bf). The link with this RKHS can more-
over be made explicit as a family is associated to a
given kernel. The kernel can then be chosen by cross-
validation and number of functions to include results
from a precision/computation time trade-off.

3.2 Dictionary learning

When the output functions are too complex, selecting
a dictionary can however be difficult. The choice of a
family may not be evident and it may take too many
atoms (functions) to reach a satisfying approximation
precision. While functional principal component anal-
ysis (FPCA; |[Ramsay and Silverman, 2005) addresses
the first issue by ensuring that Span(¢) is close to
Span((y;)i_,), it does not address the second one. If
the functions at hand are too complex, a very large
number of eigenfunctions will be necessary to reach
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an acceptable approximation quality. By opposition,
dictionary learning (DL) solves both problems; it can
generally synthesize faithfully the properties of a com-
plicated set of functions while using very few atoms
(Mairal et al., 2009). The DL problem is of the form

n

min 1 Z (”yz - @BiHEz(@) + 7QRad (/Bz)) , (6)
i=1

(ﬁEC,ﬂERdX" n

where C is a set of constraint for the dictionary, Qpa :
R? — R is a penalty on the learned representation
coefficients and 7 > 0 is a trade-off parameter. C :=
{0 €L2(©)%, il 0y <1, 1€ [d]} and Qga = ||.||x
are the most common chomes (Lee et al., [2007; Mairal
et al 12009), and most existing algorithms are based
on alternating optimization schemes (Dumitrescu and
Irofti, [2018] and references therein).

As opposed to other dictionary based methods (Oliva
et al., 2015), KPL can handle the resulting non or-
thonormal dictionary and can thus benefit from the
compression power of DL. Then combining the two,
we obtain a FOR method that can deal directly with
complex functional-output datasets at a low compu-
tational cost. Admittedly, solving Problem @ has a
cost, which must however be mitigated. Many efficient
algorithms exist (Dumitrescu and Irofti, [2018) and the
dictionary moreover needs to be learnt only once (when
selecting other parameters through cross-validation, it
needs only be learnt once per fold).

4 VV-RKHS INSTANTIATION

We now focus on projection learning using vv-RKHSs.

4.1 Vv-RKHSs and representer theorem

Let K : X x X + L(R?) be an OVK and Hk C
F(X,RY) its associated VV—RKHS. For x € X, we
define K, € L(R? Hk) as K, : u > Kyu, with
Kzu : 2’ — K(2/, z)u. We consider Problem tak-
ing ‘H = Hy as vector-valued hypothesis class. Setting
the regularization as Qg (h) := ||h[|3,, yields the fol-
lowing instantiation of PL with vv-RKHS:

mmfZKy“cbh ) + Al (7)

heHk N

To solve Problem , we show in Proposition that
it benefits from a representer theorem, which proof is
given in Section B.1 of the Supplement. It can then be
restated as a problem with dn variables.

Proposition 4.1. (Representer theorem) For {
continuous and convex with respect to its second ar-
gument, Problem admits a unique minimizer h;.

Moreover there exists a € RY*™ gsuch that
n
= Z ij Q.
j=1

Choice of kernels. In vv-RKHSs, the choice of the
kernel determines the regularization conveyed by the
RKHS norm. In practice, the separable kernel is often
used: K =kB : (zg,x1) — k(x0,21)B (Alvarez et al.l
2012)), with k a scalar kernel on X and B € R*? a
positive definite symmetric matrix encoding relations
between the output variables. In KPL, B can encode
prior information on the dictionary. A diagonal matrix
can for instance penalize higher frequencies/scales more.
We exploit this with wavelets in the experiments related
to biomedical imaging in Section

4.2 Ridge solution

In this section, we focus on the functional square loss.
Fully observed setting. By Proposition [{.1} Prob-

lem @ can be rewritten as

min — Hy () Kvec(a HL2 ©@)n

a€ERIxXn
+ Mvec(a), Kvec(a))gan, (8)
where y = (y;)_; € L?(0©)", the kernel matrix is
defined block-wise as K := [K(x;,x;)];';=, € R
and vec and @, are introduced in Section (I} We then

derive a closed-form for fully observed output functions.

Proposition 4.2. (Ridge solution) The minimum
in Problem is achieved by any a* € RYX™ verifying

(K(@#®)()K + nAK) vec(a”) := K&¥ 1y (9)
Such o exists. Moreover if K is full rank then

((2#®) (K + nAl) is invertible and o* is such that

1
ol . (10)
We define the ridge estimator as h) := Z 1 Ke, o

Ti=ge

vec(a®) = ((2# @)K +nl)

The proof is detailed in Section B.2 of the Supplement.
(®#®)(,,) is a block diagonal matrix with the Gram
matrix ®#® of the dictionary repeated on its diagonal.
Then if ¢ is orthonormal, Equation simplifies to
vec(a®) = (K+nAl)~ (I’?fl)y.

Partially observed setting We can derive a solu-
tion for partially observed functions from Proposition
To that end, we remark that in Equation ,
the output functions only appear through the quan-
tity (P(,))#y = vec((®#y;)7 ) € R with for i € [n],
Oy, = ((yi7¢l>|_z(9))7:1. As a consequence, we pro-
pose to estimate those scalar products from the avail-
able observations and then to plug the obtained esti-
mators into Equation .
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Definition 4.1. (Plug-in ridge estimator.) For all
l €[d] and i € [n], let vy = m%éz;n:ll Yip®1(6ip) be
the entries of 7 € R¥". Let &*1 € R¥" be such that
vec(a*) = ((2#®)(,)K +nAl) " vec(v). We then de-
fine the plug-in ridge estimator as EQ = Z?:l Ke, &;.
We propose the following strategy to compute this
estimator for a separable kernel K = kB.

Fast algorithm for plug-in ridge estimator. The
matrix K can be rewritten as K = Ky ® B with Ky :=
(k(wi,x5))7 ;=1 € R™*". Solving the linear system in
Equation has time complexity O(n®d®). How-
ever, ((I)(n)) (I)(n) =1l® (‘I)#(I)), thus (‘D(n))#q)(n)K =
(1®(®#®))(Kx ®B). Using the mixed product property
(Horn and Johnson/ {1991} Lemma 4.2.10), we must solve
(Kx @ ((®7 ®)B) +nAl)vec(a) = vec(). Two classic res-
olution strategies can separate the contribution of n and
d in the cubic term of the complexity. We can notice
that the above linear system is equivalent to a discrete
time Sylvester equation (Simal |1996; Dinuzzo et al.
2011)), which can be solved in O(n* + d°® + n%d + nd?)
time. Or if we wish to test many values of A, using the
Kronecker structure, we can deduce an eigendecompo-
sition of Ky ® ((®#®)B) from one of Ky and one of
(®@#®)B (Horn and Johnson, 1991, Theorem 4.2.12) in
O(n? 4+ d°) time. For a given o € R4*", the predicted

Algorithm 1: Plug-in ridge estimator

Input: Sample z, matrices B, d#®
Compute: kernel matrix Ky = (k(z, 7)1,
Compute: estimates 7 of ({y;, ¢d>|_z(@))?:’d1’l:1
Solve: (Ky @ ((®#®)B) + nAl)vec(a) = vec(v)
Output: Representer coefficients o € R¥*".

function at a new input point x € X is then given by
DPBaky (x) with ky(z) := (k(z,z;)) ;.

4.3 Iterative optimization

For other losses, since it is no longer possible to find a
closed-form, we resort to iterative optimization.

Fully observed setting For K separable, using Propo-
sition and defining ¢, (y) := £(y;,y); Problem

is rewritten as

1
min —
aERIXn N,

n

> Ly, (PBaky () + MKy, a"Ba)gas.
i=1

The gradient of the objective is given by

1
Ebeﬁat,(n)G(a)K;{ + ABaKy, (11)
with G(a) = (V4 (PBakx(z;)));_, € L*(©)" and

Vi, : L%(©) — L?(O) the gradient of £,,.

Partially observed setting. We notice that the en-
tries of ®F G(a) € R are the scalar products

mat,(n)
((Véyi(@Bakx(a:i)),¢1>L2(@))i’;1. For ¢ an integral
loss (Equation (T))) based on a differentiable ground
loss 1, V&, : y — (60 — 1(y:(6),y(8))). We can thus
estimate the columns ®# V¢, (®Bakx(;)) as

SO0 (5s(0i), 6(0:) B () 6(0,),  (12)

p=

1

myg
where we have used the convention that for § € O,
#(0) == (¢1(0)), € Re. The corresponding estimation
of @ﬁat}(n)G(a) can be plugged into Equation (11} to
yield an estimated gradient.

Link with ridge estimator. In the partially ob-
served setting, for the square loss, iterative optimiza-
tion and the plug-in ridge estimator do not yield the
same result. In fact, they correspond to two different
ridge closed-forms (see Section of the Supplement).
While the former is slower to compute than the latter
it can be more robust (see Section .

5 THEORETICAL ANALYSIS

In this section we give two finite sample excess risk
bounds. One for the ridge estimator in the fully ob-
served setting and one for the plug-in ridge estimator
in the partially observed setting. In the first case, we
study the effect of the number of samples n, and in
the second case that of both n and the number of ob-
servations per function m. We suppose that for all
i € [n], m; = m. We leave however a detailed analysis
with respect to the size of the dictionary d (including
approximation aspects) for future work. Our analysis
is based on the framework of integral operators (Capony
netto and De Vitol |2007; [Smale and Zhou, 2007) to
which we give an introduction in the context of our
problem in Section C of the Supplement.

5.1 Fully observed setting

In this section, we suppose that X is a separable metric
space. We also need to relate the L?(©) norm of any
g € Span(¢) to the square norm of its coefficients in
the dictionary ¢. To that end, a usual assumption is
that it is a Riesz family (Casazza, [2000).

Definition 5.1. (Riesz family) ¢ € L?(0) is a Riesz
family of L?(©) with constants (cs, Cy) if it is linearly
independent and for any u € R,

d
> wer

=1

< C ullga -
L2(©)

¢ lullga <

If in addition for all I € [d], [[¢i]l2e) = 1, it is a
normed Riesz family.
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Remark. Riesz families provide a natural generalization
of orthonormal families as a normed Riesz family with
cy = Cyp =1 is orthonormal.

We make the following assumptions.

Assumption 5.1. K is a vector-valued continuous
kernel and there exists k > 0 such that for x € X,
1Kz, @)l gy < .

Remark. We suppose that k is independant from d.
This is for instance the case if for x € X, K(z, z) is diag-
onal or block diagonal with bounded coefficients. More
generally, we can rely on the fact that x is bounded
by the maximal || - ||;-norm of the columns of K(z, z),
which can easily be imposed to be be independent of d.
Assumption 5.2. The dictionary ¢ is a normed Riesz
family in L*(©) with upper constant Cg.

Remark. We do not use the lower constant cg.
Assumption 5.3. There exist hy, € Hk such that
h’HK == infhEHK R((I) o h)

Remark. This is a standard assumption (Caponnetto
and De Vito, 2007; [Baldassarre et al., 2012} |Li et al.|
2019)), it implies the existence of a ball of radius R > 0
in Hg containing hy,, as a consequence ||hy, |3, < R.
Assumption 5.4. There exists L > 0 such that for
all 0 € ©, almost surely |Y(0)] < L.

We then have the following excess risk bound for the
ridge estimator defined in Proposition [£.2} We prove it
in Section E.1 of the Supplement.

Proposition 5.1. Let 0 < n < 1, taking A =

Al (n/2) == 6HC§W, with probability at least 1—n

R(®oh}) ~ R(®ohy,) < 27 (ﬁg ; le/&> log \/<ﬁ/>

(L +/kCyR)? and By := KC’iR?

with By :=

This bound implies the consistency of the ridge estima-
tor in the number of samples n.

5.2 Partially observed setting

To treat the partially observed setting, we need to make
the following additional assumption.

Assumption 5.5. There exists M(d) > 0 such that
for all 6 € © and for all 1 € [d], |¢(0)] < M(d).

Remark. The dependence in d is specific to the family
to which ¢ belongs; for wavelets we have M(d) =
27D maxgee [1h(0)| with 1 the mother wavelet and
7(0,d) € N the number of dilatations included in ¢,
whereas for a Fourier dictionary we have M (d) = 1.

We then have the following excess risk bound for the
plug-in ridge estimator from Definition which we
prove in Section E.2 of the Supplement.

Proposition 5.2. Let 0 < n < 1, taking A\ =

AE(n/3) == GKC;%, with probability at least 1—m),

R(® 0 h3) — R(P o hay)

< (P B0 923% n ng”) log (/).
with C(d) == LM(d) , Ba(d ( )
B(d) := By(d) — 1852, B4(d) = 81 (I+le/&)

and By and By are defined as in Proposition [5.1]

We highlight that if m =< /n, then this bounds yields
consistency for the plug-in ridge estimator.

6 NUMERICAL EXPERIMENTS

Section is dedicated to the study of several aspects
of robustness of KPL algorithms. Then we compare
KPL with the nonlinear FOR methods presented in
Section on two datasets. In Section we ex-
plore a biomedical imaging dataset with relatively small
number of samples (n = 100) and partially observed
functions, whereas in Section we study a speech in-
version dataset with relatively large number of samples
(n = 413) and fully observed output functions.

We use the mean squared error (MSE) as metric.
Given observed functions ((6;,y;))?; and predicted
ones (7:),; € L%(©), we define it as MSE :=
2 e oty (3i(ip) — ip)?. The presented results
are averaged either over 10 or 20 runs with different
train/test splits. Full details of the experimental proce-
dures are postponed to Section H of the Supplement.

6.1 Related works

We compare KPL to four existing nonlinear FOR meth-
ods that we present in this section. More detailed
descriptions are given in Section G of the Supplement.

Functional kernel ridge regression (FKRR).
Kadri et al.| (2010, 2016) solve a functional KRR us-
ing function-valued-RKHSs. A representer theorem
yields a closed-form solution computed by inverting
an operator in £(L?(©))"*". For a separable kernel
Kfun = kL with L € £(L%(0)), if an eigendecomposition
of L is known in closed-form, an approximate solution
is computed in O(n3+n?Jm) time, with J the number
of eigenfunctions considered and m the size of the dis-
cretization grid. If not, a discretized problem is solved
in O(n® +m?3 + n?m + nm?) time.

Triple basis estimator (3BE). In (Oliva et al.|
2015)), the input and the output functions are rep-

resented by decomposition coefficients on two orthonor-
mal families. The output coefficients are then regressed
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on the input ones using KRRs approximated with J
RFFs in O(J%+ J%d) time, with d the size of the output
family. As 3BE is specific to function-to-function re-
gression with scalar-valued inputs, we deal with vector-
valued input functions (as in Section , directly
through a kernel. We call this extension one basis
estimator (1BE); it is solved in O(n?® + n%d) time.
1BE is in fact a particular case of the KPL plug-in
ridge estimator with ¢ orthonormal and K = kl. How-
ever, our estimator offers the additional possibility to
use non orthonormal dictionaries and to impose richer
regularizations through kernels K = kB with B # I.
KPL can moreover can be used with a wide range of
functional losses.

Kernel additive model (KAM). Reimbherr et al.
(2018) propose an additive function-to-function regres-
sion model using RKHSs. A representer theorem leads
to a closed-from solution. Computations are performed
in a truncated FPCA basis of size J < n. For a prod-
uct of kernels, if the Kronecker structure is exploited
(a possibility which is however not highlighted by the
authors), the complexity is O(n® + J? + n?J + nJ?)
time using a Sylvester solver. However, computing the
matrix to form the linear system—matrix A in page
6 of (Reimherr et al., |2018)—is generally much more
expensive; exploiting the product of kernels, n? + J2
double integrals must be computed which has time com-
plexity O(n?t? + J?m?), with t the size of the input
discretization grid. Those computations must moreover
generally be repeated many times so as to tune the
multiple kernel parameters.

Kernel Estimator (KE). Finally, an extension of the
Nadaraya-Watson kernel estimator to Banach spaces
is introduced and studied in (Ferraty et al., |2011)).

6.2 Preliminary elements

Note on optimization. We compute the KPL plug-
in ridge estimator as in Algorithm [I] with Sylvester
solver. For iterative optimization, we use L-BFGS-
B (Zhu et al., [1997)); the estimates of partial second
order informations improve convergence speed. For
FKRR, of the two possible approaches from Section [G]
of the Supplement, we use the faster Sylvester approach.
For KAM we exploit the separability as well using a
Sylvester solver.

Logcosh functional loss. As an example of a robust
integral loss, for v > 0, we introduce El(;). It is ob-
tained by taking ll(CAL) : (a,b) — Y/ylog(cosh(y(a — b))
as ground loss in Equation . This ground loss be-
haves similarly to the Huber loss (Huber} |1964)—almost
quadratically around 0 and almost linearly elsewhere.
The parameter 7 gives us control on its behaviour

around 0, as it grows bigger, ll(gh) tends to the absolute

FKRR
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Figure 1: Several aspects of robustness.

loss (see Section H for examples). As opposed to our

proposed integral loss El(;]), the extension of the Huber

loss to L?(©) x L%(0) (e. g. Bauschke and Combettes|
2017, Example 13.7) is not differentiable everywhere.

6.3 Toy data

In this section, we take K = kl with k a scalar-valued
Gaussian kernel. We use a generated toy dataset: in-
puts are random mixtures of cubic B-splines (de Boor,
2001)) centered at different locations and outputs are
associated mixtures of Gaussian processes (drawn once
and then fixed). The full generation procedure is
described in Section H of the Supplement. We use
Ngrain = 100 samples for training and n¢est = 100 sam-
ples and use Fourier dictionaries for KPL and 3BE.

Corruption modalities. We study the effect of four
types of corruptions of the training data: local outliers,
label noise, missing observations and local noise. In
the first case, observations from the output functions
are replaced with random draws in their range. In
the second case, some output functions are replaced
with erroneous ones. In the third case we remove
observations from the output functions uniformly at
random. Finally, in the last one we add Gaussian noise
to those observations. We then use the signal to noise
ratio as x-axis; for a noise level o and a sample z, we
define it as SNR := L. 57" -1 o il -

i=1 m;,

Comments on the results. The evolution of the
MSEs for several levels of corruption are displayed in
Figure [l For each type, at least one KPL algorithm is
particularly robust which demonstrates the versatility
of our framework. KPL can be combined with the func-
tional logcosh loss to obtain a FOR algorithm that is
robust to outliers (logcosh-KPL). Dealing with partially
observed functions, KPL solved iteratively using esti-
mated gradients works especially well (ridge-iter-KPL,
logcosh-KPL). Finally all proposed KPL algorithms are
robust to local noise.
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Table 1: MSEs on the DTI dataset.

KE 0.231 4+ 0.025
3BE 0.227 + 0.017
KAM 0.222 4+ 0.021
FKRR 0.215 &+ 0.020
RipGE-KPL 0.211 4+ 0.022
Loccosn-KPL 0.209 £+ 0.020

6.4 Diffusion tensor imaging dataset (DTI)

Dataset. We now consider the DTI dataset [ It con-
sists of 382 Fractional anisotropy (FA) profiles inferred
from DTI scans along two tracts—corpus callosum
(CCA) and right corticospinal (RCS). The scans were
performed on 142 subjects; 100 multiple sclerosis (MS)
patients and 42 healthy controls. MS is an auto-immune
disease which causes the immune system to gradually
destroy myelin, however the structure of this process
is not well understood. Using the proxy of FA profiles,
we propose to predict one tract (RCS) from the other
(CCA). We consider only the first n = 100 scans of MS
patients. Finally, we highlight that the functions are
partially observed: significant parts of the FA profiles
along the RCS tract are missing.

Experimental setting. We perform linear smoothing
if necessary—for FKRR and KAM. We split the data as
Ngrain = 0 and neet = 30 and use wavelets dictionaries
for 3BE and KPL. For KPL, we take a kernel of the
form K = kD with k a Gaussian kernel and D a diagonal
matrix with diagonal decreasing with the corresponding
wavelet scale. Finally, when using wavelets, we extend
the signal symmetrically to avoid boundary effects. The
MSEs are shown in Table [

Comments on the results. The studied meth-
ods perform almost equally well, with a slight advan-
tage for ours. The combination of an efficient use of
wavelets (well suited to non-smooth data) with the
scale-dependant regularization induced by the kernel
K = kD may explain this.

6.5 Synthetic speech inversion dataset

Dataset. We consider a speech inversion problem:
from an acoustic speech signal, we estimate the un-
derlying vocal tract (VT) configuration that produced
it (Richmond) 2002). Such information can improve
performance in speech recognition systems or in speech

synthesis. The dataset was introduced by
(2009); it is generated by a software synthesizing words

'This dataset was collected at Johns Hopkins University
and the Kennedy-Krieger Institute and is freely available
as a part of the Refund R package
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Figure 2: MSEs and CPU times on the speech dataset.

from an articulatory model. It consists of a corpus of
n = 413 pronounced words with 8 distinct VT func-
tions: lip aperture (LA), lip protrusion (LP), tongue
tip constriction degree (TTCD), tongue tip constric-
tion location (TTCL), tongue body constriction degree
(TBCD), tongue body constriction location (TBCL),
Velum (VEL) and Glottis (GLO).

Experimental setting. To match words of varying
lengths, we extend symmetrically both the input sounds
and the VT functions matching the longest word. We
represent the sounds using 13 mel-frequency cepstral
coefficients (MFCC), the input data thus consist of
vector-valued functions. We split the data as niapn =
300 and nes; = 113. We normalize the output functions
so that they take their values in [—1,1]. To deal with
the vector-valued functional inputs, we use an integral
of Gaussian kernels on the standardized MFCCs (KPL,
FKRR, 1BE/KPL). For KAM we take Laplace kernels
for both input and output locations, and use a Gaussian
kernel defined on R3 to compare the evaluations of the
standardized MFCCs (see Section H of the Supplement
for details on the employed kernels).

The MSEs for the 8 VTs (left panel) as well as an analy-
sis of the computation times (right panel) are displayed
in Figure[2] Pre-process entails all pre-processing opera-
tions (e. g. computing the the kernel matrices, learning
the dictionary, computing the gram matrix of ¢), fit
measures the fitting time per se (solving the relevant
linear system) and predict measures the prediction time
on the test set (for all methods, it entails computing
new kernel matrices). ridge-DL-KPL is the KPL ridge
estimator with ¢ learnt by solving Problem (6] with C
and Qga as introduced in Section 1BE /ridge-Four-
KPL corresponds to 1BE (or equivalently KPL with
K = kl) with ¢ a Fourier family. To give an order of
idea, we use 30 atoms for the learnt dictionaries while
the numbers of atoms selected by cross-validation for
the Fourier ones are around 100. We do not include
KE in the figure as it performed poorly on this dataset.
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Comments on the results. For 4 out of 8 VTs (LP,
LA, TBCD, TTCL), the performances of the methods
are comparable, with KAM being slightly more precise.
On the remaining 4 VTs, ridge-DL-KPL, 1BE/ridge-
Four-KPL and FKRR beat KAM on one (VEL) and are
beaten by KAM on the 3 other (TBCL, GLO, TTCD).
This could be explained by the fact that KAM predicts
locally the functions while the other three methods
have more of a global approach. Depending on the
properties of the functions and the nature of the depen-
dency between input and output functions, one or the
other could be more favorable. However KAM’s main
weakness is its computational cost for pre-processing
and prediction, which makes it unpractical to use on
medium-sized datasets and impossible to use on larger
ones. The particularily time-consuming operation in
question is the computation of an analogous to the ker-
nel matrix (see Section |6.1). The three other methods
display very close MSEs, with 1BE/ridge-Four-KPL
being a bit less precise than the two others. Ridge-DL-
KPL and FKRR perform equally well. However for
the former the main computational burden comes from
a pre-processing operation (learning the dictionary),
which is performed only once per dataset (or once per
fold in a cross-validation); whereas for the latter it
comes from fitting the method, which must be done
many times so as to tune its parameters. Moreover
for Ridge-DL-KPL, once a number of atoms yielding a
good approximation has been found and the dictionary
has been learnt, no further tuning must be performed
for the outputs, whereas for FKRR an output kernel
must be chosen.

7 CONCLUSION

We introduced PL, a general dictionary-based frame-
work to address FOR. It can be used with a wide
class of functional losses and non orthonormal dictio-
naries. Through an extensive study in the context of
vv-RKHSs, we illustrated some aspects of its versatility
and demonstrated that the approach is efficient and
can be backed theoretically in some cases. For future
research, PL could be instantiated using other hypoth-
esis classes than vv-RKHS and the possibilities offered
by dictionary learning could be investigated further.
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