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Abstract

Relationships between agents can be conve-
niently represented by graphs. When these
relationships have different modalities, they
are better modelled by multilayer graphs
in which each layer is associated with one
modality. Such graphs arise naturally in
many contexts including biological and so-
cial networks. Clustering is a fundamental
problem in network analysis where the goal
is to regroup nodes with similar connectiv-
ity profiles. In the past decade, various clus-
tering methods have been extended from the
unilayer setting to multilayer graphs in or-
der to incorporate the information provided
by each layer. While most existing works as-
sume – rather restrictively - that all layers
share the same set of nodes, we propose a new
framework that allows for layers to be de-
fined on different sets of nodes. In particular,
the nodes not recorded in a layer are treated
as missing. Within this paradigm, we inves-
tigate several generalizations of well-known
clustering methods in the complete setting
to the incomplete one and prove some consis-
tency results under the Multi-Layer Stochas-
tic Block Model assumption. Our theoret-
ical results are complemented by thorough
numerical comparisons between our proposed
algorithms on synthetic data, and also on real
datasets, thus highlighting the promising be-
haviour of our methods in various settings.

1 Introduction

Graphs are a powerful tool to represent relationships
between agents. Due to applications in a wide array
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of fields including biology, sociology, ecology and eco-
nomics (see for e.g., Braun et al. (2015); Han et al.
(2015); Kivelä et al. (2014); Kim and Lee (2015)), the
analysis of networks has received significant interest
over the last two decades. One fundamental problem
of network analysis is clustering which involves de-
tecting communities by regrouping nodes having sim-
ilar connectivity properties. Numerous clustering al-
gorithms have been developed over the years based on
different approaches such as modularity maximization,
maximum likelihood, random walks, semi-definite pro-
gramming and spectral clustering (see for instance the
survey articles by Fortunato (2009) and Abbe (2018)).

Often, relationships are better understood through dif-
ferent modalities. These multiple aspects of relation-
ships can be represented by a multilayer graph where
each layer is a graph representing the interactions be-
tween agents for one modality. For e.g., social interac-
tion between a set of people can be recorded via email
exchanges, phone calls, professional links, and so on.
Each level of interaction can be encoded into a sim-
ple graph and the collection of these graphs leads to a
multilayer representation. Another important exam-
ple of a multilayer graph is given by a time-varying
network where each view of the network at a given
time corresponds to a different layer.

Over the last decade, many methods have been pro-
posed for clustering multilayer graphs such as those
based on matrix factorization, spectral methods, max-
imisation of a modularity function or probability
model-based approaches; see Kim and Lee (2015) for
a survey. Consistency results for the recovery of the
partition under a stochastic generative model have also
been shown for some algorithms, see for example Paul
and Chen (2020), Pensky and Zhang (2019), Lei (2020)
and Bhattacharyya and Chatterjee (2018).

Most existing approaches assume that all the layers
share the same set of nodes. In practice, however, data
are often incomplete; in particular, the set of observed
nodes can clearly vary across layers. For example, in
social networks evolving over time, the set of nodes
can change due to people leaving/joining the network.
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This is the setting considered in the present paper.

1.1 Related work

Clustering on multi-layer graphs. As noted by
Paul and Chen (2020), clustering strategies for mul-
tilayer graphs can be roughly categorized into three
groups: early fusion methods where all views are ag-
gregated and then clustering is performed, interme-
diate fusion methods where the algorithm finds a fac-
tor common to all the views, and final aggregation
methods where each individual view is processed sepa-
rately and a consensus partition is formed. In the com-
plete setting, different algorithms have been proven
to be consistent under a multilayer stochastic block
model assumption (see Section 2.2). Among them
are spectral clustering on the sum of adjacency matri-
ces (e.g., Bhattacharyya and Chatterjee (2018); Paul
and Chen (2020)) or on the sum of squared adjacency
matrices with bias correction (e.g., Lei (2020); Bhat-
tacharyya and Chatterjee (2020)), orthogonal linked
matrix factorization (e.g., Paul and Chen (2020)), and
co-regularized spectral clustering (e.g., Paul and Chen
(2020)). Existing misclustering bounds for these meth-
ods are gathered in the supplementary material.

Incomplete Multi-View Clustering (IMVC).
Recently a similar problem has been addressed in the
context of IMVC, see for example Liu et al. (2020),
Hu and Chen (2019) and references therein. To the
best of our knowledge, no consistency results for the
recovery of the ground truth clustering structure are
shown in this line of work. Algorithms designed for
the IMVC framework cannot be directly applied to
our setting since they apply to a collection of feature
vectors. However they could possibly be adapted, in
a non trivial manner, to our framework. For example,
in the complete setting, the OMVC method proposed
by Hu and Chen (2019) can be considered as a variant
of the OLMF estimator proposed by Paul and Chen
(2020) where the optimization problem is modified in
order to take into account the symmetry of the inputs.
Similarly, if there were no missing views, the algorithm
proposed by Liu et al. (2020) resembles a variant of the
co-regularized spectral clustering method of Paul and
Chen (2020) for clustering multilayer graphs. We leave
the adaptation of the algorithm proposed by Liu et al.
(2020) to our setting for future work.

1.2 Contributions

We consider the problem of clustering multilayer
graphs with missing nodes under a Multi-Layer
Stochastic Block Model (MLSBM) described in Sec-
tion 2. Our contributions are as follows.

• In Section 3.1 we propose a final aggregation
method based on a variant of k-means for incom-
plete data (Algorithm 1), and derive a bound for
the misclustering rate.

• Section 4 extends a popular early fusion method –
based on spectral clustering applied to the sum of
adjacency matrices – to the missing nodes setting.
Section 4.1 studies this by imputing the missing
entries with zeros (Algorithm 2), and contains an
upper bound for the misclutering rate. Section
4.2 proposes an alternative method (Algorithm
3) wherein the missing entries are imputed iter-
atively. This method is shown to perform well in
our experiments.

• Section 5.2 proposes an extension of an inter-
mediate fusion method – namely the Orthogo-
nal Linked Matrix Factorization (OLMF) method
studied by Paul and Chen (2020) – to the missing
nodes setting.

• In Section 6 we empirically evaluate our al-
gorithms on synthetic data, and also on real
datasets.

1.3 Notations

The set of integers {1, . . . , n} will be denoted by [n].
For a matrix M ∈ Rn×n, its Frobenius (resp. oper-
ator) norm is denoted by ||M ||F (resp. ||M ||). The
notation Mi∗ (resp. M∗j) denotes the i-th row (resp.
j-th column) of M . For any subset J of [n] and sym-
metric matrix M ∈ Rn×n, MJ ∈ R|J|×|J| denotes the
square submatrix of M obtained by deleting rows and
columns whose index doesn’t belong to J . For a non
symmetric matrix Z ∈ Rn×K , ZJ denotes the sub-
matrix of Z obtained by deleting rows whose index
doesn’t belong to J . Sometimes, it will also be conve-
nient to consider AJ (resp. ZJ) as a n×n (resp. n×K)
matrix where the rows and columns (resp. only the
rows) whose index doesn’t belong to J are filled with
zeros; this will be clear from the context. In denotes
the identity matrix of size n. Constants will be de-
noted by the letters c and C, eventually indexed by a
number to avoid confusion. Within proofs the values
of constants can change from line to line whereas they
are denoted with the same letter for simplicity.

2 Problem setup

A multilayer graph is a sequence of graphs G =
(G(1), . . . ,G(L)). If all the graphs are defined on the
same set of nodes N indexed by [n], then G is said
to be pillar. Throughout, we will assume that for all
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l ≤ L each graph G(l) is undirected and has no self-
loop. This implies that its associated adjacency matrix

A(l) ∈ {0, 1}n×n is symmetric with A
(l)
ii = 0 for all i.

Given G as input, our goal is to recover a partition of
N into K disjoint sets (or communities), so that nodes
belonging to the same community share a similar con-
nectivity profile. To make the setup more precise, we
will study this problem in the setting where G is gen-
erated via an underlying (unknown) stochastic model,
with a latent community structure. This model is a
common extension of the well-studied stochastic block
model (SBM) for the unilayer case which we now de-
scribe.

2.1 Stochastic Block Model (SBM)

The stochastic block model (SBM) – first proposed in
Holland et al. (1983) – is a simple yet popular stochas-
tic generative model for unilayer graphs which cap-
tures the community structures of networks often ob-
served in the real world. A SBM with the set of nodes
N and K communities C1, . . . , CK forming a partition
of N is parameterized as follows.

• There is a membership matrix Z ∈ Mn,K where
Mn,K denotes the class of membership matrices.
Here, Zik = 1 if node i belongs to Ck, 0 otherwise.
Each membership matrix Z can be associated bi-
jectively with a function z : [n] → [K] such that
z(i) = k where k is the unique column index sat-
isfying Zik = 1.

• There is a full-rank, symmetric, connectivity ma-
trix of probabilities

Π = (πkk′)k,k′∈[K] ∈ [0, 1]K×K .

Let us denote P = (pij)i,j∈[n] := ZΠZT . A graph G
is distributed according to a stochastic block model
SBM(Z,Π) if the corresponding symmetric adjacency
matrix A has zero diagonal entries and

Aij
ind.∼ B(pij), 1 ≤ i < j ≤ n,

where B(p) denotes a Bernoulli distribution with pa-
rameter p. Hence the probability that two nodes are
connected depends only on the community member-
ships of these two nodes.

Let us denote by nk the size of the community Ck,
nmin (resp. nmax) to be the size of the smallest (resp.
largest) community, and β = nmax

nmin
. The commu-

nities are said to be balanced if they all have the
same size (equivalently, β = 1). The communities
are approximately balanced if β = O(1). The max-
imum value of the connectivity parameter is denoted

by pmax := maxi,j pij and can be interpreted as the
sparsity level (depending on n).

The misclustering rate associated to an estimated
membership matrix Ẑ is measured by

r(Ẑ, Z) = r(ẑ, z) =
1

n
min
σ∈S

∑
i

1{ẑ(i) 6=σ(z(i))},

where S denotes the set of permutations on [K]. A
clustering algorithm is said to be strongly consistent
– or achieving exact recovery – if r(Ẑ, Z) = 0 with
probability 1 − o(1) as n tends to infinity. It is said
to be weakly consistent – or achieving almost exact
recovery – if P(r(Ẑ, Z) = o(1)) = 1 − o(1) as n tends
to infinity. A more complete overview of the different
types of consistency and the sparsity regimes where
they occur can be found in Abbe (2018).

2.2 Multilayer Stochastic Block Model
(MLSBM)

We now describe the multilayer stochastic block model
(MLSBM), which is a common extension of the SBM
to the setting of multilayer graphs (see for e.g.,
Paul and Chen (2020); Bhattacharyya and Chat-
terjee (2018); Lei et al. (2019)). The MLSBM is
parametrized by the number of layers L, a common
block membership matrix Z ∈ Mn,K , and connectiv-
ity matrices Π(1), . . . ,Π(L) ∈ [0, 1]K×K .

Similar to the unilayer case, let us denote
P (l) = ZΠ(l)ZT for l = 1, . . . , L. A multi-
layer graph G is distributed according to the model
MLSBM(Z,Π(1), . . . ,Π(L)) if the adjacency matrix
A(l) of each layer is distributed according to a
SBM(Z,Π(l)) for l = 1, . . . , L. Hence, while the prob-
ability that two nodes are connected can vary across
layers, the block membership of each node remains un-
changed. As in the unilayer case we can define the

quantities p
(l)
max = maxi,j p

(l)
ij , pmax = maxl p

(l)
max.

2.3 Missing nodes

The assumption that all the layers share the same set
of nodes is quite restrictive since real world multilayer
networks are often ‘non-pillar’. We propose to deal
with such networks by considering nodes present in

some layers but not in others as missing. Let w
(l)
i be a

binary variable that records the presence of node i in

the layer l where w
(l)
i = 1 if node i is observed in layer

l and 0 otherwise. Denoting w(l) = (w
(l)
1 , . . . , w

(l)
n )T ,

let Ω(l) = w(l)(w(l))T be the mask matrices and Ã(l) =
A(l) � Ω(l) for l ≤ L where � is the usual Hadamard
product. Let Jl denote the set of non-missing nodes in
layer l with nJl = |Jl|. By a slight abuse of notation



Clustering multilayer graphs with missing nodes

we will denote by AJl the matrix A
(l)
Jl

. The number
of observed nodes in Ck will also be denoted by nJl,k.
Throughout, we assume that the missing nodes are

generated as w
(l)
i

ind.∼ B(ρ) for i = 1, . . . , n.

3 Final aggregation methods

A natural way to extend unilayer graph clustering to
the multilayer setting is to analyze each layer sepa-
rately and then find a consensus partition – such ap-
proaches are referred to as final aggregation methods.
For example, one can apply any clustering method on
each individual layer, take one layer’s labels as a refer-
ence, find for each remaining layer the permutation of
its labels that maximizes the agreement with the ref-
erence layer, and then define a consensus community
by majority voting as discussed in Han et al. (2015).
There exist alternative ways to avoid the cumbersome
issue of label switching ambiguity such as the ‘ag-
gregate spectral kernel’ considered in Paul and Chen
(2020). Such methods rely on the quality of each in-
dividual layer and are often empirically outperformed
by other methods as shown in Paul and Chen (2020);
Han et al. (2015).

Final aggregation methods are still relevant in the
missing nodes context. Indeed, if we have exact re-
covery for each layer, and if for all k there is at least
one common node between two layers belonging to Ck,
then we can easily reconstruct the whole partition even
when the set of common nodes is very small. Hence
such methods can be considered as baseline methods.

3.1 A method based on a variant of k-means
for incomplete data

We now propose a final aggregation method for clus-
tering multilayer graphs in the incomplete setting; it
avoids the aforementioned label switching problem.

For each layer l, we can compute the matrix ÛJl of size
|Jl| ×K corresponding to the eigenvectors associated
with the top K eigenvalues (in absolute value) of AJl ∈
R|Jl|×|Jl|. The matrix ÛJl can be transformed to a

matrix Û (l) of size n × K by completing with 0 the
rows of the nodes that haven’t been observed1. Let Û
be the n×KL matrix obtained by stacking Û (l).

Analogously, let UJl be the matrix formed by the K
eigenvectors corresponding to non-zero eigenvalues of
ZJlΠ

(l)ZTJl , U
(l) be the n×K matrix obtained from UJl

by filling the rows corresponding to unobserved nodes
with the row corresponding to an observed node (be-

1It is easy to verify that Û (l) is also the eigenvector
matrix corresponding to the top K eigenvalues (in absolute

value) of A(l) � Ω(l).

longing to the same community), and U be the matrix
obtained by stacking all the matrices U (l). For each l,
let Ol be a K ×K orthogonal matrix such that

Ol ∈ argmin
OTO=Ik

||ÛJl − UJlO||F .

As in the unilayer setting, k-means could be applied
on the rows of Û (l) in order to recover the community
structure for each l. But in order to avoid the label
switching problem we propose to apply on the rows of
Û a variant of k-means described in Chi et al. (2015)
that can handle missing values, see Algorithm 1.

Let us describe the principle behind this algorithm.
The classical k-means problem seeks a partition Z and
centroid values (encoded in the matrix C) that solves

min
Z∈Mn,K

C∈RK×KL

||Û − ZM ||2F .

When there are missing values one can instead solve

min
Z∈Mn,K

C∈RK×KL

||(Û − ZM)� ΩU ||2F (3.1)

where ΩU = (w(1)⊗1K · · · w(L)⊗1K) is the n×KL
mask matrix with 1K ∈ R1×K denoting the all ones
vector. It is a matrix composed of L blocks where the
rows of each block are 1 if the corresponding node is
observed and 0 otherwise.

Algorithm 1 k-pod clustering

Input: The number of communities K, the sets Jl
and the adjacency matrices AJl .

1: Form Û (l) from AJl as explained at the beginning
of Section 3.1.

2: Form the matrix Û by stacking the matrices Û (l).
3: Initialize the partition Ẑ and the centroid matrix
M̂ .

4: repeat
5: Replace Û by Û � ΩU +(ẐM̂)� (11T − ΩU).
6: Apply K-means on the complete matrix Û and

update M̂ and Ẑ.
7: until convergence.

Output: A partition of the nodes N = ∪Ki=1Ci based

on Ẑ.

In the worst case, the complexity of the algorithm is
O((L + K)n2). But in practice the layers are often
sparse and so the complexity will be much less2.

Theorem 1. Consider the missing nodes MLSBM in
Section 2.3, and suppose that ρL ≥ 1, KL ≤ C0n,

ρnmin ≥ C1K
2 max(log2 n,

√
npmax) and np

(l)
max ≥

2This remark regarding the complexity applies to our
other methods as well.
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C2ρ
−1 log n. Let λ

(l)
K be the K-th largest singular value

of Π(l) and recall that β = nmax/nmin. If

1

ρLn

∑
l

p
(l)
max

(λ
(l)
K )2

< (30C3β
4K3)−1

then with probability at least 1−O(n−1), it holds that
the solution Ẑ ∈Mn,K of (3.1) satisfies

r(Ẑ, Z) ≤ C4 exp(−c′ρL) +
C5β

3K2

ρLn

∑
l

p
(l)
max

(λ
(l)
K )2

.

The proof of all our theoretical results are deferred to
the supplementary material.

Remark 1. The assumption ρL ≥ 1 is natural since
ρL corresponds to the expected total number of times
a node is observed, and a node needs to be observed
at least once in order to be classified. The condition
ρnmin ≥ C1K

2 log2 n ensures that ρ and nmin are not
too small. If the communities are well-balanced and the
parameters ρ and K are fixed independently of n, then
the previous condition is satisfied for n large enough.

Remark 2. Our analysis assumes that each layer is
sufficiently informative, and doesn’t use the fact that
there is more information contained in the whole set
of layers than in individual layers. This is why the
bound does not improve when L increases. The ob-
tained upper-bound is unlikely to be optimal since as
shown in the experiments, the clustering performance
does seem to improve a bit when L increases.

4 Early fusion methods: spectral
clustering on sum of adjacency
matrices

Late fusion methods rely heavily on the quality of each
layer. However, by simultaneously using all the infor-
mation contained in all layers, the clustering perfor-
mance can be improved in some settings (see the nu-
merical experiments in Paul and Chen (2020) or Han
et al. (2015)). One way to do this is to aggregate the
information across layers and then apply a suitable
clustering method. This approach will be referred to
as an early fusion method. One simple but popular
way to do this is to take the mean of the adjacency
matrices (see for e.g., Bhattacharyya and Chatterjee
(2018); Paul and Chen (2020)). Then, the k-means
algorithm can be applied to the rows of the n × K
eigenvector matrix associated with the top K eigen-
values (in absolute value) of A = L−1

∑
lA

(l).

4.1 Imputing missing entries with zeros

A natural way to extend the aforementioned approach
to the setting of missing nodes is to fill the miss-

ing entries with zeros, thus leading to Algorithm 2.
The worst-case complexity of the algorithm is O((L+
K)n2).

Algorithm 2 Sum of adjacency matrices with missing
entries filled with zeros
Input: The number of communities K, the matrices
A(l) and Ω(l).

1: Compute A = L−1
∑
lA

(l) � Ω(l).
2: Compute the eigenvectors u1, . . . , uK associated

with the K largest eigenvalues of A (ordered in
absolute values) and form UK = [u1 u2 · · · uK ].

3: Apply K-means on the rows of UK to obtain a
partition of N into K communities.

Output: A partition of the nodes N = ∪Ki=1Ci.

Let us denote Ã = ρ−2L−1
∑
lA

(l) � Ω(l) (clustering

on A or Ã is equivalent since the two matrices are pro-
portional, but for the analysis it is more convenient
to work with Ã). Clearly E(Ã) = L−1

∑
l E(A(l))

(since the diagonal entries of A(l) are zero). De-
note by E(X|Ω) to be the expectation of X condi-
tionally on Ω = (Ω(1), . . . ,Ω(L)) and let λK denote
the Kth largest singular value of E(Ã). We have
E(Ã|Ω) = ρ−2L−1

∑
l E(A(l)) � Ω(l). Using the same

kind of perturbation arguments and concentration in-
equalities as in Lei and Rinaldo (2015), we can relate
Ã to E(Ã|Ω) and then use Bernstein inequality to re-
late E(Ã|Ω) with E(Ã). This leads to the following
bound on the misclustering rate.

Theorem 2. Under the missing nodes MLSBM in
Section 2.3, there exist constants C0, C1 > 0 such
that with probability at least 1 − O(n−1), the solution
Ẑ ∈Mn,K obtained from Algorithm 2 satisfies

r(Ẑ, Z) ≤ C0K

ρ4λ2K

(
npmax
L

+
log n

L

)
︸ ︷︷ ︸

noise error

+

C1K
(ρ−2 − 1)2

λ2K

(
(npmax)2

log(n)

L
+

(
npmax log n

L

)2
)

︸ ︷︷ ︸
missing data error

.

If L is small then the missing data error could be larger
than one making the upper bound trivial. In the best
case scenario, we expect that λK scales as npmax. So
we need at least C log n layers to get a non trivial upper
bound. In order to obtain asymptotic consistency, it is
necessary that L� log n. However, experiments show
that even when L is small, Algorithm 2 gives good
results as long as the layers are dense enough and the
number of missing nodes is not too large.

When ρ = 1 and npmax ≥ log n the upper bound be-
comes O((Lnpmax)−1/2) thus matching the bound ob-



Clustering multilayer graphs with missing nodes

tained by Bhattacharyya and Chatterjee (2018) in a
more general regime. See the supplementary material
for other comparisons.

4.2 Iteratively imputing the missing entries

When the number of missing nodes is important, filling
missing entries with zero can lead to a huge bias and
hence poor clustering performances. In order to reduce
the bias we propose an alternative way of imputing the
missing values (outlined as Algorithm 3) based on the
fact that each adjacency matrix is a noisy realization
of a structured matrix.

At iteration t, given an initial estimate Û tK ∈ Rn×K of
the common subspace we can estimate the membership
matrix Ẑt by applying k-means on Û tK . Then, we can

estimate the connectivity matrix Π̂(l),t for each l as

Π̂(l),t = ((Ẑt)T Ẑt)−1(Ẑt)TA(l),tẐt((Ẑt)T Ẑt)−1.
(4.1)

Given Ẑt and Π̂(l),t we estimate the rows and columns
corresponding to missing nodes. Indeed, the connec-
tivity profile of a node i in layer l is given by the ith row
of ẐtΠ̂(l),t(Ẑt)T . By replacing the rows and columns
of missing nodes by their estimated profiles, and leav-
ing the value of observed nodes unchanged, we obtain
the updated imputed matrix A(l),t+1. Applying spec-
tral clustering on L−1

∑
lA

(l),t+1 then leads to an up-

dated estimate Û t+1
K of the common subspace. The

procedure can be repeated using Û t+1
K and A(l),t+1,

thus iteratively imputing the missing values in order
to obtain “completed” adjacency matrices that share
the same K rank structure across layers. In the worst
case, the complexity of the algorithm run with T iter-
ations is O((K + L)n2T + LKnT ).

Similar iterative imputation methods have been stud-
ied in the context of principal component analysis, see
for e.g., Zhang et al. (2018); Zhu et al. (2019). In our
experiments, Algorithm 3 is seen to perform signifi-
cantly better than other methods when ρ decreases.
While we do not currently have any statistical perfor-
mance guarantee for Algorithm 3, establishing this is
an interesting direction for future work.

5 Intermediate fusion methods:
OLMF estimator

Orthogonal linked matrix factorization (OLMF) is a
clustering method for multilayer graphs that origi-
nated in the work of Tang et al. (2009) in the complete
data setup, and was later analysed in Paul and Chen
(2020). It shows good performance in various settings
and outperforms spectral clustering when the mul-
tilayer network contains homophilic and heterophilic

Algorithm 3 Sum of adjacency matrices with missing
entries filled iteratively

Input: Number of communities K; Jl and
AJl ∈ Rn×n for each l; initial estimate of the common

subspace Û0
K ∈ Rn×K (with orthonormal columns)

obtained from Algorithm 2; number of iterations T .

1: Initialize t = 0 and A(l),0 = AJl for all l.
2: repeat
3: Given Û tK , estimate the membership matrix Ẑt

and the connectivity parameters Π̂(l),t for all l by
using (4.1).

4: For each l, replace rows (and corresponding
columns) of A(l) corresponding to a missing node

i by the ith row of ẐtΠ̂(l),tẐt
T

to form A(l),t+1.
5: Compute the eigenvector matrix Û t+1

K =
[ut+1

1 ut+1
2 · · · ut+1

K ] associated with the K largest
(in absolute order) eigenvalues of L−1

∑
lA

(l),t+1.
Update t← t+ 1.

6: until t ≤ T
7: Apply K-means on ÛTK to get a partition of N .

Output: A partition of the nodes N = ∪Ki=1Ci.

communities (see the numerical experiments in Paul
and Chen (2020)).

5.1 The complete data setting

In the complete data setting, the OLMF estimator is
a solution of the following optimization problem

(Q̂, B̂(1), . . . , B̂(L)) ∈ argmin
QTQ=Ik

B(1),...,B(L)

∑
l

||A(l)−QB(l)QT ||2F ,

(5.1)
where Q ∈ Rn×K , B(l) ∈ RK×K . Note that there is no
constraint on the values taken by the entries of B(l).

A little algebra (see Paul and Chen (2020)) shows that
the optimization problem (5.1) is equivalent to

Q̂ ∈ argmax
QTQ=Ik

∑
l

||QTA(l)Q||2F , B̂(l) = Q̂TA(l)Q̂

(5.2)
for l = 1, . . . , L. The OLMF estimator can be com-
puted with a gradient descent on the Stiefel manifold
(see Paul and Chen (2020) and supplementary mate-
rial therein). The community estimation is then ob-
tained by applying K-means on the rows of Q̂.

5.2 Extension to the missing nodes setting

We now present an extension of the OLMF estimator
to the setting of missing nodes. By replacing the ma-
trices A(l), Q in the objective function in (5.1) with
AJl ∈ Rn×n, QJl ∈ Rn×K , we end up with the follow-
ing modification for the incomplete setting
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(Q̂, B̂(1), . . . , B̂(L)) ∈ argmin
QTQ=Ik
B(1),...,B(l)

∑
l

||AJl−QJlB(l)QTJl ||
2
F .

(5.3)
In our experiments, we employ a BFGS algorithm for
solving (5.3). The worst-case complexity of the algo-
rithm is O(LK(n2 + Kn)). Denoting the objective
function in (5.2) by F , its gradients are given by

∂F

∂Q
= −2

∑
l

(AJl −QJlB(l)QTJl)QJlB
(l),

∂F

∂B(l)
= −QTJl(AJl −QJlB

(l)QTJl)QJl .

We relax the constraint that the gradient remains on
the Stiefel manifold of n × k matrices, and initialize
the parameters using Algorithm 2.

The optimization problem in (5.2) can be motivated
via the missing nodes MLSBM as follows. If we re-
place the noisy realization AJl with (ZΠ(l)ZT )� Ω(l)

then one can show (under some conditions) that the
solution Q̂ of (5.3) has the same column span as the
ground truth Z ∈ Mn,K . This is shown formally in
the following proposition.

Proposition 1. Assume that Π(l) is full rank for each
l, and that for each l, l′ the sets Jl ∩ Jl′ intersect all
communities. Then if AJl = (ZΠ(l)ZT )�Ω(l), it holds

that the solution of (5.3) is given by Q̂ = Z(ZTZ)−1/2

and B̂(l) = (ZTZ)1/2Π(l)(ZTZ)1/2 and is unique up to
an orthogonal transformation. Moreover if i, j belong
to the same community, then Q̂i∗ = Q̂j∗.

The matrix E(A(l)) can be considered as a slight per-
turbation of ZΠ(l)ZT since the former has zeros on
the diagonal. Thus the proposition shows that when
there is no noise, the column-span of Q̂ (the solution
of (5.3)) is the same as the ground truth partition Z.

6 Numerical experiments

6.1 Synthetic data

We now describe simulation results when the mul-
tilayer graph is generated from the missing nodes
MLSBM. The normalized mutual information (NMI)
criterion is used to compare the estimated community
to the ground truth partition. It is an information
theoretic measure of similarity taking values in [0, 1],
with 1 denoting a perfect match, and 0 denoting com-
pletely independent partitions. Nodes that are not ob-
served at least once are removed. The diagonal (resp.
off-diagonal) entries of the connectivity matrices are
generated uniformly at random over [0.18, 0.19] (resp.

0.7 ∗ [0.18, 0.19]). The ground truth partition is gen-
erated from a multinomial law with parameters 1/K.
While K = 3 is fixed throughout, the parameters n, ρ
and L are varied suitably. The average NMI is re-
ported over 20 Monte Carlo trials. As shorthand, we
denote Alg. 1 by k-pod, Alg. 2 by sumAdj0, Alg. 3
by sumAdjIter, and (5.3) by OLMFm.

Figure 1 shows that sumAdj0 gives good results un-
less ρ is too small. Then, the performance of this
method decreases quickly. This suggests that there
is a threshold involving ρ and the difference between
intra and inter connectivity parameters. Figure 3 sup-
ports this claim. When ρ is small, the performance of
sumAdj0 doesn’t improve when n increases. So even if
the separation between communities improves, the in-
tra and inter connectivity parameters remain the same
suggesting a link between these parameters and ρ.

When L increases (see Figs. 1 and 2), the perfor-
mance of all methods improves. However, performance
of k-pod improves less quickly than other methods.
This is expected since contrary to other methods,
k-pod relies more on the quality of each individual
layer. OLMFm and sumAdjIter exhibit better perfor-
mance than others in the challenging situation when
ρ is small, and perform as well as the others when
ρ ≈ 1. They perform significantly better than k-pod,
especially when L is large.

Figure 1: NMI vs ρ for different values of L

6.2 MIT Reality Mining dataset

This dataset records interactions (measured by cell
phones activities) between 96 students and staff at
MIT in the 2004-05 school year (see Eagle and Pent-
land (2006)). We used the dataset as provided by the
R package ‘GreedySTBM’. As in Han et al. (2015) we
removed the first and last layers, then discretized the
time into one week intervals. The number of times
two persons had an interaction during the week is not
conserved in order to have a simple undirected graph
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Figure 2: NMI vs L for different values of ρ

Figure 3: NMI vs n for different values of ρ

corresponding to each layer. In total we obtained 32
layers. For different values of ρ, we randomly removed
nodes in each layer of the multilayer network. The av-
erage NMI over 50 Monte Carlo trials is reported in
Table 1 for our methods. The ground truth partition
here is taken to be that obtained from sumAdj0 when
ρ = 1. We disregarded k-pod because even when

ρ sumAdj0 OLMFm sumAdjIter

1 1.00 1.00 1.00
0.9 0.99 0.96 0.99
0.8 0.97 0.86 0.97
0.7 0.96 0.93 0.96
0.6 0.94 0.79 0.94
0.5 0.89 0.91 0.90
0.4 0.76 0.73 0.78
0.3 0.56 0.57 0.62
0.2 0.26 0.41 0.36
0.1 0.09 0.10 0.11

Table 1: NMI vs ρ for MIT Reality Mining dataset

ρ = 1, its performance was disappointing and very sen-
sitive to the initialization. This is not very surprising
since this method works only if each layer is informa-

tive enough while we have a multilayer network where
individual layers can be very sparse.

The performance of the other three methods studied
are quite similar when ρ is not too small (ρ ≥ 0.4).
However, the performance of OLMFm seems to be quite
sensitive to initialization since for ρ ∈ {0.6, 0.8} its
performance is worse than sumAdj0 and sumAdjIter.
Even if we remove half of the nodes in each layer we
can still approximately recover the partition.

6.3 Malaria parasite genes network

The dataset was constituted by Larremore et al. (2013)
to study the var genes parasite Plasmodium falci-
parum involved in Malaria. The nodes of the dataset
correspond to 307 different amino acid sequences and
each of the 9 layers corresponds to a highly variable
region (HVR). Two nodes are linked in a given layer
if there is a common block sequence between the cor-
responding amino acid sequences within the HVR as-
sociated to the layer. The analysis in Larremore et al.
(2013) and Jing et al. (2020) shows that the first
six layers share the same community structure with
K = 4. Hence we restrict our study to the first six
layers with K = 4. We use the same procedure as
before to delete nodes and to select the ground truth
partition. k-pod was disregarded for the same reason
as the previous experiment. As ρ decreases, the clus-

ρ sumAdj0 OLMFm sumAdjIter

1 1.00 0.99 1.00
0.9 0.75 0.75 0.72
0.8 0.63 0.62 0.58
0.7 0.47 0.49 0.47
0.6 0.32 0.37 0.34
0.5 0.22 0.20 0.26
0.4 0.13 0.07 0.16

Table 2: NMI vs ρ for Malaria parasite genes network

tering performance decreases rapidly due to a weak
separation between the clusters as shown in Table 2.

7 Future work

Our theorems require different conditions for consis-
tency (each layer has to be informative enough for Al-
gorithm 1 and L has to be large for Algorithm 2).
It would be interesting to gain a better understand-
ing of the fundamental limit of clustering with missing
nodes. In this regard the use of two-round algorithms
(see for e.g., Abbe (2018)) that do local refinement
after having found a global partition could improve
the misclustering rate. It would also be interesting to
consider model-based approaches by considering vari-
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ational methods (Daudin et al. (2008)) or Stochastic-
EM algorithms (Celeux et al. (1996)).

We assumed for simplicity that the nodes are missing
under a Bernoulli sampling scheme, but other miss-
ing patterns could be considered. Another important
direction would be to relax the strong condition im-
posed by MLSBM that all layers share the same com-
mon partition. For example, it would be more realistic
to assume that the partition of networks evolving over
time also evolves slowly.
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