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Abstract

We study several generalizations of the On-
line Bipartite Matching problem. We con-
sider settings with stochastic rewards, pa-
tience constraints, and weights (consider-
ing both vertex- and edge-weighted vari-
ants). We introduce a stochastic vari-
ant of the patience-constrained problem,
where the patience is chosen randomly ac-
cording to some known distribution and is
not known in advance. We also consider
stochastic arrival settings (i.e. the nature
in which the online vertices arrive is deter-
mined by a known random process), which
are natural settings that are able to beat
the hard worst-case bounds of adversarial
arrivals.

We design black-box algorithms for star
graphs under various models of patience,
which solve the problem optimally for de-
terministic or geometrically-distributed pa-
tience, and yield a 1/2-approximation for
any patience distribution. These star
graph algorithms are then used as black
boxes to solve the online matching prob-
lems under different arrival settings. We
show improved (or first-known) competi-
tive ratios for these problems. We also
present negative results that include for-
malizing the concept of a stochasticity gap
for LP upper bounds on these problems,
showing some new stochasticity gaps for
popular LPs, and bounding the worst-case
performance of some greedy approaches.
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1 Introduction

Online matching is a fundamental problem in e-
commerce and online advertising, introduced in the
seminal work of Karp et al. (1990). While offline
matching has a long history in economics and com-
puter science, online matching has exploded in pop-
ularity with the ubiquity of the internet and emer-
gence of online marketplaces. A common scenario
in e-commerce is the online sale of unique goods due
to the ability to reach niche markets via the internet
(e.g., eBay). We will use this as a motivating ex-
ample to describe our setting. However, the settings
we study can also model job search/hiring, crowd-
sourcing, online advertising, ride-sharing, and other
online-matching problems.

In classical online bipartite matching, we start with
a known set of offline vertices U that may repre-
sent items for sale or ads to be allocated. Then,
there is an unknown set V of online vertices, which
may represent customers, users, or visitors to a
webpage. The vertices of V arrive online in some
fashion. Typically, the customers arrive one-by-
one, and a decision to match each customer or not
(and if so, to which item) must be made irrevoca-
bly before the next customer is revealed. In the
original formulation, these online vertices arrived
in adversarial order (Karp et al., 1990). However,
less pessimistic stochastic arrival models were intro-
duced to better model real-world applications (e.g.
e-commerce). These models have been studied ex-
tensively in subsequent work and include random or-
der arrival, known independent and identically dis-
tributed arrivals (known IID), and prophet inequal-
ity. The present work addresses all of these models
(adversarial and random) either directly or through
known extensions.

In addition to a variety of arrival models, there are
generalizations for weighted graphs and stochastic
rewards. Vertex weights on the offline vertices corre-
spond to item prices/profits or the reward for mak-
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ing a match. More general edge weights allow some
items to be offered at different prices to different cus-
tomers. In the stochastic rewards model (also called
stochastic matching1), each edge has a known and
independent probability of existing (Bansal et al.,
2010; Mehta and Panigrahi, 2012). When an online
vertex arrives, the probabilities of each of its inci-
dent edges are revealed. These probabilities may
correspond to the probability that a customer buys
an offered item or that a user clicks an ad (in pay-
per-click advertising). See Mehta (2012) for further
discussion.

In the e-commerce and advertising settings, we dis-
cover if a customer or user would purchase an item
or click an ad after we have presented it to them
and they have done so (or not). We cannot later
choose to “revoke” the item offer or ad placement.
This is the probe-commit model: if a stochastic edge
is probed and exists, it must be matched irrevocably.

In the basic stochastic rewards setting, we may probe
at most one edge incident to an online vertex before
it becomes unavailable for further match attempts;
there is no limit to the number of edges probed in-
cident to any offline vertex (Mehta and Panigrahi,
2012; Brubach et al., 2016). Think of a single banner
ad on a website for example. A generalization of this
setting is the introduction of patience constraints
(also known as timeouts in the literature) where an
online vertex v has a known patience θv, and we
may probe up to θv neighbors, stopping early if v is
successfully matched (Bansal et al., 2010; Adamczyk
et al., 2015; Brubach et al., 2017). This models many
natural situations, where users and customers may
be presented with multiple items or ads in sequence.
The classic stochastic rewards problem without pa-
tience constraints (Mehta and Panigrahi, 2012) cor-
responds to the special case θv = 1 for all v. As in
that variant, we assume that all offline vertices have
unlimited patience. This is a standard assumption
(see, e.g., Bansal et al. (2010)), although two-sided
patience has been studied (Brubach et al., 2017).

Finally, we introduce a further variant of the
patience-constrained model: stochastic, unknown
patience values. To our knowledge, this is the first
time such models have been studied in the match-
ing literature. Essentially, the patience θv of each
online vertex is drawn randomly from some known
distribution, but is not revealed to the algorithm

1The term “online stochastic matching” is sometimes
used to describe online-matching problems with stochas-
tic arrival models (e.g., known IID arrivals) in the litera-
ture. We use this term to refer to matching with stochas-
tic edges as in the offline stochastic matching problem.

until it has unsuccessfully probed θv edges, at which
point (as with the known patience setting) the on-
line vertex becomes unavailable for matching and no
reward is obtained. We introduce two models of un-
certain patience: the “constant hazard rate” model
(each online vertex has a fixed known probability
of exhausting its patience after a failed probe) and
the arbitrary patience model (where the probability
distribution on the patience is given explicitly).

1.1 Related Work

Online matching was introduced in Karp et al.
(1990) for unweighted graphs with adversarial ar-
rivals. Since then, a vast landscape of variants have
been studied, and we mention the most relevant
here. The online arrivals can be adversarial, ran-
dom order, known IID, or known non-identical (also
called prophet-inequality matching). The graph can
be unweighted, vertex-weighted (on the offline ver-
tices aka posted prices), or edge-weighted. The edges
can be deterministic (aka classical matching) or
stochastic. Online vertices with stochastic edges can
have a known, arbitrary patience value or all online
vertices can have a patience of one (the stochastic-
rewards variant). We do not include unknown pa-
tience in this section since we are not aware of prior
work on the unknown-patience models we introduce.

1.1.1 Deterministic Edges

For the adversarial arrivals setting, the classic Rank-
ing algorithm achieves a tight competitive ratio of
1 − 1/e on unweighted graphs (Karp et al., 1990),
while a modification yields 1− 1/e (Aggarwal et al.,
2011) on vertex-weighted graphs. However, the
edge-weighted problem can have an arbitrarily bad
competitive ratio in this setting without additional
allowances such as free disposal (Feldman et al.,
2009; Fahrbach et al., 2020) or weight-dependent
competitive ratios (Ma and Simchi-Levi, 2020).

In random order arrivals, the unknown bipartite
graph is constructed adversarially, but online ver-
tices arrive in a uniform random permutation.
The best known competitive ratios for determin-
istic edges are 0.696 (Mahdian and Yan, 2011),
0.6534 (Huang et al., 2018), and 1/e (Kesselheim
et al., 2013) for unweighted, vertex-weighted, and
edge-weighted graphs, respectively. There is a hard-
ness of 5/6 (Goel and Mehta, 2008).

In the known IID setting, we are given a bipartite
graph upfront with the online partition representing
vertex “types.” Each arrival is sampled with replace-
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ment from a known distribution over these online
vertices. Multiple copies of the same online vertex
from this original graph may arrive over time and
are treated as distinct vertices. Thus, the online
vertex that arrives at each time step is independent
and identically distributed (IID) with respect to all
other online vertices. Here, the current best results
are 0.7299 (Brubach et al., 2016) for vertex-weighted
(and by extension, unweighted) and 0.705 (Brubach
et al., 2016) for edge-weighted graphs.

The known non-identical problem, also called
prophet inequality matching (Alaei et al., 2012), may
be viewed as a variant of edge-weighted b-matching
(offline vertices can be matched up to b times) with
an arrival model that generalizes known IID. At each
time step the online arrival may have a different
(though still independent and known) distribution.
For the classical matching case (b = 1), Alaei et al.
(2012) achieve a competitive ratio of 0.5.

1.1.2 Online Stochastic Matching

Online stochastic matching was introduced in Bansal
et al. (2010) as stochastic matching with timeouts
(patience). They considered known IID arrivals and
showed a ratio of 0.12 which was eventually im-
proved to 0.46 (Brubach et al., 2017)2. We refer to
this model simply as stochastic matching with pa-
tience. The special case of θv = 1 for all v was later
studied by Mehta and Panigrahi (2012) under adver-
sarial arrivals. Under the restricted case of uniform
edge probabilities, they showed that 0.53 is possible.
This was extended to a ratio of 0.534 for unequal,
but vanishingly small probabilities (Mehta et al.,
2015). However, for arbitrary edge probabilities, a
trivial 0.5 ratio is the best known. There is also a
hardness result in Mehta and Panigrahi (2012) which
claims that no algorithm for stochastic rewards with
adversarial arrivals can achieve a competitive ratio
greater than 0.62 (strictly less than 1 − 1/e). We
note that this hardness result is not applicable to
our work since it uses a different, more pessimistic
definition of competitive ratio which compares the
online algorithm to a linear program rather than the
offline stochastic matching problem.

2The techniques in Brubach et al. (2017) also in-
volved solving a star graph problem with a black box.
However, that work first solved a linear program for a
bipartite graph, then used a black probing algorithm to
essentially round and probe the LP solution on the in-
duced star graphs of arriving vertices. This differs from
our work which uses algorithms for stochastic matching
on star graphs as black boxes to solve a more sophisti-
cated LP, then use that LP solution to guide the online
algorithm.

The very recent work of Borodin et al. (2020) gives
a competitive ratio of 1 − 1/e under random or-
der arrivals for three distinct cases: vertex-weighted
stochastic rewards (θv = 1), unweighted with arbi-
trary patience, and vertex-weighted with arbitrary
patience, but with all edges incident on an online
vertex having the same probability. The work of
Borodin et al. (2020) also independently and concur-
rently achieves the same 1− 1/e ratio for the known
IID setting with edge weights as the present work,
using similar techniques.

Another closely related model is that of Goyal and
Udwani (2020), which includes stochastic rewards
(they consider only θv = 1 for all online v) and ver-
tex weights. They present a (1 − 1/e)-competitive
algorithm for the special cases of decomposable prob-
abilities (pu,v = pupv for every edge u, v) and van-
ishing probabilities (pu,v → 0).

The recent work of Gamlath et al. (2019) studies an
offline version of the problem, wherein all of the ver-
tices of the bipartite graph are offline, but the edges
are stochastic. For the probe-commit model with no
limit on the number of probes (i.e., the special case
of patience equal to the degree of each vertex), they
achieve a competitive ratio of 1 − 1/e. Their tech-
niques, like ours, utilize a non-standard LP to upper
bound the weight of an optimal matching. However,
their LP formulation and solution technique are dif-
ferent from ours.

1.2 Preliminaries and Notation

We use G = (U, V ;E) to denote a bipartite graph
with vertex set U ∪ V and edge set E ⊆ U × V .
Let U = {u1, . . . , um} represent offline vertices and
V = {v1, . . . , vn} represent online vertices. Let wi
denote the weight (or value) of offline vertex ui ∈ U .
We assume, wlog, that w1 ≥ w2 ≥ . . . wm. When
discussing the edge weighted case, we let wuv denote
the weight of edge (u, v).

For each edge (ui, vj) ∈ U × V , let pi,j denote
the given probability that edge (ui, vj) exists when
probed. When discussing star graphs (with a single
online vertex v), we simplify notation and write pi
to denote the probability of edge (ui, v). We also
use pu,v for the given probability of edge (u, v) when
indices i and j are not required. For simplicity, we
may assume G is the complete bipartite graph with
E = U × V by allowing pu,v = 0 for nonexistent
edges. Thus, when we refer to an edge (u, v) as in-
cident to a vertex v, or to u being adjacent to or a
neighbor of v, we mean that pu,v > 0 (i.e., that edge
(u, v) has a positive probability of existence). We
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Adversarial Unweighted Vertex-weighted Edge-weighted

Non-stochastic 0.632 (tight)
Karp et al. (1990)

0.632 (tight)
Aggarwal et al. (2011) –

Stochastic rewards 0.5
Mehta and Panigrahi (2012) ? → 0.5 –

Patience ? → 0.5 ? → 0.5 –

Random order

Non-stochastic 0.696
Mahdian and Yan (2011)

0.6534
Huang et al. (2018)

1/e (tight)
Kesselheim et al. (2013)

Stochastic rewards 0.632
Borodin et al. (2020)

0.632
Borodin et al. (2020)

1/e (tight)
Borodin et al. (2020)

Patience 0.632
Borodin et al. (2020) ? → 0.5 ?

Prophet

Non-stochastic 0.632
Alaei et al. (2012)

0.632
Alaei et al. (2012)

0.5
Alaei et al. (2012)

Patience ? → 0.632 ? → 0.632 ? → 0.5

Known IID

Non-stochastic 0.7299
Brubach et al. (2020)

0.7299
Brubach et al. (2020)

0.705
Brubach et al. (2020)

Stochastic rewards 0.632
Brubach et al. (2020)

0.623
Brubach et al. (2020)

0.623
Brubach et al. (2020)

Patience 0.46 → 0.632
Brubach et al. (2017)

0.46 → 0.632
Brubach et al. (2017)

0.46 → 0.632
Brubach et al. (2017)

Table 1: Landscape of online matching results excluding the unknown patience models we introduce. The
bold results with arrows show contributions of this paper. Question marks denote problems where no prior
bound was known. If a result follows immediately from the work of a paper, we cite that paper even if the
specific result was not mentioned in the paper itself. Our results for unknown patience are not included here
since there is no prior work on those models.

are further given a patience value θj for each online
vertex vj ∈ V (we sometimes write θv for v ∈ V
when subscripts aren’t required) that signifies the
number of times we are allowed to probe different
edges incident on vj when it arrives. Each edge may
be probed at most once and if it exists, we must
match it and stop probing (probe-commit model).

We consider the online vertices arriving at positive
integer times. In the adversarial arrival model, the
vertices of V = {v1, v2, . . . , vn} are fixed and the
order of their arrival is set by an adversary so as
to minimize the expected matching weight. We as-
sume (wlog) that the vertices arrive in the order
v1, v2, . . . , vn. When we consider the prophet in-
equality and known IID arrival settings, V instead

specifies a set of vertex types, and at time t, a ver-
tex type is randomly chosen (according to a known
distribution) from V to arrive; each arrival is inde-
pendent, so that a given type may arrive multiple
times. In these random arrival models, a given time
horizon T , denotes the total number of arrivals.

When an online vertex v arrives at time t, we at-
tempt to match it to an available offline vertex. We
are allowed to probe edges incident to vt one-by-one,
stopping as soon as an edge (ui, vt) is found to exist,
at which point the edge is included in the match-
ing and we receive a reward of wi. We are allowed
to probe a maximum of θt edges (in the stochastic
patience models, θk is not known a priori and is dis-
covered only after θk failed probes); if θk edges are
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probed and none of the edges exist, then vertex vk
remains unmatched and we receive no reward. If
we successfully match vk to ui, we say that wi is
the value or reward of vk’s match; if vk remains un-
matched, we say it has a value or reward of 0.

1.3 Overview

In Section 2, we present algorithms for solving
stochastic matching on star graphs—that is, graphs
with a single online vertex. We address three dif-
ferent models for the patience of the online vertex:
deterministic known patience, stochastic (unknown)
patience with a constant hazard rate (i.e., the pa-
tience is drawn from a geometric distribution), and
stochastic patience with an arbitrary distribution
(known and given explicitly in the input). To our
knowledge, only the deterministic patience has been
previously studied. Section 3 presents several LP-
based approaches to solving the general online prob-
lem, using star graph algorithms (from Section 2) as
black boxes.

First, we present a simple online strategy for ad-
versarial arrivals (Section 3.1.1). Then, we present
an LP and algorithm for the prophet setting, where
each arrival is drawn randomly from a known distri-
bution. In this setting, we present results for both
vertex-weighted and edge-weighted variants, as well
as an improved competitive ratio for the special case
of known IID arrivals (i.e., each arrival is drawn from
the same distribution as other arrivals). Finally, we
present negative results in Section 4, which show
gaps between natural LP relaxations and the perfor-
mance of an optimal algorithm for the corresponding
online problem.

Proofs of all theorems can be found in the full version
of the paper.

2 Algorithms for Star Graphs

Here, we present algorithms for offline stochastic
matching on star graphs. We can view this equiva-
lently as the online stochastic matching problem in
the special case where there is a single online arrival
(i.e., |V | = 1). In all cases, we consider weighted
graphs. Note that the edge-weighted and vertex-
weighted problems are equivalent on star graphs.

2.1 Known Patience

An algorithm to solve the known patience case via
dynamic program was given in Purohit et al. (2019)
(see section 2.1 of that paper, i.e. the k = 1 case

of the hiring problem they study). We present this
briefly here but do not discuss it in detail.

Recall that we assume wlog that w1 ≥ w2 ≥ · · · ≥
wm. To simplify notation, we write pi for pui,v. We
then define f(i, θ) to be the maximum possible ex-
pected value if we may only match v to one of the
neighbors in {vi, . . . , vm} (i.e., neighbors i through
m).

f(i, θ) = max{piwi + (1− pi)f(i+ 1, θ − 1),

f(i+ 1, θ)}
(1)

with f(i, 0) = 0.

This dynamic program immediately implies the fol-
lowing fact about the known patience setting:

Theorem 2.1. There exists an algorithm for the
stochastic matching with known patience problem on
vertex-weighted star graphs that finds the optimal
probing strategy in polynomial time.

2.2 Constant Hazard Rate

As before, suppose we have the star graph S =
(U, V,E) with U = {u1, u2, . . . , um} and V = {v}.
In this setting, the patience is random and unknown,
with a constant “hazard rate.” For v, we are given
the “survival probability,” denoted by r. When an
attempted match is unsuccessful, the central vertex
v, with probability r, remains available for another
match attempt. The “hazard rate” 1−r is the proba-
bility that v becomes unavailable after a failed probe.
Equivalently, the patience is drawn from a negative
binomial distribution, θv ∼ NB(1, 1− r).

We briefly describe the intuition behind our ap-
proach: Imagine we could repeatedly probe an
edge—with the success of each probe being inde-
pendent of other probes—until it matches or the pa-
tience of the center vertex is exhausted. Let ve be
the expected weight achieved by repeatedly probing
an edge in this way. So, ve = wepe

∑∞
i=0 r

i(1− pe)i,
which equals wepe

1−r(1−pe) since r(1− pe) < 1.

When r = 0, we only get one probe and ve = wepe.
When r = 1, there is no patience constraint and ve =
we. In both extreme cases, probing in decreasing
order of ve is the optimal strategy. It turns out that
probing in decreasing order of ve is also optimal for
any fixed r. This is stated formally in Theorem 2.2.

Theorem 2.2. Probing in decreasing order of ve =
wepe

1−r+rpe is optimal for all r ∈ [0, 1] and pe ∈ (0, 1].
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2.3 Arbitrary Patience Distributions

We now address the case where the patience is
stochastic (and unknown) and can follow an arbi-
trary distribution. We use an LP-based approach
for this problem. We denote by qθ the probability
that the patience of the online vertex v is at least
θ. Notice that 1 = q1 ≥ q2 ≥ . . . ≥ qn. Our
approach utilizes the LP (2) described in the next
paragraph. The variables are xjθ, corresponding to
the probability of attempting to match with j on the
θth attempt. The value sθ represents the probabil-
ity that the online vertex is available for a θth match
attempt, meaning its patience is at least θ and all
previous match attempts were unsuccessful. This
can be calculated from the xjθ, qθ, and pj values.
Our Linear Program (2) has objective function

max

n∑
j=1

wjpj

n∑
θ=1

xjθ (2)

subject to the following constraints:
(2a)

∑n
θ=θ′ xjθ ≤ sθ′ for all j ∈ {1, 2, . . . , n}

and all θ′ ∈ {1, 2, . . . , n} (2b)
∑n
j=1 xjθ ≤ sθ

for all θ ∈ {1, 2, . . . , n} (2c) xjθ ≥ 0 for all
j ∈ {1, 2, . . . , n} and θ ∈ {1, 2, . . . , n} (2d) s1 = 1

(2e) sθ = qθ
qθ−1

(
sθ−1 −

∑n
j=1 pjxj,θ−1

)
for all

θ ∈ {1, 2, . . . , n}.

Constraint (2a) says that each offline vertex j can
be probed at most once across attempts numbered
θ′, θ′+1, . . . , n when conditioned on still being avail-
able at attempt θ′. Note that this family of con-
straints is novel in comparison to similar time-
indexed LP’s which have appeared in the literature
(Ma, 2014), in that there is a constraint for the sum
starting at every attempt θ′, instead of just a sin-
gle constraint where θ′ = 1. Constraint (2b) says
that we may only attempt the θth match if the on-
line vertex is still available for a θth attempt. Con-
straints (2d)–(2e) ensure that the values of sθ are
updated correctly, where the fraction qθ

qθ−1
is under-

stood to be 0 if both qθ and qθ−1 are 0. We can see
that this LP upper bounds the optimal algorithm,
since taking xjθ to be the probability of the algo-
rithm probing j on attempt θ for all j and θ, we get
a feasible solution to the LP with objective value
equal to the algorithm’s expected weight matched.

Our algorithm is simple: we solve LP (2) to get an
optimal solution x∗, along with the values s∗. Then,
when making the θth probe, choose each offline ver-
tex j = 1, . . . , n with probability x∗jθ/s

∗
θ (note that

if s∗θ = 0 then x∗jθ = 0), which defines a proper prob-
ability distribution by (2b). If a vertex j is chosen

to be probed, but has already been unsuccessfully
probed in a previous attempt, we “simulate” probing
j instead, and terminate with no reward if the simu-
lated probe is successful. This simulation technique,
motivated by Brubach et al. (2017), is important in
ensuring that the probability of surviving to the θ’th
attempt is consistent with the LP value s∗θ.
Theorem 2.3. The online algorithm based on
LP (2) is a 1/2-approximation for the star graph
probing problem, for an arbitrary patience distribu-
tion which is given explicitly.

The analysis in Theorem 2.3 is tight. We further
note that the result of Theorem 2.3 compares to a
benchmark (LP (2)) that does not know the full re-
alization of the patience values in advance. This is
necessary, since Theorem 4.3 states that comparing
to a benchmark which knows the patience in advance
leads to arbitrarily bad competitive ratios.

3 Algorithms for Online Matching

3.1 Vertex-Weighted, Adversarial Arrivals

We present a greedy algorithm which achieves a
0.5-approximation for online matching with vertex
weights, stochastic rewards, and patience constraints
in the adversarial arrival model. In this setting, the
vertices of V arrive in an online fashion. If vertex v
is the tth vertex to arrive online, we say v arrives at
time t.

Algorithm 1: Use Star Graph Black Box 1 to
greedily match arriving vertices
Function AdvGreedy(U , V , p, w):

for Arriving vertex v ∈ V do
(i∗1, . . . , i

∗
m)← StarBB(v,p,w)

for θ := 1 to m do
Probe edge (ui∗θ , v)

Our algorithm works by simply using a black box
procedure for the star graph induced by the on-
line arrival v and all of its still unmatched neigh-
bors U ′ ⊆ U . Let ALG(G) denote the expected size
of the matching produced by this algorithm on the
graph G. Let OPT(G) denote the expected size of
the matching produced by an optimal offline algo-
rithm. Our main result here is:
Theorem 3.1. Given a κ-approximate black box for
solving star graphs, Algorithm 1 achieves a competi-
tive ratio of 0.5κ; that is, for any bipartite graph G,
ALG(G)
OPT(G) ≥ 0.5κ.
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To prove this, we first present an LP which provides
an upper bound on the offline optimal.

3.1.1 An LP upper bound on OPT

The typical LP relaxation for our problem has ob-
jective function

max
∑
u∈U

∑
v∈V

xu,vpu,vwu (3)

for 0 ≤ xu,v ≤ 1, subject to the follow-
ing constraints: (3a)

∑
v∈V xu,vpu,v ≤ 1 for all

u ∈ U (3b)
∑
u∈U xu,vpu,v ≤ 1 for all v ∈ V

(3c)
∑
u∈U xu,v ≤ θv for all v ∈ V . For our

analysis, we will also add an additional constraint
to tighten the upper bound provided by the LP.
We slightly abuse notation and write OPT(U ′, v)
to denote the optimal strategy for a star graph
(U ′, {v}, U ′ × {v}) (recall that we can compute
OPT(U ′, v) optimally with dynamic program (1).
To strengthen the LP, we add the constraint
(3d)

∑
u∈U ′ xu,vpu,vwu ≤ OPT(U ′, v) for all U ′ ⊆ U

and v ∈ V

We first observe that this LP gives an upper bound
on the optimal solution. The proof of this is not
difficult, and is omitted here.
Lemma 3.2. For any bipartite graph G,
OPTLP(G) ≥ OPT(G).

Then, we use this LP in order to analyze our algo-
rithm. We establish the following lemma, stating
that our algorithm achieves an expected matching
that is at least half the LP value.
Lemma 3.3. For any bipartite graph G, ALG(G) ≥
0.5OPTLP(G).

The proof utilizes a charging argument; it is some-
what long and is omitted here. Using this, we are
able to establish our main result for this setting:

Proof of Theorem 3.1. By Lemmas 3.2 and 3.3, we
have

ALG(G) ≥ 0.5κOPTLP(G) ≥ 0.5κOPT(G)

This analysis is for the known patience problem.
The same argument can be used to show that for
unknown patience, a κ-approximate solution to the
star graph problem yields a κ/2-competitive match-
ing in the online setting with adversarial arrivals.
Thus, we can achieve a 1/2 competitive ratio for
constant hazard rates and 1/4 for arbitrary patience
distributions.

3.2 Edge-Weighted in the Prophet Setting

With edge weights, no constant competitive ratio is
possible under adversarial arrivals. Thus, we con-
sider a different arrival model, which we refer to as
the prophet arrival model. In this model, V specifies
a set of possible arrival types; each arrival takes on
one of these types randomly, according to a known
distribution. The probabilities at each arrival are in-
dependent of previous arrivals, and the distribution
over possible types can be different at each arrival.

For t = 1, 2, . . . , T and v ∈ V , denote by qtv the
probability that the vertex arriving at time t will
be of type v. For convenience, we denote by qv =∑T
t=1 qtv the expected number of arrivals of a vertex

of type v.

We employ a new exponential-sized LP relaxation.
In this LP, the variables correspond to policies for
probing an arriving online vertex. A deterministic
policy π for matching any online vertex type v is
characterized by a permutation of some subset of U .
The policy specifies the strategy of attempting to
match v to vertices of U in the order given by π,
until either a probe is successful, all vertices in π are
attempted, or the patience of v is exhausted. Let P
denote the set of all deterministic policies.

We present our LP in (4) below. We let puv(π) de-
note the probability that an online arrival of type v is
matched to offline vertex u when following policy π,
assuming that all vertices of π are still unmatched.
The decision variables in the LP are given by xv(π),
and we let OPTLPP denote the true optimal objective
value of the exponential-sized LP.

OPTLPP = max
∑
v∈V

∑
π∈P

xv(π)
∑
u∈U

puv(π)wuv (4)

subject to the following constraints:
(4a)

∑
v∈V

∑
π∈P xv(π)puv(π) ≤ 1 for all u ∈ U

and (4b)
∑
π∈P xv(π) = qv for all v ∈ V , and

(4c) xv(π) ≥ 0 for all v ∈ V and π ∈ P.

We can interpret xv(π) as the expected number of
times policy π will be applied to an online vertex
of type v. Constraint (4a) says that in expectation
each offline vertex u can be matched at most once.
Constraint (4b) comes from the fact that exactly one
policy (possibly the policy which makes zero probes)
must be applied on each arriving vertex of type v. It
follows from standard techniques (see e.g. Lemma 9
in Bansal et al. (2010)) that even for an offline clair-
voyant, who knows the realized types of arrivals in
advance, if we let xv(π) denote the expected num-
ber of times it applies policy π on an online vertex of
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type v, then this forms a feasible solution to the LP
with objective value equal to the clairvoyant’s ex-
pected weight matched. Therefore, if we can bound
the algorithm’s expected weight matched relative to
OPTLPP, then this would yield a competitive ratio
guarantee.

The LP (4), although exponential-sized, can be
solved in polynomial time by the Ellipsoid Method,
as shown in the full version of the paper.

3.2.1 Algorithm and Analysis based on
Exponential-sized LP

We now show how to use the LP (4) to design a
κ/2-competitive online algorithm, given a feasible
LP solution x∗v(π) which is at least κ · OPTLPP, for
some κ ≤ 1. For each vertex u ∈ U , let w∗u =∑
v∈V wuv

∑
π∈P puv(π)x

∗
v(π) denote the expected

reward of matching u according to the assignment
x∗. Notice that the objective value of the given solu-
tion is

∑
u∈U w

∗
u, which is at least κ ·OPTLPP. Using

this notation, our algorithm is given in Algorithm 2.
By LP constraint (4b), we have

∑
π∈P x

∗
v(π)/qv = 1,

so the probability distribution over policies defined
in Algorithm 2 is proper. We also note that since
at most polynomially many variables x∗v(π) will be
nonzero, this distribution has polynomial-sized sup-
port and can be sampled from in polynomial time.

Algorithm 2: Random Arrivals from Known
Distributions (Prophet Arrivals)
Function OnlineMatch(U , V , p, w):

for t = 1 to T do
Online vertex vt, of type v ∈ V , arrives
Choose a policy π = (π1, π2, . . . , π`) with
probability x∗v(π)/qv

for i := 1 to ` do
if wπi,v < w∗πi/2 then

Skip to next i

else if πi is unmatched then
Probe edge (πi, vt) and match if
successful for reward wπi,vt

else
Simulate probing (πi, vt). If
successful, move to next arrival
without matching vt.

Theorem 3.4. Under general edge weights and
known arrival distributions, Algorithm 2 is κ/2-
competitive for the online bipartite matching with pa-
tience problem, assuming we are given a solution to

LP (4) with objective value at least κ · OPTLPP.

When we can solve the LP (4) exactly, κ = 1. An im-
mediate consequence of Theorem 3.4, in conjunction
with our results from Sections 2.1 and 2.2, is that
if all patiences are either deterministic or stochas-
tic with constant hazard rate, then we have a 1/2-
competitive polynomial-time algorithm for online bi-
partite matching with patience. For general stochas-
tic patiences, κ = 1/2 and Theorem 3.4 imply an
1/4-competitive algorithm.

3.3 Edge-Weighted with IID Arrivals

In the case of IID arrivals, i.e., where q1v = q2v =
· · · = qTv for all vertex types v ∈ V , a slight modi-
fication to Algorithm 2 yields a competitive ratio of
(1 − 1/e)κ when given a feasible solution to LP 4
that is at least κ · OPTLPP of optimal.

The only change to the algorithm from the previous
non-IID setting is that for IID arrivals, we do not
skip probing vertices u ∈ U when wuv < w∗u/2.

Theorem 3.5. Under general edge weights and
known IID arrivals, Algorithm 3.3 is κ(1 − 1/e)-
competitive for the online bipartite matching with pa-
tience problem, assuming we are given a solution to
LP (4) with objective value at least κ · OPTLPP.

Theorem 3.5 implies a (1 − 1/e)-competitive al-
gorithm when all patiences are deterministic or
stochastic with constant hazard rate, and a 1

2 (1 −
1/e)-competitive algorithm for general stochastic pa-
tiences.

3.4 Vertex-Weighted, Prophet Setting

With a new analysis, we can show that the algorithm
from section 3.3 still achieves a competitive ratio of
1− 1/e in the prophet (non-identical) setting in the
case of vertex weights.

Theorem 3.6. Under vertex-weights and known
arrival distributions, Algorithm 3.3 is κ(1 − 1/e)-
competitive for the online bipartite matching with pa-
tience problem, assuming we are given a solution to
LP (4) with objective value at least κ · OPTLPP.

4 Negative Results

4.1 Stochasticity Gap

The stochasticity gap is a fundamental gap in Lin-
ear Programming relaxations for stochastic prob-
lems which replace probabilities with deterministic
fractional weights. The notion was first discussed
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informally in Brubach et al. (2017), and was later
also observed by Purohit et al. (2019) (where they
referred to it as a “probing gap”). When these LP
relaxations are used as upper bounds on the offline
optimal solution, or as a benchmark for the compet-
itive ratio, the stochasticity gap represents a barrier
to the best achievable competitive ratio. One inter-
pretation of such a result is that better competitive
ratios are not possible. However, one may alterna-
tively view it as a result showing the limitations of
using a particular LP as a benchmark for competi-
tive ratios.

We present a stochasticity gap for a common LP
relaxation of the online bipartite matching problem
with stochastic rewards. Recall from Section 3.1.1
that LP (3) with the constraints (3a)–(3c) (and ex-
cluding our additional family of constraints (3d))
is a standard LP relaxation for bipartite match-
ing with (known) patience constraints and adver-
sarial arrivals. This is essentially an extension of
the “Budgeted Allocation” LP from Mehta and Pan-
igrahi (2012) to include the patience constraints.

A fairly simple example and analysis can establish
a stochasticity gap of 1 − 1/e for this LP. A more
complicated analysis establishes our main result for
the stochasticity gap of this LP:
Theorem 4.1. The LP given by the objective func-
tion (3) and constraints (3a)–(3c) has a stochasticity
gap of / 0.544.

4.2 0.5 Upper Bound for SimpleGreedy

As defined in Mehta and Panigrahi (2012), an oppor-
tunistic algorithm for the Stochastic Rewards setting
is one which always attempts to probe an edge inci-
dent to an online arriving vertex v ∈ V if one exists.
The work of Mehta and Panigrahi (2012) showed
that in the unweighted Stochastic Rewards (θv = 1
for all online vertices v ∈ V ) problem, any oppor-
tunistic algorithm achieves a competitive ratio of
1/2. The simplest opportunistic algorithm is the one
which, when v ∈ V arrives online, chooses a neigh-
bor u ∈ U of v arbitrarily and probes the edge (u, v).
We call this algorithm “SimpleGreedy”. Since Sim-
pleGreedy is opportunistic, the result of Mehta and
Panigrahi (2012) shows that SimpleGreedy achieves
a competitive ratio of at least 1/2; Theorem 4.2
shows that this is tight even when restricted to small,
uniform p.
Theorem 4.2. There exists a family of unweighted
graphs under stochastic rewards and adversarial ar-
rivals for which SimpleGreedy achieves a competi-
tive ratio of at most 1/2 even when all edges have

uniform probability p = O(1/n).

4.3 Hardness of Unknown Patience

We now show that matching on a star graph (i.e. a
single online arrival) with a random unknown pa-
tience, in general, should not be compared to a
benchmark that knows the realization of the pa-
tience in advance. This is because if we use such a
benchmark, the competitive ratio may be arbitrarily
bad. We formalize this statement in Theorem 4.3.

Theorem 4.3. When compared to a benchmark that
knows the patience in advance, the competitive ratio
is o(1).

A consequence is that a naive LP formulation of the
unknown patience problem, which simply replaces
the patience with its expected value, cannot be used
to define the competitive ratio in a meaningful way
(or, even, to upper bound it). Further, the problem
of unknown patience where the patience value is not
determined randomly but is instead fixed in advance
by an adversary, cannot have an O(1) competitive
ratio when compared to a benchmark that knows
the patience in advance.
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