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Abstract

When equipped with efficient optimization al-
gorithms, the over-parameterized neural net-
works have demonstrated high level of perfor-
mance even though the loss function is non-
convex and non-smooth. While many works
have been focusing on understanding the loss
dynamics by training neural networks with
the gradient descent (GD), in this work, we
consider a broad class of optimization algo-
rithms that are commonly used in practice.
For example, we show from a dynamical sys-
tem perspective that the Heavy Ball (HB)
method can converge to global minimum on
mean squared error (MSE) at a linear rate
(similar to GD); however, the Nesterov ac-
celerated gradient descent (NAG) may only
converge to global minimum sublinearly.

Our results rely on the connection between
neural tangent kernel (NTK) and finitely-
wide over-parameterized neural networks with
ReLU activation, which leads to analyzing
the limiting ordinary differential equations
(ODE) for optimization algorithms. We show
that, optimizing the non-convex loss over
the weights corresponds to optimizing some
strongly convex loss over the prediction error.
As a consequence, we can leverage the classi-
cal convex optimization theory to understand
the convergence behavior of neural networks.
We believe our approach can also be extended
to other optimization algorithms and network
architectures.
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1 Introduction

Neural Tangent Kernel (NTK) [32] has taken a
huge step in understanding the behaviors of over-
parameterized neural networks: it has been shown
that the training process of a neural network can be
characterized by a kernel matrix. Although the NTK
matrix is randomly initialized and time-dependent, it
in fact stays close to a constant limiting kernel matrix,
on which the analysis of neural networks renders much
easier. Leveraging NTK, researches have extensively
studied how different aspects affect the convergence of
training neural networks. For example, weight initial-
ization with large variance can accelerate the conver-
gence but worsen the generalization ability of neural
networks [19, 61]. It has been analyzed in [20] that a
two-layer fully-connected neural network (FCNN) with
ReLU activation provably and globally converges to
zero training loss. Later the results are enriched by
extending the global convergence to multi-layer (deep)
FCNN, convolutional neural networks (CNN), recurrent
neural networks (RNN) and residual neural networks
(ResNet) [20, 3, 7, 4]. Especially, the comprehensive
result in [3] covers all above-mentioned network ar-
chitectures, as well as different losses such as mean
square error (MSE) and cross-entropy. Specifically,
the over-parameterized neural networks enjoy an expo-
nentially decaying MSE and a polynomially decaying
cross-entropy. Other examples studied the convergence
with NTK under different input distribution [20, 3],
activation functions [18] and normalization layers [22].

There are also a wealth of recent literature on the
generalization properties of the wide neural networks
based on NTK. For example, using a data-dependent
Rademacher complexity measure, a generalization
bound independent of network size for a two-layer,
ReLU activated, FCNN can be obtained [43, 6, 2]. Sev-
eral lines of work [11, 42, 17] gave spectrally-normalized
margin-based generalization bound to explain the nice
generalization phenomenon of over-parameterized net-
works. The others [23, 42, 39] derived the generalization
bound from the view of PAC-Bayes and compression
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approaches. More examples include the generalization
bound for high dimension data [1, 26] and with weight
decay [36].

While many works have been focused on the conver-
gence theory of neural network architectures, one would
argue that the efficient optimization of a neural net-
work is as important as the design of neural networks.
Nevertheless, to our knowledge, this is the first paper
to go beyond GD (and SGD) and analyze the global
convergence of neural networks from a more general
optimization algorithm perspective. In this work, we
employ some state-of-the-art optimizers and analyze
their convergence behavior under the NTK regime. A
related work is [37], where authors also study GD with
momentum under the NTK regime but only empirically.

We seek to answer the following questions:

• Can different optimization algorithms beside GD
provably find global minimum in the non-convex
optimization of neural networks?

• Can we leverage the classic convex optimization
theory to explain the behavior (e.g. acceleration
and rate) of optimization algorithms when training
the neural networks?

Intriguingly, the known results of global and linear con-
vergence of GD (and SGD) on MSE of neural networks
is somewhat surprising, since the losses are non-convex
with respect to weights. Note that the traditional con-
vex optimization theory only claims O(1/t) rate of GD,
even for convex losses, and we only achieve the linear
convergence rate when the loss is strongly convex. This
phenomenon suggests a close relationship between the
non-convex optimization in neural networks and some
convex optimization problems that we will elaborate
in this paper. We establish such connection rigorously
which allows us to conveniently employ the classic con-
vex optimization theory at low cost, thus bridging both
worlds to inspire new insights into the training of neural
networks.

Once we view the evolution of neural networks during
training as an ordinary differential equation (ODE),
a.k.a. the gradient flow, there are plenty of fruitful
results in the long history of convex optimization [47,
13, 44, 51, 14, 54]. We can consider different optimiza-
tion algorithms, e.g. the Heavy Ball method (HB) [48],
the Nesterov accelerated gradient descent (NAG) [41],
subgradient descent, Newton’s method, GD with mul-
tiple momentums [46] and so on. Each optimization
algorithm has a corresponding limiting ODE (see HB
ODE [48] and NAG ODE [57]), which is equivalent to
the discrete optimization algorithm with an infintely
small step size. To analyze such ODEs, we can apply

the Gronwall’s inequality [28, 12] for GD and the Lya-
punov function or energy [34, 60, 49] for higher order
ODE (which is incurred by employing the momentum
terms [50, 52]).

Our contribution is two-fold: we show that the non-
convex weight dynamics has the same form as a
strongly-convex error dynamics, where Lyapunov func-
tions are applicable; we prove that HB also enjoys
global linear convergence with a rate faster than GD,
and NAG may converge at a sublinear rate yet require
more width than HB and GD.

2 Preliminaries

In this section, we introduce the NTK approach to
analyze the convergence behavior of any neural network
from a dynamical system perspective. Particularly, we
warm ourselves up with some known results of training
a two-layer neural network [20], using the MSE loss
and the GD.

To start with, we do not specify the neural network
architecture (e.g. type of layers, activation functions,
depth, width, etc.) and demonstrate our approach
on an arbitrary neural network. Given a training
set {xi, yi}ni=1 where xi ∈ Rp, we denote the weights
wr ∈ Rp as the weight vectors in the first hidden layer
connecting to the r-th neuron, W as the union {wr}
and a as the set of weights in all the other layers. We
write f (W ,a,xi) as the neural network output. We
aim to minimize the MSE loss:

L(W ,a) =
1

2

n∑
i=1

(f (W ,a,xi)− yi)2

Taking the same route as in [20], we focus on optimiz-
ing W with a fixed at initialization1. Applying the
simplest gradient descent with a step size η, we have:

wr(k + 1) = wr(k)− η ∂L(W (k),a)

∂wr(k)

Since GD is a discretization of its corresponding ordi-
nary differential equation (known as the gradient flow),
we analyze such ODE directly as an equivalent form
of GD with an infinitesimal step size. The gradient
flows of different optimization algorithms are dynami-
cal systems that are much amenable to analyze and to
understand. To be specific, GD has a gradient flow as

dwr(t)

dt
=− ∂L(W (t),a)

∂wr(t)
(2.1)

Remark 2.1. Different optimization algorithms may
have the same limiting ODE: it has been shown in [29]
that the forward Euler discretization of (2.1) gives GD,

1In Section 5.3 we extend to training all layers simulta-
neously, including the deep ones. We remark that training
only the first layer can find the global minimum of loss.
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while the backward Euler discretization gives the prox-
imal point algorithm [45]. Another example relating
NAG and HB can be found in Section 3.

Simple chain rules give the following dynamics,

dwr(t)

dt
= − ∂L

∂f(t)

∂f(t)

∂wr(t)
= −(f − y)

∂f(t)

∂wr(t)
(2.2)

df(t)

dt
=
∑
r

∂f(t)

∂wr(t)

dwr(t)

dt
= −H(t)(f − y) (2.3)

∆̇(t) = −H(t)∆(t) (2.4)

which we refer to as the weight dynamics, the prediction
dynamics and the error dynamics, respectively. Here
we denote the error of the prediction ∆ = f − y ∈ Rn
and the Rn×n NTK matrix as

H(t) :=
∑
r

∂f(t)

∂wr(t)

(
∂f(t)

∂wr(t)

)>
which is the sum of outer products.

The key observation of training the over-parameterized
neural networks is that W (t) stays very close to its
initialization W (0), even though the loss may change
largely. This phenomenon is well-known as ‘lazy train-
ing’ [16, 32]. As a consequence, the neural network f is
almost linear in W and the kernel H(t) behaves almost
time-independently: limm→∞H(0) ≈ H(0) ≈ H(t)
(c.f. [20, Remark 3.1]).

Interestingly, suppose we define a pseudo-loss L̂(t) :=
1
2∆>H∆ and notice that L = 1

2∆>∆, then optimiz-
ing the non-convex loss L over wr leads to an error
dynamics (2.4), as if we were actually optimizing a
strongly-convex loss L̂ over ∆ with the same dynamical
system as (2.1):

d∆(t)

dt
= −∂L̂(W (t),a)

∂∆(t)
.

The matrix ODE (2.4) with a constant and positive
H has a solution converging to 0 at linear rate, as the
classical theory on optimizing a strongly convex loss
indicates. In other words, optimizing the non-convex
L for over-parameterized neural networks converges
faster than optimizing convex losses and reaches the
convergence speed of optimizing strongly convex losses.
Therefore it is essential to show that H is positive with
the smallest eigenvalue bounded away from 0 at all
time. We formalize this claim by quoting the results
for the two-layer neural network of the following form,

f(W ,a,x) =
1√
m

m∑
r=1

arσ
(
w>r x

)
with σ(·) being the ReLU activation function. Now
we quote an important fact that justifies our main
theorem.

Fact 2.2 (Assumption 3.1 and Theorem 3.1 in [20]).
Define matrix H∞ ∈ Rn×n with

(H∞)ij =Ewr∼N(0,I)

[
x>i xjI

{
w>r xi ≥ 0,w>r xj ≥ 0

}]
=

(
1

2
− arccos(x>i xj)

2π

)
(x>i xj)

and define λ0 := λmin (H∞). Suppose for any i 6= j,
xi ∦ xj , then λ0 > 0.

Here H∞ is the limiting form at the initialization, i.e,
H∞ = limm→∞H(0). In [20], the authors establish
that, for sufficiently wide hidden layer and under some
data distributional assumptions, GD converges to zero
training loss exponentially fast. Formally,

Theorem 1 (Theorem 3.2 and Lemma 3.2 in [20]).
Suppose ∀i, ‖xi‖2 = 1, |yi| < C for some constant C,
and only the hidden layer weights {wr} are optimized
by GD. If we set the width of the hidden layer m =
Ω(n6/λ4

0δ
3) and we i.i.d. initialize wr ∼ N (0, I), ar ∼

unif{−1, 1} for r ∈ [m], then with high probability at
least 1− δ over the initialization, we have

λmin(H(t)) >
1

2
λmin(lim

m
H(0)) :=

1

2
λmin(H∞) :=

λ0

2

with H∞ defined in Fact 2.2. Furthermore, we have
the linear convergence

L(t) ≤ exp (−λ0t)L(0).

We note that the NTK matrix is the Gram matrix
induced by the ReLU activation:

Hij(t) =

m∑
r=1

∂fi(t)

∂wr

(
∂fj(t)

∂wr

)>
(2.5)

=
1

m
x>i xj

m∑
r=1

I(w>r xi ≥ 0,w>r xj ≥ 0) (2.6)

We remark that the framework of Theorem 1 has been
extended to training multiple layers simultaneously
[20] (see also Section 5.3). The analysis has recently
been generalized to different network architectures and
losses and we now complement this line of research
by extending to different optimization algorithms. To
present the simplest proof, we only analyze the contin-
uous gradient flows and we believe our approach can
be easily extended to discrete time analysis.

3 Heavy Ball with Friction System

Our first result concerns the GD with momentum, or
the Heavy Ball (HB) method [48]:

wr(k + 1) =wr(k)− η ∂L(W (k),a)

∂wr(k)

+ β(wr(k)−wr(k − 1))

(3.1)
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or equivalently

wr(k + 1) = wr(k) + ηv(k)

v(k) = −∂L(W (k),a)

∂wr(k)
+ βv(k − 1)

(3.2)

where η is the step size and the momentum term β ∈
[0, 1]. The corresponding gradient flow is known as
the Heavy Ball with Friction (HBF) system. This is
a non-linear dissipative dynamical system, originally
proposed by [48] and heavily studied in [9, 24, 15, 8, 5,
60]: with b > 0

ẅr(t) + bẇr(t) +
∂L(W (t),a)

∂wr(t)
= 0. (3.3)

As shown later in Section 3.1, the error dynamics is

∆̈(t) + b∆̇(t) +
∂L̂

∂∆(t)

a.s.
= 0. (3.4)

We note that other optimization algorithms may also
correspond to the HBF system (3.3),(3.4): for example
NAG-SC in [60]2, though NAG-SC and HB can be
distinguished using high resolution ODE in [53].

In particular, we study the case as in [60, Equation
(7)] and [55], when b =

√
2λ0, i.e. twice the strongly

convexity of L̂:

ẅr(t) +
√

2λ0ẇr(t) +
∂f

∂wr
(f − y) = 0 (3.5)

Our choice of parameter b leads to a global linear
convergence to zero training loss, without requiring
Lipschitz gradients of L̂. For other choices of param-
eters together with the Lipschitz condition of L̂, HB
can enjoy linear converge locally [48, 38] and globally
[41, 25, 59, 55, 10].

To solve a second order ODE requires initial conditions
on wr and ẇr, which we assume as ẇr(0) = 0 without
loss of generality. Now we state the our main theorem
under MSE loss.

Theorem 2. Suppose we set b =
√

2λ0 and only the
hidden layer weights {wr} are optimized by HB. If we

set the width of the hidden layer m = Ω
(

n6

δ3λ4
0

)
and

we i.i.d. initialize wr ∼ N (0, I), ar ∼ unif{−1, 1} for
r ∈ [m], then with high probability at least 1− δ over
the initialization, we have

L(t) ≤ 4

λ0
exp

(
−
√
λ0/2 · t

)
L̂(0)

2We consider the following NAG-SC: assume L is
√
λ0/2-

strongly convex and b =
√

2λ0,

v(k + 1) = wr(k)− η ∂L

∂wr(k)

wr(k + 1) = v(k + 1) +
1−

√
λ0η/2

1 +
√
λ0η/2

(v(k + 1)− v(k))

We notice that indeed
√
λ0/2 > λ0, suggesting a boost

in the linear convergence rate of HB when compared
to GD, as we observe in Figure 1. To prove this, we
claim that λ0 < 1/2 as tr(H∞) = n/2 =

∑
i λi > nλ0.

Another observation is that, to guarantee the linear
convergence, HB requires the same order of width as
GD in Theorem 1.
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Figure 1: HB shows linear convergence with larger
convergence rate than GD. Experiment details in Ap-
pendix D.1.

In the following section, we prove our theorem by em-
ploying the Lyapunov function.

3.1 Proof of Theorem 2

First, we use the chain rule to characterize the predic-
tion dynamics of f ,

ḟi(t) =
∑
r∈[m]

∂fi
∂wr

ẇr

f̈i(t) =
∑

r,l∈[m]

ẇr
> ∂2fi
∂wr∂wl

ẇl +
∑
r∈[m]

∂fi
∂wr

ẅr

a.s.
=

∑
r∈[m]

∂fi
∂wr

ẅr

where the last equality follows from a key observation
that, with δ(·) denoting the Dirac Delta function,

∂fi
∂wr

=
1√
m
arxiI(w>r xi > 0),

∂2fi
∂w2

r

=
1√
m
arxix

>
i δ(w

>
r xi)

a.s.
= 0,

∂2fi
∂wr∂wl

= 0, for l 6= r.

(3.6)

Multiplying ∂f
∂wr

to (3.5) and sum over r, we obtain
the prediction dynamics as

f̈(t) +
√

2λ0ḟ(t) + H(t)(f − y)
a.s.
= 0

and consequently, the dynamics of the error is

∆̈(t) +
√

2λ0∆̇(t) + H(t)∆(t)
a.s.
= 0 (3.7)

or in an analogous form to (3.5),
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∆̈(t) +
√

2λ0∆̇(t) +
∂L̂

∂∆(t)

a.s.
= 0

In what follows, we drop the a.s. and focus on the
ordinary differential equations. To establish the linear
convergence in MSE, we need to guarantee H(t) is
positive definite with λmin(H(t)) ≥ λ0/2. In other
words, the pseudo loss L̂ is λ0

2 -strongly convex. We
start with t = 0, by showing that for wide enough
neural networks, H(0) has positive smallest eigenvalue
with high probability.

Lemma 3.1 (Lemma 3.1 in [20]). If m =

Ω
(
n2

λ2
0

log
(
n2

δ

))
, then we have ‖H(0)−H∞‖2 ≤

λ0

4

and λmin(H(0)) ≥ 3
4λ0 with probability of at least 1−δ.

Next, we introduce a lemma that shows for any t, if
wr(t) is close to wr(0), then H(t) is close to H(0).
Together with Lemma 3.1, λmin(H(t)) always has a
positive smallest eigenvalue. In words, the lazy training
leads to the positive definiteness.

Lemma 3.2 (Lemma 3.2 in [20]). If wr are i.i.d. gen-
erated from N (0, I) for r ∈ [m], and ‖wr(0)−wr‖2 ≤
cδλ0

n2 =: R for some small positive constant c, then the
following holds with probability at least 1− δ we have
‖H(t)−H(0)‖2 < λ0

4 and λmin(H(t)) > λ0

2 .

The next lemma gives two important facts given that
λmin(H(s)) for previous time s ≤ t: the loss decays
exponentially and weights stay close to their initial-
ization at the current time t. In other words, the
positive definiteness indicates the convergence, which
further indicates the lazy training. We emphasize that
Lemma 3.3 is specific to the choice of optimization
algorithms and hence the proof is much different than
its analog in [20, Lemma 3.3] for GD.

Lemma 3.3. Assume 0 ≤ s ≤ t and λmin(H(s)) ≥
λ0

2 . Then we have L(t) ≤ exp
(
−
√
λ0/2t

)
4L̂(0)
λ0

and

‖wr(t)−wr(0)‖2 ≤
√

32nL̂(0)
9mα6 =: R′.

Proof of Lemma 3.3. Borrowing the idea of [60, 55],
we define the Lyapunov function or Lyapunov energy
as

V (t) :=L̂+
1

2

∥∥∥∥∥
√
λ0

2
∆(t) + ∆̇(t)

∥∥∥∥∥
2

=
1

2
∆(t)>H(t)∆(t) +

1

2

∥∥∥∥∥
√
λ0

2
∆(t) + ∆̇(t)

∥∥∥∥∥
2

.

The Lyapunov function represents the total energy of
the system and always decreases along the trajectory
of the training dynamics since, as we will later show,
V̇ (t) < 0. Here we simplify the notation by denoting

the dependence on t in the subscript and use α :=
b/2 =

√
λ0/2. We derive by the chain rule,

V̇ (t) = ∆̇>t H(t)∆t +
1

2
∆>t Ḣ(t)∆t

+
〈
α∆̇t + ∆̈t, α∆t + ∆̇t

〉
.

Notice that by (2.6), we have Ḣ(t)
a.s.
= 0. Substituting

the error dynamics (3.7) for ∆̈t, we have

V̇ (t) =
〈
H∆t, ∆̇t

〉
+
〈
−α∆̇t −H∆t, α∆t + ∆̇t

〉
= −α 〈H∆t,∆t〉 − α2

〈
∆̇t,∆t

〉
− α

〈
∆̇t, ∆̇t

〉
Using λmin(H) ≥ λ0/2 = α2, we get

〈H∆t,∆t〉 ≥
1

2
〈H∆t,∆t〉+

α2

2
〈∆t,∆t〉

= L̂(t) +
α2

2
〈∆t,∆t〉

and hence we have

V̇ (t) =− αL̂(t)− α3

2
〈∆t,∆t〉

− α2
〈

∆̇t,∆t

〉
− α

〈
∆̇t, ∆̇t

〉
<− α

(
L̂(t) +

1

2

∥∥∥α∆t + ∆̇t

∥∥∥2
)

= −αV (t)

where in the last inequality we throw away

−α2
〈

∆̇t, ∆̇t

〉
. Clearly V̇ (t) < 0 for all t. For this first

order scalar ODE, we apply the Gronwall’s inequality
to derive

V (t) < e−αtV (0)

and we obtain

L̂(t) ≤ V (t) < e−αtV (0)

= e−αt
(

1

2
∆(0)>H(0)∆(0) +

α2

2
‖∆(0)‖2

)
.

Again using λmin(H(0)) ≥ α2, we have

L̂(t) ≤ exp (−α · t)
(

1

2
∆(0)>H(0)∆(0) + L̂(0)

)
= 2 exp (−α · t) L̂(0)

and

L(t) ≤ 2

α2
exp (−αt) L̂(0).

In words, the prediction f(t)→ y exponentially fast,
with a convergence factor α =

√
λ0/2.

Now we move on to show that wr(t) stays close to
wr(0). Multiplying ebt = e2αt to the weight dynamics
(3.5), we have

d

dt

(
e2αtẇr

)
= − 1√

m
e2αtar

∑
i

(fi − yi)xiI(w>r xi ≥ 0)
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which gives a close-form solution

ẇr = −e−2αt

∫ t

0

1√
m
e2αsar

∑
i

(fi − yi)xiI(w>r xi ≥ 0)ds

whose norm satisfies

‖ẇr‖ ≤ e−2αt 1√
m

∫ t

0

e2αs
∑
i

|fi(s)− yi|ds

≤ e−2αt

√
n

m

∫ t

0

e2αs‖f(s)− y‖2ds

=

√
n

m

∫ t

0

e2α(s−t)
√
L(s)ds

≤

√
2nL̂(0)

mα2

∫ t

0

e
3
2αs−2αtds

≤

√
8nL̂(0)

9mα4
e−

α
2 t

Finally by Cauchy Schwarz inequality, we bound the
weight distance from initialization,

‖wr(t)−wr(0)‖2 ≤
∫ t

0

‖ẇr(s)‖2 ds <

√
32nL̂(0)

9mα6

We quote the next lemma to show that R′(t) < R
indicates that for all t > 0, the conditions in Lemma 3.2
and Lemma 3.3 hold. This lemma is closely related to
[20, Lemma 3.4] and the proof is given in Appendix C.

Lemma 3.4. If R′ < R, then we have λmin(H(t)) ≥
λ0

2 , for all r ∈ [m], ‖wr(t)−wr(0)‖2 ≤ R′ and L(t) ≤
4
λ0

exp
(
−
√
λ0/2t

)
L̂(0).

Finally we study the width requirement for R′ < R to

hold true, i.e. we need

√
32nL̂(0)
9mα6 < O( δλ0

n2 ) which is

equivalent to m = Ω( n6

δ3λ4
0
), shown in Appendix A.1.

4 Nesterov Accelerated Gradient
Descent

In this section, we analyze the dynamics of the gener-
alized Nesterov Accelerated Gradient (NAG) descent
as follows,

v(k + 1) = wr(k)− η ∂L(W (k),a)

∂wr(k)

wr(k + 1) = v(k + 1) +
k − 1

k + γ − 1
(v(k + 1)− v(k))

(4.1)

where η is step size. We remark that the NAG (4.1) has
a time-dependent momentum coefficient k−1

k+γ−1 while

in practice, e.g. in [58] (adopted in Pytorch and Tensor-
flow) and in Footnote 2, a time-independent momentum

is commonly used and may lead to linear convergence.
It has been given in [57] that the corresponding gradient
flow as

ẅr(t) +
γ

t
ẇr(t) +

∂L(W (t),a)

∂wr(t)
= 0 (4.2)

with initial conditions ẇr(0) = 0. It follows that the
prediction dynamics and the error dynamics are

f̈(t) +
γ

t
ḟ(t) + H(t)(f − y)

a.s.
= 0 (4.3)

∆̈(t) +
γ

t
∆̇(t) + H(t)∆(t)

a.s.
= 0 (4.4)

with the same NTK matrix H(t) as defined in (2.6)
Again, using L̂(t), we have an error dynamics that is
analogous to (4.2),

∆̈(t) +
γ

t
∆̇(t) +

∂L̂

∂∆(t)

a.s.
= 0 (4.5)

Theorem 3. Suppose we set 4 < α ≤ 2γ
3 and

γ > 6 and only the hidden layer weights {wr} are
optimized by NAG. If we set the width of the hidden

layer m = Ω

(
n5α/2−4

δ3α/2−3λ
3α/2−2
0

)
and we i.i.d. initialize

wr ∼ N (0, I), ar ∼ unif{−1, 1} for r ∈ [m], then with
high probability at least 1− δ over the initialization, we
have

L(t) ≤ A(α, γ, λ0)t−αL(0) (4.6)

where A(α, γ, λ0) ∈ R is defined in (4.7) and only
depends on α, γ and λ0.

We pause here to discuss the choice of γ in (4.1). In [57],
the ‘magic constant’ γ has been extensively studied.
When γ ≥ 3, the convergence rate is shown to be

O(t−
2γ
3 ). When γ < 3, there exist counter-examples

that fail the desired O(1/t2) convergence rate. As
we can visualize in Figure 3, γ provides a trade-off
between the size of neural network and the efficiency of
optimization. In addition, we remark that we only need
γ > 3 to derive the convergence but we assume γ > 6
only to guarantee the lazy training wr(t) ≈ wr(0).

From Theorem 3, NAG only converges at polynomial
rate, in contrast to the linear convergence of HB and
GD. This can be visualized as the linear pattern in
Figure 2 (note the GD pattern is concave). Therefore,
in the long run when t is sufficiently large, NAG may
be outperformed by GD. In addition, NAG and HB
are well-known to have non-monotone loss dynamics,
which is different than GD.

To prove Theorem 3, we use the same framework as in
Section 3: given Lemma 3.1 and Lemma 3.2, we will
prove Lemma 4.1 as an analogy to Lemma 3.3, but
customized for NAG.

Lemma 4.1. Assume 0 ≤ s ≤ t and λmin(H(s)) ≥ λ0

2 ,

then we have L(t) ≤ C(α,γ)

tα(λ0/2)
α
2
L(0) for 2 ≤ α ≤ 2

3γ and
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Figure 2: NAG shows polynomial decay in loss but
converges faster than GD. Experiment details in Ap-
pendix D.2.

some C(α, γ) only depending on α and γ. Furthermore,
if α > 4, we have

‖wr(t)−wr(0)‖2 ≤ R′(ε)

:=
2ε2−α/2

α− 4

√
nC(α, γ)L(0)

m(λ0/2)
α
2 (γ − α/2 + 1)2

+
√

2L(0)ε.

Proof of Lemma 4.1. We define the Lyapunov function
as in [57]

V (t;α, γ) := tαL̂(t) + (2γ−α)2tα−2

8

∥∥∥∆t + 2t
2γ−α∆̇t

∥∥∥2

and use the same loss L and pseudo-loss L̂ as before.

For γ > 3 and 2 ≤ α ≤ 2γ
3 , we apply from [57, Theorem

8]: with some C(α, γ) only depending on α and γ,

L̂(t) ≤ C(α, γ)

tα(λ0/2)
α−2
2

L(0) :=
A(α, γ, λ0)

tα(λ0/2)−1
L(0). (4.7)

Leveraging λmin(H) ≥ λ0

2 , we have L̂(t) ≥ λ0

2 L(t) and

L(t) ≤ 2

λ0
L̂(t) ≤ C(α, γ)

tα(λ0/2)
α
2
L(0).

As for the lazy training, since the weight dynamics is

ẅr(t) +
γ

t
ẇr(t) +

∂f

∂wr
(f − y) = 0.

Multiplying both sides with tγ , we obtain

d

dt
(tγẇr(t)) = −tγ ∂f

∂wr
(f − y)

=− 1√
m
tγar

∑
i

(fi − yi)xiI(w>r xi ≥ 0)

which gives a close-form solution

ẇr = − 1

tγ

∫ t

0

1√
m
sγar

∑
i

(fi − yi)xiI(w>r xi ≥ 0)ds

whose norm satisfies

‖ẇr‖2 ≤
1

tγ
√
m

∫ t

0

sγ
∑
i

|fi(s)− yi|ds

≤ 1

tγ

√
n

m

∫ t

0

sγ‖f(s)− y‖2ds

=
1

tγ

√
n

m

∫ t

0

sγ
√
L(s)ds

≤ 1

tγ

√
nC(α, γ)L(0)

m(λ0/2)
α
2

∫ t

0

sγ−α/2ds

= t1−α/2

√
nC(α, γ)L(0)

m(λ0/2)
α
2 (γ − α/2 + 1)2

.

Next we bound the weight distance. For any 0 < ε < t,
we break the integral into two pieces.

‖wr(t)−wr(0)‖2 ≤
∫ t

0

‖ẇr(s)‖2 ds

=

∫ t

ε

‖ẇr(s)‖2 ds+

∫ ε

0

‖ẇr(s)‖2 ds

≤ 2ε2−α/2

α− 4

√
nC(α, γ)L(0)

m(λ0/2)
α
2 (γ − α/2 + 1)2

+

∫ ε

0

‖ẇr(s)‖2 ds

Now we need to bound ‖ẇr(s)‖2 in
∫ ε

0
‖ẇr(s)‖2 ds

with a time-independent upper bound, different than
the previous O(t1−α/2) one. We achieve this goal by
analyzing another Lyapunov function from [49]

E(t) = L(W (t),a) +
1

2

∑
r

ẇr(t)
>ẇr(t)

By simple differentiation, we see E is decreasing in t:
Ė(t) = −

∑
r
γ
t ‖ẇr(t)‖22 ≤ 0. This implies that

1

2

∑
r

ẇr(t)
>ẇr(t) ≤ E(t) ≤ E(0) = L(0).

Hence we obtain from ‖ẇr(s)‖2 ≤
∑
r ‖ẇr(s)‖2 that∫ ε

0

‖ẇr(s)‖2 ds ≤
√

2L(0)ε.

Therefore, for sufficiently small ε and sufficiently large
m, we have

‖wr(t)−wr(0)‖2 ≤ R′(ε)

:=
2ε2−α/2

α− 4

√
nC(α, γ)L(0)

m(λ0/2)
α
2 (γ − α/2 + 1)2

+
√

2L(0)ε

Lastly, we give Lemma 4.2 in analogy to Lemma 3.4,
in order to show that if R′(ε) < R, then the conditions
in Lemma 3.1, Lemma 3.2 hold.
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Lemma 4.2. If R′ < R, then we have λmin(H(t)) ≥
λ0

2 , for all r ∈ [m], ‖wr(t)− wr(0)‖2 ≤ R′ and L(t) ≤
t−αC(α, γ)(λ0/2)−α/2L(0), for 4 < α ≤ 2γ

3 and γ > 6.

The width requirement for R′ < R is equivalent to

2ε2−α/2

α−4

√
nC(α,γ)L(0)

m(λ0/2)
α
2 (γ−α/2+1)2

+
√

2L(0)ε < O( δλ0

n2 ) for

a sufficiently small fixed ε > 0. We show the de-
tails in Appendix A.2 that it suffices to use m =

Ω

(
n5α/2−4

δ3α/2−3λ
3α/2−2
0

)
. We note this width lower bound

is larger than the width required by GD in [20] and
our HB analysis, suggesting that smaller γ or α may
be preferred for NAG (see Figure 3), since the width
requirement is increasing in α.
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Figure 3: NAG may require wider layer to converge at
optimal rate. The dots represent minimum MSE for
each case. The loss is averaged of 10 runs. Experiment
details in Appendix D.2.

5 Notable Extensions

The limiting ODEs of different optimization algorithms
give rise to a general framework of analyzing the
strongly-convex pseudo-loss L̂. We further extend the
analysis in three major directions: higher order opti-
mization algorithms, higher order ODEs and deeper
neural networks.

5.1 Higher order momentum

We consider the convergence behavior of higher order
ODE, resulting from using multiple momentums in GD,
as an extension of HB.

wr(k + 1) = wr(k)− η ∂L(W (k),a)

∂wr(k)

+
∑
j=[J]

βj(wr(k − j + 1)−wr(k − j))

which reduces to HB when J = 1 and to GD when
J = 0. Consequently, the gradient flow is a (J + 1)-th
order ODE,

dJ+1

dtJ+1
wr(t) +

∑
j∈[J]

bj
dj

dtj
wr(t) +

∂L(W (t),a)

∂wr(t)
= 0.

By similar argument as in (3.6), we have ∂jf
∂W j

a.s.
= 0 for

j > 1, hence the error dynamics follows the same form
as the weight dynamics, except L is replaced by L̂,

dJ+1

dtJ+1
∆(t) +

∑
j∈[J]

bj
dj

dtj
∆(t) +

∂L̂

∂∆(t)
= 0. (5.1)

To directly analyze this high order ODE is difficult.
For the special case of J = 2, a second momentum has
been shown to further accelerate the convergence than
the first momentum [46], when the loss is a positive
quadratic form. Empirically, we observe that, although
L is not convex nor quadratic, employing the second
momentum converges slightly faster as well.

0 1000 2000 3000 4000 5000
Epoch

10 1

100

101

102

Lo
g 

M
SE

1 = 0, 2 = 0 (GD)
1 = 0.2, 2 = 0 (HB)
1 = 0.2, 2 = 0.2
1 = 0.2, 2 = 0.5

Figure 4: Higher momentum method allows faster con-
vergence rate than GD and HB. Experiment details in
Appendix D.3.

5.2 Newton’s method

By the definition of Newton-Ralphson method, we have

wr(k + 1) = wr(k)−∇2L(W (k),a)
−1∇L(W (k),a)

We observe by the chain rule (c.f. (3.6)) that

∂2L

∂w2
r

=

(
∂f

∂wr

)>
∂f

∂wr
+
∂2f

∂w2
r

(f − y)

a.s.
=

(
∂f

∂wr

)>
∂f

∂wr
∈ Rp×p.

The corresponding gradient flow is then

ẇr = −
(
∂2L

∂w2
r

)−1
∂L

∂wr

= −

((
∂f

∂wr

)>
∂f

∂wr

)−1(
∂f

∂wr

)>
(f − y)

The error dynamics can be obtained by left multiplying
∂f
∂wr

and sum over r:

∆̇(t)
a.s.
= −

∑
r

∂f

∂wr

(( ∂f
∂wr

)> ∂f

∂wr

)−1(
∂f

∂wr

)>
∆(t)

We can define the pseudo-loss

L̂ =
1

2
∆>
(∑

r

∂f

∂wr

(( ∂f
∂wr

)> ∂f

∂wr

)−1 ( ∂f
∂wr

)>)
∆
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so that the error dynamic is simply ∆̇ = − ∂L̂
∂∆ .

After some linear algebra calculation, we
claim that the minimum eigenvalue of∑
r
∂f
∂wr

((
∂f
∂wr

)> ∂f
∂wr

)−1 (
∂f
∂wr

)>
is lower bounded by

λmin(H(t))

maxr λmax

((
∂f
∂wr

)>
∂f
∂wr

) . Finally, using the fact that

λmax

(( ∂f
∂wr

)> ∂f

∂wr

)
= λmax

(
∂f

∂wr

( ∂f
∂wr

)>)
≤tr

(
∂f

∂wr

( ∂f
∂wr

)>)
=

n∑
i=1

1

m
I
(
wr(t)

>xi ≥ 0
)
≤ n

m
,

and assuming that λmin(H) ≥ λ0, we obtain the conver-
gence factor as λ0m

n . This shows that the convergence
of Newton’s method is significantly faster than that
of HB (rate

√
λ0/2) and GD (rate λ0), as a result

of m � n. A rigorous theorem of convergence of the
Newton’s method, including the width requirement and
the positivity of H at all t, will be investigated in the
future work.

5.3 Multi-layer Training

Though we do not dive into the detailed proof of extend-
ing our main theorem to multi-layer neural network,
we still provide sketch proof direction as follows.

On high level, we can write the training dynamics for
the deep fully-connected neural networks as

x(l)
r =

1√
m
σ
(

(w(l)
r )>x(l−1)

)
f(x;W ,a) = a>xL

in which l ∈ [L − 1],x(0) = x, x
(l)
r is the r-th element

in l-th layer, W = {w(1)
r , · · · ,w(L−1)

r ,a}. Similar to
(2.2)-(2.4), we again have the HB and NAG limiting
ODEs

∆̈(t) + b(t)∆̇(t) + H(t)∆(t) = 0

where the NTK is
∑
lHl(t) + Ha(t) with Hl(t) =∑

r
∂f(t)

∂w
(l)
r (t)

(
∂f(t)

∂w
(l)
r (t)

)>
and Ha(t) = ∂f(t)

∂a(t)

(
∂f(t)
∂a(t)

)>
.

Clearly Hl and Ha are positive semi-definite. There-
fore it suffices to show there exists at least one l ∈ [L−1]
that is positive definite. We note that [19] has shown
HL−1 is positive definite for GD and we believe similar
analysis applies to other optimization algorithms such
as HB and NAG.

6 Discussion

In this paper, we extend the convergence analysis of
over-parameterized neural networks to different acceler-
ated optimization algorithms, including the Heavy Ball

method (HB) and the Nesterov accelerated gradient
descent (NAG). Our analysis is based on the neural
tangent kernel (NTK) which characterizes the training
dynamics as ODEs known as the gradient flows. We
observe from (3.6) that, for piecewise linear activation
functions (e.g. ReLU, Leaky ReLU [40] and maxout
[27, 30]), the weight dynamics takes the same form as
the error dynamics (for example, (3.3) and (3.4)), with
the only difference lying in the losses. In particular, the
loss in the error dynamics is strongly-convex, leading
to linear convergence of HB and GD, and polynomial
decay or linear convergence of NAG (depending on
whether the momentum is time-dependent or not). We
emphasize that by constructing the strongly-convex
loss L̂, we can easily borrow the rich results from the
convex optimization world to analyze the convergence
of neural networks on non-convex loss. We remark that
instead of using the Gronwall inequality, as in the case
of GD [20], we use the Lyapunov functions, which are
common and traditional tools in solving ODEs with
convex losses. In fact, the Gronwall inequality does not
work on second order ODE.

A major extension of our single-layer training process is
to training all layers in deep fully-connected neural net-
works, which has been well-established for GD in [3, 19].
Since the main focus of this work is on the optimization
algorithms, we do not over-complicate our proof by ex-
ploring deeper learning (including two-layer training)
but leave the discussion in Section 5.3. We also em-
phasize that the error dynamics of GD/HB/NAG, i.e.
the limiting ODEs, are indeed compatible to arbitrary
neural networks such as CNN and ResNet. To extend
our analysis only requires a different route to guarantee
λmin(H(t)) > 0.

We pause to discuss the width requirement in NTK
regime. Unfortunately, existing works generally require
unrealistic width (see the summary in [63]): n24 is
required in [3] and n8 in [63], both comparable to our
n6

λ0(n)4 . Hence we do not attempt to reduce our width

with any complicated method. Nevertheless, all our
experiments use discrete gradient descents and realistic
widths, ranging from 103 to 104 hidden neurons. This
is detailed in Appendix D.

Another important future direction is to study the
adaptive optimizers such as AdaGrad[21], AdaDelta[62],
RMSprop[31], Adam[33], DIN[5] and their variants with
momentums and mini-batches. These optimizers are
expected to converge faster than those analyzed in
this work, but they may require a different framework
to analyze. Notably, optimization algorithms with
adaptive learning rate may correspond to a system of
ODEs [56], instead of a single ODE.
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