Supplementary Materials

5 Preliminary

In this section, we present some preliminary results that will be used in subsequent proofs.

The following lemma is the well-known Weyl theorem (Stewart and Sun, 1990, p.203).

Lemma 5.1. For two Hermitian matrices $A, \tilde{A} \in \mathbb{C}^{n \times n}$, let $\lambda_1 \leq \cdots \leq \lambda_n, \tilde{\lambda}_1 \leq \cdots \leq \tilde{\lambda}_n$ be eigenvalues of A, \tilde{A}, respectively. Then

$$|\lambda_j - \tilde{\lambda}_j| \leq \|A - \tilde{A}\|, \quad \text{for } 1 \leq j \leq n.$$

The following lemma gives some fundamental results for s

The following lemma gives some fundamental results for s

Lemma 5.2. Let $[U, U_c]$ and $[V, V_c]$ be two orthogonal matrices with $U \in \mathbb{R}^{n \times k}, V \in \mathbb{R}^{n \times \ell}$. Then

$$\| \sin \Theta(U, V) \| = \|U_c^T V\| = \|U^T V_c\|.$$

The following lemma discusses the perturbation bound for the roots of a third order equation.

Lemma 5.3. Given a perturbed third order equation $t^3 + (p + \epsilon)t + q = 0$, where $p, q \in \mathbb{R}$ and $\epsilon \in \mathbb{R}$ is a small perturbation. Denote the roots of $t^3 + pt + q = 0$ by t_1, t_2, t_3, and assume that the multiplicity of each root is no more than two. Then the roots of $t^3 + (p + \epsilon)t + q = 0$ lie in $U_{i=1}^3 \{z \in \mathbb{C} \mid |z - t_i| \leq r\}$, where $r = O(\sqrt{\epsilon})$.

Proof. Let the roots of $t^3 + (p + \epsilon)t + q = 0$ be $\tilde{t}_1, \tilde{t}_2, \tilde{t}_3$. Notice that t_1, t_2 and t_3 are the eigenvalues of $A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ -q & -p & 0 \end{bmatrix}$, $\tilde{t}_i, \tilde{t}_j, \tilde{t}_3$ are the eigenvalues of $\tilde{A} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -q & -p - \epsilon & 0 \end{bmatrix}$. Since the multiplicity of t_i is no more than two, the size of each diagonal block of the Jordan canonical form of A is no more than two. Using Kahan et al. (1982, Theorem 8), we know that for each \tilde{t}_i, there exists a t_j such that

$$\frac{|\tilde{t}_i - t_j|^s}{1 + |\tilde{t}_i - t_j|^s} \leq O(1) \left\| \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & \epsilon & 0 \end{bmatrix} \right\| = O(\epsilon),$$

(11)

where $s = 1$ or 2. Therefore, $|\tilde{t}_i - t_j| \leq O(\sqrt{\epsilon})$. The conclusion follows.

6 Proofs

In this section, we present the proofs of the theoretical results in the paper.

6.1 Proof of Theorem 2.1

Theorem 2.1. Let (τ_p, A) be a solution to BJBDP for C. Then $R(A) = N(A^T)^\perp = R(C^\top)$.

Proof. Using (1), for any $v \in N(A^T)$, we have $C_i x = A \Sigma_i A^T x = 0$, similarly, $C_i^T x = 0$. Therefore, $N(A^T) \subset N(C)$. Next, we show $\sigma_p(C) > 0$ by contradiction. If $\sigma_p(C) = 0$, there exists a nonzero vector $v \notin N(A^T)$ such that $C_i v = 0$. Let $w = A^T v$, we know that $w \neq 0$. Partition w as $w = [w_1^T, \ldots, w_\ell^T]^T$, where $w_j \in \mathbb{R}^{p_j}$ for $j = 1, \ldots, \ell$. Then there at least exists one $w_j \neq 0$. Without loss of generality, assume $w_1 \neq 0$. It follows from $C_i v = 0$ that

$$0 = C_i v = A \Sigma_i A^T v = A \Sigma_i w = A \begin{bmatrix} \Sigma_i^{(1)} w_1 \\ \vdots \\ \Sigma_i^{(\ell)} w_\ell \end{bmatrix}.$$

(12)
Therefore, we have $\Sigma_i^{(i)} w_i = 0$ for all i. Similarly, $w_i^T \Sigma_i^{(i)} = 0$ for all i. Let $w_i^\perp \in \mathbb{R}^{p_i \times (p_i - 1)}$ be such that $[w_1, w_i^\perp]$ be nonsingular, then

$$[w_1, w_i^\perp]^T \Sigma_i^{(i)} [w_1, w_i^\perp] = \begin{bmatrix} 0 & 0 \\ 0 & \ast \end{bmatrix}, \quad \text{for } i = 1, \ldots, m,$$

i.e., $C_1 = \{\Sigma_i^{(i)}\}_{i=1}^m$ can be further block diagonalized, which contradicts with the assumption that (τ_p, A) is a solution to the BJBDP.

Now we have $\dim(\mathcal{N}(C)) \leq d - p$. Combining it with $\dim(\mathcal{N}(A^T)) = d - p$ and $\mathcal{N}(A^T) \subset \mathcal{N}(C)$, we have $\mathcal{N}(A^T) = \mathcal{N}(C)$. Then it follows that

$$\beta(A) = \mathcal{N}(A^T)^\perp = \mathcal{N}(C)^\perp = \mathcal{A}(C^T)$$

This completes the proof. \square

6.2 Proof of Theorem 2.2

Theorem 2.2. Let (τ_p, A) be a solution to BJBDP for C. Let the columns of V_2 be an orthonormal basis for $\mathcal{N}(A^T)$, $\phi_1 \geq \cdots \geq \phi_d$ and $\tilde{\phi}_1 \geq \cdots \geq \tilde{\phi}_d$ be the singular values of C and \tilde{C}, respectively. Then

$$\tilde{\phi}_p \geq \phi_p - \|E\|, \quad \tilde{\phi}_p+1 \leq \|E\|. \quad (13)$$

In addition, let $\tilde{U}_1 = [\tilde{u}_1, \ldots, \tilde{u}_p]$, $\tilde{V}_1 = [\tilde{v}_1, \ldots, \tilde{v}_p]$, where \tilde{u}_j, \tilde{v}_j are the left and right singular vector of \tilde{C} corresponding to $\tilde{\phi}_j$, respectively, and \tilde{U}_1, \tilde{V}_1 are both orthonormal. If $\|E\| < \frac{\phi_p}{2}$, then

$$\|\sin(\beta(A), \beta(\tilde{V}_1))\| \leq \frac{\|\tilde{U}_1^T E V_2\|}{\phi_p}.$$

Proof. First, by Theorem 2.1, we know that $\phi_{p+1} = \cdots = \phi_d = 0$. On the other hand, by Lemma 5.1, we have

$$|\tilde{\phi}_j - \phi_j| \leq \|\tilde{C} - C\| = \|E\|, \quad \text{for } j = 1, \ldots, d.$$

Then (2) follows.

Second, using (2) and $\|E\| < \frac{\phi_p}{2}$, we have $\tilde{\phi}_p \geq \phi_p - \|E\| > \frac{\phi_p}{2} > \|E\| \geq \tilde{\phi}_{p+1}$. Thus, $\beta(\tilde{V}_1)$ is well defined. By calculations, we have

$$\text{diag}(\tilde{\phi}_1, \ldots, \tilde{\phi}_p) \tilde{V}_1^T V_2 \overset{(a)}{=} \tilde{U}_1^T \tilde{C} V_2 = \tilde{U}_1^T (C + E) V_2 \overset{(b)}{=} \tilde{U}_1^T E V_2,$$

where (a) uses $\text{diag}(\tilde{\phi}_1, \ldots, \tilde{\phi}_p) \tilde{V}_1^T = \tilde{U}_1^T \tilde{C}$, (b) uses $CV_2 = 0$. Then using Lemma 5.2, we get

$$\|\sin(\beta(A), \beta(\tilde{V}_1))\| = \|\tilde{V}_1^T V_2\| = \|\text{diag}(\tilde{\phi}_1, \ldots, \tilde{\phi}_p)^{-1} \tilde{U}_1^T E V_2\| \leq \frac{\|\tilde{U}_1^T E V_2\|}{\tilde{\phi}_p}.$$

The proof is completed. \square

6.3 Proof of Theorem 2.3

Theorem 2.3. Given $C = \{C_i\}_{i=1}^m$ with $C_i \in \mathbb{R}^{d \times d}$. Let $V_1 \in \mathbb{R}^{d \times p}$ be such that $V_1^T V_1 = I_p$, $\beta(V_1) = \beta(C^T)$. Denote $B_i = V_1^T C_i V_1$, $B = \{B_i\}_{i=1}^m$. Then C_i’s can be factorized as in (1) with $\beta(A) = \beta(C^T)$ if and only if there exists a matrix $X \in \mathcal{N}(B)$, which can be factorized into

$$X = Y \text{diag}(X_{11}, \ldots, X_{\ell \ell}) Y^{-1}, \quad (14)$$

where $Y \in \mathbb{R}^{p \times p}$ is nonsingular, $X_{jj} \in \mathbb{R}^{p_j \times p_j}$ for $1 \leq j \leq \ell$ and $\lambda(X_{jj}) \cap \lambda(X_{kk}) = \emptyset$ for $j \neq k$.

Yunfeng Cai, Ping Li
Proof. (⇒) (Sufficiency) Let $W = A^T V_1$. Since $\mathcal{H}(C_i^T) = \mathcal{H}(A) = \mathcal{H}(V_1)$, and V_1, A both have full column rank, we know that W is nonsingular. Let

$$X = W^{-1} \Gamma W = W^{-1} \text{diag}(\gamma_1 I_{p_1}, \ldots, \gamma_{\ell} I_{p_{\ell}}) W,$$

(15)

where $\gamma_1, \ldots, \gamma_{\ell}$ be ℓ distinct real numbers. For all $1 \leq i \leq m$, we have

$$B_i X \overset{(a)}{=} W^T \Sigma_i WW^{-1} \Gamma W = W^T \Sigma_i \Gamma W = W^T \Gamma W^{-T} W^T \Sigma_i W \overset{(b)}{=} X^T B_i,$$

where both (a) and (b) use $W = A^T V_1$, (1) and (15). Therefore, $X \in \mathcal{N}(B)$, and it is of form (3).

(⇐) (Necessity) Substituting (3) into $B_i X = X^T B_i$, we get

$$B_i Y \text{diag}(X_{11}, \ldots, X_{1\ell}) Y^{-1} = Y^{-T} \text{diag}(X_{11}^T, \ldots, X_{1\ell}^T) Y^T B_i,$$

(16)

Partition $Y^T B_i Y = [\Sigma_i^{(j,k)}]$ with $\Sigma_i^{(j,k)} \in \mathbb{R}^{p_j \times p_k}$, then it follows from (16) that

$$\Sigma_i^{(j,k)} X_{kk} = X_{jj}^T \Sigma_i^{(j,k)}, \quad \text{for} \quad j, k = 1, 2, \ldots, \ell.$$

(17)

Consequently, for $j \neq k$, we know that $\Sigma_i^{(j,k)} = 0$ since $\lambda(X_{jj}) \cap \lambda(X_{kk}) = \emptyset$. Then we know that

$$V_i^T C_i V_1 = B_i = Y^{-T} \Sigma_i Y^{-1},$$

(18)

where $\Sigma_i = \text{diag}(\Sigma_i^{(1,1)}, \ldots, \Sigma_i^{(\ell,\ell)})$. Using $\mathcal{H}(C_i) = \mathcal{H}(V_1)$, we know that $\mathcal{R}(C_i) \subset \mathcal{H}(V_1)$ and $\mathcal{R}(C_i^T) \subset \mathcal{H}(V_1)$. Then it follows from (18) that

$$C_i = V_i Y^{-T} \Sigma_i Y^{-1} V_1^T.$$

Set $A = V_1 Y^{-T}$, the conclusion follows immediately. \hfill \Box

6.4 Proof of Theorem 2.4

Theorem 2.4. Let (τ_p, A) be a solution to the BJBDP for C, i.e., (1) holds. Then the BJBDP for C is uniquely τ_p-block-diagonalizable if and only if both (P1) and (P2) hold.

Proof. (⇒) (Sufficiency) First, we show (P1) by contradiction. If (P1) doesn’t hold, there exists $\Gamma_{jj} \in \mathbb{R}^{p_j \times p_j}$ such that $\text{vec}(\Gamma_{jj}) \in \mathcal{N}(G_{jj})$ and a nonsingular $W_j \in \mathbb{R}^{p_j \times p_j}$ such that

$$\Gamma_{jj} = W_j \text{diag}(\Gamma_{jj}^{(1)}, \Gamma_{jj}^{(2)}) W_j^{-1},$$

(19)

where $\Gamma_{jj}^{(1)}$ and $\Gamma_{jj}^{(2)}$ are two real matrices and $\lambda(\Gamma_{jj}^{(1)}) \cap \lambda(\Gamma_{jj}^{(2)}) = \emptyset$. Using $\text{vec}(\Gamma_{jj}) \in \mathcal{N}(G_{jj})$, we have

$$\Sigma_i^{(j,j)} \Gamma_{jj} - \Gamma_{jj}^T \Sigma_i^{(j,j)} = 0, \quad \text{for} \quad 1 \leq i \leq m.$$

(20)

Substituting (19) into (20), we get

$$\Sigma_i^{(j,j)} \text{diag}(\Gamma_{jj}^{(1)}, \Gamma_{jj}^{(2)}) - \text{diag}(\Gamma_{jj}^{(1)}, \Gamma_{jj}^{(2)})^T \Sigma_i^{(j,j)} = 0, \quad \text{for} \quad 1 \leq i \leq m.$$

(21)

where $\Sigma_i^{(j,j)} = W_j^T \Sigma_i^{(j,j)} W_j$. Similar to the proof of necessity for Theorem 2.3, using $\lambda(\Gamma_{jj}^{(1)}) \cap \lambda(\Gamma_{jj}^{(2)}) = \emptyset$, we have $\Sigma_i^{(j,j)}$ for $1 \leq i \leq m$ are all block diagonal matrices. In other words, C_i’s can be simultaneously block diagonalizable with more than ℓ blocks. This contradicts with the fact (τ_p, A) is the solution to the BJBDP.

Next, we show (P2), also by contradiction. Since G_{jk} is rank deficient, then there exist two matrices Γ_{jk}, Γ_{kj}, which are not zero at the same time, such that (4b) holds, i.e.,

$$\begin{bmatrix} \Sigma_i^{(j,j)} & 0 \\ 0 & \Sigma_i^{(k,k)} \end{bmatrix} \begin{bmatrix} 0 & \Gamma_{jk} \\ \Gamma_{kj} & 0 \end{bmatrix} - \begin{bmatrix} 0 & \Gamma_{jk}^T \\ \Gamma_{kj} & 0 \end{bmatrix} \begin{bmatrix} \Sigma_i^{(j,j)} & 0 \\ 0 & \Sigma_i^{(k,k)} \end{bmatrix} = 0.$$

(22)
Since \(\begin{bmatrix} 0 & \Gamma_{jk} \\ \Gamma_{kj} & 0 \end{bmatrix} \neq 0 \), it has at least a nonzero eigenvalue. Now let \(\lambda \) be a nonzero eigenvalue of \(\begin{bmatrix} 0 & \Gamma_{jk} \\ \Gamma_{kj} & 0 \end{bmatrix} \), and \(\begin{bmatrix} x \\ y \end{bmatrix} \) be the corresponding eigenvector. Then it is easy to see that \(-\lambda \) is also an eigenvalue, and the corresponding eigenvector is \(\begin{bmatrix} -x \\ y \end{bmatrix} \). In addition, \(x \neq 0 \) and \(y \neq 0 \). Therefore, there exists a nonsingular matrix \(W_{jk} \), which is not \((p_j, p_k)\)-block diagonal, such that

\[
\begin{bmatrix} 0 & \Gamma_{jk} \\ \Gamma_{kj} & 0 \end{bmatrix} = W_{jk} \begin{bmatrix} \Upsilon & 0 \\ 0 & -\Upsilon \end{bmatrix} W_{jk}^{-1},
\]

where \(\Upsilon \) is nonsingular, \(\lambda(\Upsilon) \cap \lambda(-\Upsilon) = \emptyset \) and \(W_{jk} \) is not \((p_j, p_k)\)-block diagonal. Plugging (23) into (22), similar to the proof of necessity for Theorem 2.3, we can show that \(W_{jk}^T \begin{bmatrix} \Sigma_i^{(jj)} & 0 \\ 0 & \Sigma_i^{(kk)} \end{bmatrix} W_{jk} \) for all \(1 \leq i \leq m \) are all block diagonal. For the ease of notation, let \(j = 1, k = 2 \). Denote \(\hat{A} = A \text{diag}(W_{12}^T, I_{p_1}, \ldots, I_{p_k}) \). We know that \(A, \hat{A} \) are not equivalent since \(W_{12} \) is not \((p_1, p_2)\)-block diagonal. This contradicts with the assumption that BJBDP for \(C \) is uniquely \(\tau_p \)-block-diagonalizable, completing the proof of sufficiency.

(\(\Leftarrow \)) (Necessity) Let \((\tau_p, A)\) and \((\hat{\tau}_p, \hat{A})\) be two solutions to the BJBDP for \(C \), i.e., it holds that

\[
C_i = A \Sigma_i A^T = \hat{A} \hat{\Sigma}_i \hat{A}^T,
\]

where \(\Sigma_i \)'s are all \(\tau_p \)-block diagonal, \(\hat{\Sigma}_i \)'s are all \(\hat{\tau}_p \)-block-diagonal. It suffices if we can show that \((\tau_p, A)\) and \((\hat{\tau}_p, \hat{W})\) are equivalent.

Let \(\tau_p = (p_1, \ldots, p_\ell) \), \(\hat{\tau}_p = (\hat{p}_1, \ldots, \hat{p}_\ell) \). As \((\tau_p, A)\) and \((\hat{\tau}_p, \hat{W})\) are both solutions, it holds that \(\ell = \hat{\ell} \). By Theorem 2.1, we know that \(\hat{\mathcal{R}}(C^T) = \mathcal{R}(A) = \hat{\mathcal{R}}(A) \). Since \(A \) and \(\hat{A} \) are both of full column rank, we know that \(p = \hat{p} \) and there exists nonsingular matrix \(Z \) such that \(\hat{A} = AY^{-T} \). Then it follows from (24) that

\[
\hat{\Sigma}_i = Y^T \Sigma_i Y \quad \text{for} \quad 1 \leq i \leq m.
\]

Let \(\Gamma = Y \text{diag}(\gamma_1 I_{\hat{p}_1}, \ldots, \gamma_\ell I_{\hat{p}_\ell})Y^{-1} \), where \(\gamma_1, \ldots, \gamma_\ell \) are distinct real numbers. Using (25), we have

\[
\Sigma_i \Gamma = Y^{-T} (Y^T \Sigma_i Y) \text{diag}(\gamma_j I_{\hat{p}_j})Y^{-1} = Y^{-T} \text{diag}(\gamma_j I_{\hat{p}_j})(Y^T \Sigma_i Y)Y^{-1} = \Gamma^T \Sigma_i,
\]

i.e., \(\Gamma \in \mathcal{M}(\{\Sigma_i\}) \).

Partition \(\Gamma = [\Gamma_{jk}] \) with \(\Gamma_{jk} \in \mathbb{R}^{p_j \times p_k} \). Recall (4) and (5), by (P2), we have \(\Gamma_{jk} = 0 \) for \(j \neq k \), i.e., \(\Gamma \) is \(\tau_p \)-block diagonal; using (P1), \(\Gamma = Y \text{diag}(\gamma_j I_{\hat{p}_j})Y^{-1} \) and \(\cup_{j=1}^\ell \lambda(\Gamma_{jj}) = \lambda(\Gamma) \), we know that \(\lambda(\Gamma_{k_j k_j}) = \lambda(\gamma_j I_{\hat{p}_j}) \) for \(1 \leq j \leq \ell \), where \(\{k_1, k_2, \ldots, k_\ell\} \) is a permutation of \(\{1, 2, \ldots, \ell\} \). Thus, \(\hat{p}_j = p_{k_j} \) for \(1 \leq j \leq \ell \). In other words, there exists a permutation \(\Pi_\ell \in \mathbb{R}^{\ell \times \ell} \) such that \(\hat{\tau}_p = \tau_p \Pi_\ell \). Let \(\Pi \in \mathbb{R}^{p \times p} \) be the permutation matrix associated with \(\Pi_\ell \). Then

\[
\text{diag}(\gamma_1 I_{p_{k_1}}, \ldots, \gamma_\ell I_{p_{k_\ell}}) = \Pi^T \text{diag}(\gamma_1 I_{p_1}, \ldots, \gamma_\ell I_{p_\ell}) \Pi.
\]

where \(\gamma_j' \) is the eigenvalue of \(\Gamma_{jj} \). Then it follows that

\[
\text{diag}(\Gamma_1, \ldots, \Gamma_\ell) = Y \Pi^T \text{diag}(\gamma_1 I_{p_1}, \ldots, \gamma_\ell I_{p_\ell})(Y \Pi^T)^{-1}.
\]

Noticing that the columns of \(Y \Pi^T \) are eigenvectors of \(\Gamma \), we know that \(Y \Pi^T \) is \(\tau_p \)-block-diagonal. Therefore, we can rewrite \(\hat{A} = AY^{-T} \) as \(\hat{A} = A(Y \Pi^T)^{-1} \Pi \), in which \((Y \Pi^T)^{-1} \) is \(\tau_p \)-block-diagonal, \(\Pi \) is the permutation matrix associated with \(\Pi_\ell \). So, \((\tau_p, A)\) and \((\hat{\tau}_p, \hat{A})\) are equivalent. The proof is completed. \(\square \)
6.5 Proof of Theorem 2.5

Theorem 2.5. Given a set \(D = \{ D_i \}_{i=1}^m \) of \(q \)-by-\(q \) matrices with \(D \) having full column rank.

(I) If \(D \) does not have a nontrivial diagonalizer, then the feasible set of \(\text{OPT}(D) \) is empty.

(II) If \(D \) has a nontrivial diagonalizer, then \(\text{OPT}(D) \) has a solution \(X_* \). In addition, assume

\[
\mu = \min_{\|z\|=1} \sqrt{\sum_{i=1}^m |z^H D_i z|^2} > 0,
\]

then \(X_* \) has two distinct real eigenvalues, and the gap between them are no less than two.

Proof. First, we show of (I) via its the contrapositive. If the feasible set of \(\text{OPT}(D) \) is not empty, then it has a solution \(X_* \). Using \(\text{tr}(X_*) = 0 \), \(\text{tr}(X_*^T) = q > 0 \), we know that \(X_* \) can be factorized into \(X_* = Y \text{diag}(\Gamma_1, \Gamma_2) Y^{-1} \), where \(\Gamma_1, \Gamma_2 \) are real matrices and \(\lambda(\Gamma_1), \lambda(\Gamma_2) \) lie in the open left and closed right complex planes, respectively. Therefore, \(\lambda(\Gamma_1) \cap \lambda(\Gamma_2) = \emptyset \). By Theorem 2.3, \(D \) has a nontrivial diagonalizer, completing the proof of (I).

Next, we show (II). Let \(\gamma \) be an arbitrary eigenvalue of \(X_* \), and \(z \) be the corresponding eigenvector. Using \(X_* \in \mathcal{M}(D) \), we have

\[
0 = z^H D_i X_* z - z^H X_*^T D_i z = (\gamma - \bar{\gamma}) z^H D_i z, \quad \text{for } 1 \leq i \leq m.
\]

Then it follows that

\[
(\gamma - \bar{\gamma}) \sum_{i=1}^m |z^H D_i z|^2 = 0.
\]

Since \(\mu > 0 \) has full column rank, we know that \(\sum_{i=1}^m |z^H D_i z|^2 = 0 \). Therefore, \(\gamma \) is real. And it follows \(\lambda(X_*) \subset \mathbb{R} \).

Now we show that \(X_* \) has two distinct eigenvalues. Denote the eigenvalues of \(X_* \) by \(\gamma_1 \leq \cdots \leq \gamma_q \). Then

\[
\text{tr}(X_*) = \sum_{j=1}^q \gamma_j = 0, \quad \text{tr}(X_*^2) = \sum_{j=1}^q \gamma_j^2 = q, \quad \text{tr}(X_*^4) = \sum_{j=1}^q \gamma_j^4.
\]

Using the method of Lagrange multipliers, we consider

\[
L(\gamma_1, \ldots, \gamma_q; \mu_1, \mu_2) = \sum_{j=1}^q \gamma_j^4 + \mu_1 \sum_{j=1}^q \gamma_j^2 + \mu_2 \left(\sum_{j=1}^q \gamma_j^2 - q \right),
\]

where \(\mu_1, \mu_2 \) are Lagrange multipliers. By calculations, we have

\[
\frac{\partial L}{\partial \gamma_j} = 4\gamma_j^3 + \mu_1 + 2\mu_2 \gamma_j = 0.
\]

Noticing that \(\gamma_j \)'s are the real roots of the third order equation \(4\gamma^3 + 2\mu_2 \gamma + \mu_1 = 0 \), which has one real root or three real roots, we know that either \(\gamma_j \)'s are identical to the unique real root or \(\gamma_j \) is one of the three real roots for all \(j \). The former case is impossible since \(\sum_j \gamma_j = 0 \) and \(\sum_j \gamma_j^2 = q \). For the latter case, set \(\gamma_1 = \cdots = \gamma_{q_1} = t_1, \gamma_{q_1+1} = \cdots = \gamma_{q_1+q_2} = t_2 \) and \(\gamma_{q_1+q_2+1} = \cdots = \gamma_q = t_3 \), where \(t_1 \leq t_2 \leq t_3 \) are the three real roots, \(q_1, q_2 \) and \(q_3 \) are respectively the multiplicities of \(t_1, t_2 \) and \(t_3 \) as eigenvalues of \(X_* \). If \(t_1 = t_2 \) or \(t_2 = t_3 \), \(X_* \) has two distinct eigenvalues. In what follows we assume \(t_1 < t_2 < t_3 \).

Using (29), we get

\[
q_1 t_1 + q_2 t_2 + q_3 t_3 = 0, \quad q_1 t_1^2 + q_2 t_2^2 + q_3 t_3^2 = q, \quad \text{tr}(X_*^4) = q_1 t_1^4 + q_2 t_2^4 + q_3 t_3^4.
\]

Introduce two vectors \(u = [\sqrt{q_1} t_1^2, \sqrt{q_2} t_2^2, \sqrt{q_3} t_3^2]^T \), \(v = [\sqrt{q_1}, \sqrt{q_2}, \sqrt{q_3}]^T \). Then we have \(\|u\| = \sqrt{\text{tr}(X_*^2)}, \|v\| = \sqrt{q} \). Using Cauchy’s inequality, we get

\[
\text{tr}(X_*^4) = \|u\|^2 \|v\|^2 / q \geq (u^T v)^2 / q = (q_1 t_1^2 + q_2 t_2^2 + q_3 t_3^2) / q = q,
\]
and the equality holds if and only if u and v are co-linear. Using the first two equalities of (31), q_1, q_2, q_3 cannot have more than one zeros. If one of q_1, q_2, q_3 is zero, X_* has two distinct eigenvalues. Otherwise, q_1, q_2 and q_3 are all positive integers. Therefore, $t_1^2 = t_2^2 = t_3^2$, which implies that X_* has two distinct eigenvalues.

The above proof essentially show that the optimal value is achieved at $X = X_*$. The following statements show that such an X is feasible in $\mathcal{N}(D)$. If D has a nontrivial diagonalizer, then there exists a matrix Z such that $D_i = Z\Phi_iZ^\top$, where Φ_i’s are $\tau_q = (q_1, q_2)$-block diagonal. Since D has full column rank, Z is nonsingular. Let $X = Z^{-T}\text{diag}(\sqrt{q_1}/q_1^2, \sqrt{q_2}/q_2^2)Z^\top$. It is easy to see that $\text{tr}(X) = 0$, $\text{tr}(X^2) = 1$ and $X \in \mathcal{N}(D)$. In other words, there exists a feasible X which has two distinct real eigenvalues. Therefore, we may declare that $\text{OPT}(D)$ is minimized at $X = X_*$, with X_* having two distinct real eigenvalues.

Lastly, let $\gamma_1 > \gamma_2$ be the distinct real eigenvalues of X_*, with multiplicities q_1 and q_2, respectively, we show $\gamma_1 - \gamma_2 \geq 2$. Rewrite the first equalities of (29) as

$$q_1\gamma_1 + q_2\gamma_2 = 0, \quad q_1\gamma_1^2 + q_2\gamma_2^2 = q.$$

By calculations, we get $\gamma_1 = \sqrt{\frac{q_2}{q_1}}$, $\gamma_2 = -\sqrt{\frac{q_2}{q_1}}$. Then it follows that

$$\gamma_1 - \gamma_2 = \sqrt{\frac{q_2}{q_1}} + \sqrt{\frac{q_1}{q_2}} \geq 2,$$

completing the proof.

\section{Proof of Theorem 2.6}

\textbf{Theorem 2.6}. Assume that the BJBDP for C is uniquely τ_p-block-diagonalizable, and let (τ_p, A) be a solution satisfying (1). Then (τ_p, A) can be identified via Algorithm 2, almost surely.

\textbf{Proof}. If we can show $\text{card}(\hat{\tau}_p) = \text{card}(\tau_p)$, then $(\hat{\tau}_p, \hat{A})$ is also a solution to the BJBDP for C. Since the BJBDP is uniquely τ_p-block-diagonalizable, we know that $(\hat{\tau}_p, \hat{A})$ is equivalent to (τ_p, A), i.e., (τ_p, A) is identified. Next, we show $\text{card}(\hat{\tau}_p) = \text{card}(\tau_p)$. The following facts are needed.

\begin{enumerate}[(1)]
 \item Given a matrix set D with D having full column rank. If D does not have any τ_q-block diagonalizer with $\text{card}(\tau_q) \geq 2$, then $\hat{\tau}$ on Line 9 of Algorithm 2 satisfies $\text{card}(\hat{\tau}) = 1$; Otherwise, $\text{card}(\hat{\tau}) = 2$.
 \item Denote $\hat{Z}^{-1}Di\hat{Z}^{-\top} = \text{diag}(D_i^{(1)}, D_i^{(2)})$, $D^{(1)} = \{D_i^{(1)}\}$ and $D^{(2)} = \{D_i^{(2)}\}$. Then $D^{(1)}$ and $D^{(2)}$ both have full column rank.
\end{enumerate}

Fact (1) is because when $\text{card}(\hat{\tau}) > 1$, D can be block diagonalized. Fact (2) is due to the fact \hat{Z} is nonsingular and $\hat{Z}^{-1}Di\hat{Z}^{-\top} = \text{diag}(D_i^{(1)}, D_i^{(2)})$.

Now assume that the solution $(\hat{\tau}_p, \hat{A})$ returned by Algorithm 2 satisfies

$$\hat{\tau}_p = (\hat{p}_1, \ldots, \hat{p}_\ell), \quad C_i = \hat{A}\hat{\Sigma}_i\hat{A}^\top = \hat{A}\text{diag}(\hat{\Sigma}_i^{(1)}, \ldots, \hat{\Sigma}_i^{(\ell)})\hat{A}^\top, \quad i = 1, \ldots, m,$$

(32)

where $\hat{\Sigma}_i$’s are all $\hat{\tau}_p$-block diagonal. Then $\ell \leq \ell$ and $(\hat{\Sigma}_i^{(j)})_{i=1}^\ell$ can be further block diagonalized for all $j = 1, \ldots, \ell$. Next, we show $\text{card}(\hat{\tau}_p) = \ell = \ell = \text{card}(\tau_p)$ by contradiction.

Using (1) and (32), we have

$$B_i = V_1^\top\hat{A}\hat{\Sigma}_i\hat{A}^\top V_1 = \hat{Z}\hat{\Sigma}_i\hat{Z}^\top = V_1^\top\hat{A}\Sigma_i\hat{A}^\top V_1 = Z\Sigma_iZ^\top.$$

(33)

where $\hat{Z} = V_1^\top\hat{A}$, $Z = V_1^\top A$. By Theorem 2.1, we know that $A(V_1) = \mathcal{R}(C_i) = \mathcal{R}(A)$. By the construction of \hat{A}, we know $A(V_1) = \mathcal{R}(\hat{A})$. Since V_1, A, \hat{A} all have full column rank, we know that \hat{Z} and Z are both nonsingular. Then it follows from (33) that

$$\hat{\Sigma}_i = Y^\top\Sigma_iY, \quad \text{for } 1 \leq i \leq m.$$

(34)
where \(Y = Z^\top \hat{Z}^{-\top} \). Let \(\Gamma = Y \operatorname{diag}(\gamma_1 I_{\tilde{p}_1}, \ldots, \gamma_\ell I_{\tilde{p}_\ell}) Y^{-1} \), where \(\gamma_1, \ldots, \gamma_\ell \) are distinct real numbers. Using (34), we have

\[
\Sigma_i \Gamma = Y^{-\top} (Y^\top \Sigma_i Y) \operatorname{diag}(\gamma_j I_{\tilde{p}_j}) Y^{-1} = Y^{-\top} \operatorname{diag}(\gamma_j I_{\tilde{p}_j})(Y^\top \Sigma_i Y) Y^{-1} = \Gamma^\top \Sigma_i,
\]

i.e., \(\Gamma \in \mathcal{M}(\{\Sigma_i\}) \).

Partition \(\Gamma = [\Gamma_{jk}] \) with \(\Gamma_{jk} \in \mathbb{R}^{p_j \times p_k} \). Recall (4) and (5), by (P2), we have \(\Gamma_{jk} = 0 \) for \(j \neq k \), i.e., \(\Gamma \) is \(\tau_p \)-block diagonal; using (P1), \(\Gamma = Y \operatorname{diag}(\gamma_j I_{\tilde{p}_j}) Y^{-1} \) and \(\cup_{j=1}^{\ell} \lambda(\Gamma_{jj}) = \lambda(\Gamma) \), we know that for each \(\Gamma_{jj} \) \((j = 1, \ldots, \ell) \), its eigenvalues are all \(\gamma_k \) \((1 \leq k \leq \ell) \). If \(\ell < \ell \), there exist at least two blocks of \(\Gamma_{jj} \)'s corresponding to the same \(\gamma_k \). Without loss of generality, let \(\Gamma_{11}, \Gamma_{22} \) correspond to \(\gamma_1 \), the remaining blocks correspond to other \(\gamma_k \)'s. Then using \(\Gamma = Y \operatorname{diag}(\gamma_1 I_{\tilde{p}_1}, \ldots, \gamma_\ell I_{\tilde{p}_\ell}) Y^{-1} \), we know that \(Y = \operatorname{diag}(Y_{11}, Y_{22}) \), where \(Y_{11} \in \mathbb{R}^{\tilde{p}_1 \times \tilde{p}_1} \) and \(\tilde{p}_1 = p_1 + p_2 \). Using \(Y = Z^\top \hat{Z}^{-\top} \) and (35), we get

\[
\hat{\Sigma}_i = Y^\top \Sigma_i Y = \operatorname{diag}(Y_{11}, Y_{22})^\top \Sigma_i \operatorname{diag}(Y_{11}, Y_{22}), \quad \text{for} \ 1 \leq i \leq m.
\]

Therefore, we have

\[
\hat{\Sigma}_i^{(11)} = Y_{11}^\top \operatorname{diag}(\Sigma_1^{(11)}, \Sigma_1^{(22)}) Y_{11}, \quad \text{for} \ 1 \leq i \leq m,
\]

which contradicts with the fact that \(\{\hat{\Sigma}_i^{(11)}\}_{i=1}^m \) cannot be further block diagonalized. The proof is completed.

6.7 Proof of Theorem 2.7

Theorem 2.7. Given a set \(\widetilde{D} = \{\widetilde{D}_i\}_{i=1}^m \) of \(q \)-by-\(q \) matrices with \(\widetilde{D} \) having full column rank. Let \(\delta = o(1) \) be a small real number.

(I) If \(\widetilde{D} \) does not have a nontrivial \(\delta \)-diagonalizer, then the feasible set of \(\operatorname{OPT}(\widetilde{D}, \delta) \) is empty.

(II) If \(\widetilde{D} \) has a nontrivial \(\delta \)-diagonalizer, then \(\operatorname{OPT}(\widetilde{D}, \delta) \) has a solution \(X_\star \). In addition, assume

\[
\mu = \min_{\|z\|=1} \sqrt{\sum_{i=1}^m |z^H \widetilde{D}_i z|^2} = O(1),
\]

and for \(i = 1, 2 \), let

\[
\text{Rect}_i \triangleq \{ z \in \mathbb{C} \mid |\text{Re}(z) - \rho_i| \leq a, |\text{Im}(z)| \leq b \},
\]

where \(a = O(\delta) \), \(b = O(\delta) \). Then

\[
\lambda(X_\star) \subset \bigcup_{i=1}^2 \text{Rect}_i, \quad \rho_1 - \rho_2 \geq 2 + O(\delta).
\]

Proof. First, we show of (I) via its the contrapositive. If the feasible set of \(\operatorname{OPT}(\widetilde{D}, \delta) \) is not empty, then \(\operatorname{OPT}(\widetilde{D}, \delta) \) has a solution \(X_\star \), which can be factorized into \(X_\star = Y \operatorname{diag}(\Gamma_1, \Gamma_2) Y^{-1} \) (since \(\text{tr}(X_\star) = 0 \) and \(\text{tr}(X_\star^2) = q \)), where \(Y \) is nonsingular, \(\Gamma_1 \in \mathbb{R}^{q_1 \times q_1}, \Gamma_2 \in \mathbb{R}^{q_2 \times q_2} \) and \(\lambda(\Gamma_1) \cap \lambda(\Gamma_2) = \emptyset \). Set \(Z = Y^{-\top}, \Phi_1 = \operatorname{diag}(Y_1^\top \widetilde{D}_1 Y_1, Y_2^\top \widetilde{D}_2 Y_2), \)

\[
g = \min \frac{\|\Gamma_1^\top X_\star - X_\star \Gamma_2^\top\|^F}{\|X_\star\|^F} \quad \text{and} \quad \kappa = \kappa_2(Y) = \frac{\sigma_{\max}(Y)}{\sigma_{\min}(Y)}. \]

By calculations, we have

\[
\|X_\star\|^2 = \text{tr}(Y^{-\top} \operatorname{diag}(\Gamma_1^\top, \Gamma_2^\top) Y Y \operatorname{diag}(\Gamma_1, \Gamma_2) Y^{-1}) \\
\leq \|Y\|^2 \text{tr}(Y^{-\top} \operatorname{diag}(\Gamma_1^\top, \Gamma_2^\top) \operatorname{diag}(\Gamma_1, \Gamma_2) Y^{-1}) \\
= \|Y\|^2 \text{tr}(\operatorname{diag}(\Gamma_1, \Gamma_2) Y^{-1} Y^{-\top} \operatorname{diag}(\Gamma_1^\top, \Gamma_2^\top)) \\
\leq \kappa^2 \text{tr}(\operatorname{diag}(\Gamma_1, \Gamma_2) \operatorname{diag}(\Gamma_1^\top, \Gamma_2^\top)) = \kappa^2 \text{tr}(X_\star^2) = \kappa^2 q,
\]

\[(36) \]
where (a) uses $X_* \in \mathcal{M}_d(\bar{D})$, (b) uses the definition of g. Then it follows from (36) and (37) that

$$
\sum_{i=1}^{m} \|\bar{D}_i - Z\Phi_i Z^\top\|_F^2 \leq \frac{\kappa^4 \|X_*\|_F^2}{g^2} \delta^2 \leq \frac{\kappa^6}{g^4} \delta^2.
$$

This completes the proof of (I).

Next, we show (II). If \bar{D} has a nontrivial δ-diagonalizer, then there exists a matrix Z such that $\sum_{i=1}^{m} \|\bar{D}_i - Z\Phi_i Z^\top\|_F^2 \leq \frac{1}{4} \delta^2$ (by setting $\delta = \frac{1}{2\sqrt{\kappa}} \delta$, the constant becomes $\frac{1}{4}$, and by definition, Z is still a δ-diagonalizer), where Φ_i’s are all $\tau_q = (q_1, q_2)$ block diagonal matrices. Let $X = Z^{-\top} \Gamma Z^\top$, where $\Gamma = \text{diag}(\sqrt{\frac{F}{q_1}}, -\sqrt{\frac{F}{q_2}})$.

By calculations, we have

$$
\|\textbf{L}(\bar{D})\vec{X}\|^2 = \sum_{i=1}^{m} \|\bar{D}_i X - X^\top \bar{D}_i\|_F^2 \leq 2 \sum_{i=1}^{m} \|\bar{D}_i - Z\Phi_i Z^\top\|_F \|X - X^\top (\bar{D}_i - Z\Phi_i Z^\top)\|_F^2 \\
\leq 4\|X\|_F^2 \sum_{i=1}^{m} \|\bar{D}_i - Z\Phi_i Z^\top\|_F^2 \leq \|X\|_F^2 \delta^2,
$$

where (a) uses $Z\Phi_i Z^\top X - X^\top Z\Phi_i Z^\top = 0$. Therefore, $\|\textbf{L}(\bar{D})\vec{X}\|_F \leq \frac{\|X\|_F \delta}{\|X\|_F} \leq \delta$. Also note that $\text{tr}(X) = 0$ and $\text{tr}(X^2) = q$, then the feasible set of $\text{opt}(\bar{D}, \delta)$ is nonempty. Consequently, $\text{opt}(\bar{D}, \delta)$ has a solution X_*. Let γ be an arbitrary eigenvalue of X_*, and z be the corresponding unit-length eigenvector. By calculations, we have

$$
\kappa^2 q^2 \delta^2 \geq \delta^2 \|X_*\|_F^2 \geq \|\textbf{L}(\bar{D})\vec{X}\|^2 \geq \sum_{i=1}^{m} \|\bar{D}_i X_* - X_*^\top \bar{D}_i\|_F^2 \\
\geq \sum_{i=1}^{m} \|z^H \bar{D}_i x_* - z^H X_*^\top \bar{D}_i z\|_F^2 = |\gamma - \bar{\gamma}|^2 \sum_{i=1}^{m} |z^H \bar{D}_i z|^2 \geq \mu^2 |\gamma - \bar{\gamma}|^2,
$$

Then we know that the imaginary part of μ is no more than $\frac{\sqrt{q} \delta}{2\mu} = O(\delta)$.

Now let the eigenvalues of X_* be $\mu_j + \eta_j \sqrt{-1}$ for $j = 1, \ldots, q$, where $\mu_j, \eta_j \in \mathbb{R}$. Then

$$
\text{tr}(X_*) = \sum_{j=1}^{q} \gamma_j = 0, \quad \text{tr}(X_*^2) = \sum_{j=1}^{q} (\gamma_j^2 - \eta_j^2) = q, \quad \text{tr}(X_*^4) = \sum_{j=1}^{q} (\gamma_j^4 + \eta_j^4 - 6\gamma_j^2 \eta_j^2).
$$
Using the method of Lagrange multipliers, we consider
\[L(\gamma_1, \eta_1, \ldots, \gamma_q, \eta_q; \mu_1, \mu_2) = \sum_{j=1}^{q} (\gamma_j^2 + \eta_j^2 - 6\gamma_j^2\eta_j^2) + \mu_1 \sum_{j=1}^{q} \gamma_j + \mu_2 \left(\sum_{j=1}^{q} (\gamma_j^2 - \eta_j^2) - q \right), \]
where \(\mu_1, \mu_2 \) are Lagrange multipliers. By calculations, we have
\[\frac{\partial L}{\partial \gamma_j} = 4\gamma_j^3 + 2(\mu_2 - 6\eta_j^2)\gamma_j + \mu_1 = 0. \] (40)
Take (40) as perturbed third order equations of \(4t^3 + 2\mu_2 t + \mu_1 = 0 \). Using Lemma 5.3 and \(|\eta_j| \leq O(\delta) \), we know that \(\gamma_j \subset \bigcup_{i=1}^{3} \{ z \mid |z - t_i| \leq O(\delta) \} \), where \(t_1, t_2 \) and \(t_3 \) are the roots of \(4t^3 + 2\mu_2 t + \mu_1 = 0 \). Next, we consider the following cases:

Case (1) \(t_1 = t_2 \notin \mathbb{R}, t_3 \in \mathbb{R} \).
In this case, set \(\rho_1 = \text{Re}(t_1), \rho_2 = t_3 \), then \(\lambda(X_*) \subset \bigcup_{i=1,2} \text{Rect}_i \).

Case (2) \(t_1, t_2, t_3 \in \mathbb{R}, t_i = \xi + O(\delta) \) for \(i = 1, 2, 3 \).
In this case, using \(t_1 + t_2 + t_3 = 0 \) (by Vieta’s formulas), we get \(\xi = O(\delta) \). Then it follows that \(|\gamma_j| = O(\delta) \) for all \(j \). Using (39) and \(\eta_j = O(\delta) \), we get \(q \times O(\delta^2) = q \), which contradicts with \(\delta = o(1) \).

Case (3) \(t_1, t_2, t_3 \in \mathbb{R}, t_i = \xi + O(\delta) \) for \(i = 1, 2 \).
In this case, set \(\rho_1 = \xi, \rho_2 = t_3 \), then \(\lambda(X_*) \subset \bigcup_{i=1,2} \text{Rect}_i \).

Case (4) \(t_1, t_2, t_3 \in \mathbb{R}, |t_i - t_j| > O(\delta) \) for \(i \neq j \).
In this case, without loss of generality, assume \(t_1 < t_2 < t_3 \), and there are \(p_i \) eigenvalues of \(X_* \) lie in \(\{ z \mid |z - t_i| \leq O(\delta) \} \), for \(i = 1, 2, 3 \). Using \(\eta_j = O(\delta) \) and (39), we get
\[\text{tr}(X_*) = q_1 t_1 + q_2 t_2 + q_3 t_3 + O(\delta) = 0, \]
\[\text{tr}(X_*^2) = q_1^2 t_1^2 + q_2^2 t_2^2 + q_3^2 t_3^2 + O(\delta) = q, \]
\[\text{tr}(X_*^3) = q_1^3 t_1^3 + q_2^3 t_2^3 + q_3^3 t_3^3 + O(\delta). \]

Let \(u = [\sqrt{q_1} t_1, \sqrt{q_2} t_2, \sqrt{q_3} t_3]^\top \), \(v = [\sqrt{q_1}, \sqrt{q_2}, \sqrt{q_3}]^\top \). Then we have \(\|u\|^2 + O(\delta) = \text{tr}(X_*^2), \|v\| = \sqrt{q} \). Using Cauchy’s inequality, we get
\[\text{tr}(X_*^4) + O(\delta) = \|u\|^2 = \|u\|^2 \|v\|^2 / q \geq (u^\top v)^2 / q = (q_1^2 t_1^2 + q_2^2 t_2^2 + q_3^2 t_3^2)^2 / q = q + O(\delta), \]
and the equality holds if and only if \(u \) and \(v \) are co-linear. Using the first two equalities of (41), \(q_1, q_2, q_3 \) can not have more than one zeros. If one of \(q_1, q_2, q_3 \) is zero, say \(q_3 = 0 \), then the eigenvalues of \(X_* \) lie in two disks \(\bigcup_{i=1,2,3,q_i \neq 0} \{ z \mid |z - t_i| \leq O(\delta) \} \). Otherwise, \(q_1, q_2 \) and \(q_3 \) are all positive integers. Therefore, \(t_2^2 = t_2^2 = t_3^2 \), which implies that \(t_2 = t_1 \) or \(t_2 = t_3 \). This contradicts with \(t_1 < t_2 < t_3 \). To summarize, the eigenvalues of \(X_* \) lie in \(\bigcup_{i=1,2} \text{Rect}_i \).

The above proof essentially show that the optimal value is achieved at \(X \equiv X_* \), with its eigenvalues lie in \(\bigcup_{i=1,2} \text{Rect}_i \). The following statements show that such an \(X \) is feasible in \(\mathcal{M}(\tilde{D}) \).

If \(\tilde{D} \) has a nontrivial \(\delta \)-diagonalizer, then there exists a matrix \(Z \) such that \(\sum_{i=1}^{m} \| \tilde{D}_i - Z \Phi_i Z^\top \|^2_F \leq \frac{1}{4} \delta^2 \), where \(\Phi_i \)'s are all \(\tau_q = (q_1, q_2) \) block diagonal matrices. Let \(X = Z^{-1} \Gamma Z^\top \), where \(\Gamma = \text{diag}(\sqrt{q_1} I_{q_1}, -\sqrt{q_2} I_{q_2}) \). We know that \(X \) is also feasible. Therefore, we may declare that \(\text{OPT}(\tilde{D}, \delta) \) is minimized at \(X = X_* \), with the eigenvalues of \(X_* \) lying in two disks.

Lastly, let \((\rho_1, 0), (\rho_2, 0) \) be the centers of the two disks, and there are \(q_1, q_2 \) eigenvalues of \(X_* \) lie \(\text{Disk}_1, \text{Disk}_2 \), respectively. We show \(\rho_1 - \rho_2 \geq 2 + O(\delta) \). Rewrite the first two equalities of (41) as
\[q_1 \rho_1 + q_2 \rho_2 = O(\delta), \quad q_1 \rho_1^2 + q_2 \rho_2^2 = q + O(\delta). \]
By calculations, we get \(\rho_1 = \sqrt{\frac{q_1}{q_1}} + O(\delta), \rho_2 = -\sqrt{\frac{q_2}{q_2}} + O(\delta) \). Then it follows that
\[\rho_1 - \rho_2 = \sqrt{\frac{q_1}{q_1}} + \sqrt{\frac{q_2}{q_2}} + O(\delta) \geq 2 + O(\delta), \]
completing the proof. \(\square \)
6.8 Proof of Theorem 2.8

Theorem 2.8. Assume that the BjBDP for $\mathcal{C} = \{C_i\}_{i=1}^m$ is uniquely τ_p-block-diagonalizable, and let (τ_p, A) be a solution satisfying (1). Let $\tilde{C} = \{\tilde{C}_i\}_{i=1}^m = \{C_i + E_i\}_{i=1}^m$ be a perturbed matrix set of \mathcal{C}. Denote

$$
\tau_p = (p_1, \ldots, p_t), \quad \tilde{\tau}_p = (\tilde{p}_1, \ldots, \tilde{p}_\ell), \quad A = [A_1, \ldots, A_t], \quad \tilde{A} = [\tilde{A}_1, \ldots, \tilde{A}_t],
$$

where $(\tilde{\tau}_p, \tilde{A})$ is the output of Algorithm 4. Assume $\mathcal{N}(G_{jj}) = \mathcal{R}(\text{vec}(I_{p_j}))$ for all j, where G_{jj} is defined in (5a). Also assume that p is correctly identified in Line 3 of Algorithm 4. Let the singular values of \tilde{C} be the same as in Theorem 2.2,

$$
\epsilon = \frac{\|E\|}{\phi_p}, \quad r = \frac{\sqrt{2(d + 2C)}}{\sigma^2_{\min}(A)(1 - \epsilon^2)}, \quad g_j = \frac{\sqrt{2j}}{(\ell - 1)\kappa \sqrt{p}} - \max\left\{\kappa \frac{1}{\omega_{\text{sur}}}, \frac{1}{\omega_{\text{ir}}}\right\} r, \quad j = 1, 2,
$$

where C and κ are two constants.

(I) If $g_1 > 0$, then $\tilde{\ell} = \ell$, and there exists a permutation $\{1', 2', \ldots, \ell'\}$ of $\{1, 2, \ldots, \ell\}$ such that $p_j = \tilde{p}_{j'}$. In order words, $\tilde{\tau}_p \sim \tau_p$.

(II) Further assume $g_2 > \frac{\epsilon}{\omega_{\text{ir}}}$, then there exists a τ_p-block diagonal matrix D such that

$$
\| [\tilde{A}_{1'}, \ldots, \tilde{A}_{\ell'}] - AD \|_F \leq \frac{\epsilon r}{g_2 - \frac{\epsilon}{\omega_{\text{ir}}}} \| A \|_F + (\frac{\epsilon^2}{\sqrt{1 - \epsilon^2}} + \epsilon) \| \tilde{A} \|_F = O(\epsilon),
$$

where c is a constant.

Proof. Using $\|E\| < \epsilon \phi_p$ and Theorem 2.2, we have

$$
\delta = \phi_{p+1} \leq \|E\| \leq \epsilon \phi_p, \quad \|\sin \Theta(\mathcal{R}(A), \mathcal{R}(\tilde{V}_1))\| \leq \frac{\|T_1^\top E V_2\|}{\phi_p} \leq \|E\| \leq \epsilon. \tag{42}
$$

Let $[V_1, V_2]$ be an orthogonal matrix such that $\mathcal{R}(V_1) = \mathcal{R}(A), \mathcal{R}(V_2) = \mathcal{N}(A^\top)$. Then we can write $\tilde{V}_1 = V_1 T_c + V_2 T_s$, where $[T_c \ T_s]$ is orthonormal, $\|T_s\| \leq \epsilon$, $\sigma_{\min}(T_c) = \sqrt{1 - \|\sin \Theta(V_1, \tilde{V}_1)\|^2} \geq \sqrt{1 - \epsilon^2}$. Therefore, T_c is nonsingular. Let $B_t = V_1^\top C_t V_1, ~ \tilde{B}_t = \tilde{V}_1^\top C_t \tilde{V}_1$. And by calculations, we have

$$
\| \tilde{B}_t - T_c^\top B_t T_c \|_F = \| \tilde{V}_1^\top (C_i + E_i) \tilde{V}_1 - T_c^\top V_1^\top C_i V_1 T_c \|_F
\leq \| \tilde{V}_1^\top C_i \tilde{V}_1 - T_c^\top V_1^\top C_i V_1 T_c + \tilde{V}_1^\top E_i \tilde{V}_1 \|_F
\leq (a) T_c^\top V_1^\top C_i V_2 T_s + T_s^\top V_2^\top C_i V_1 T_c + T_c^\top V_2^\top C_i V_2 T_s + T_s^\top V_1^\top E_i \tilde{V}_1 \|_F
\leq (b) \| E_i \|_F, \tag{43}
$$

where (a) uses $\tilde{V}_1 = V_1 T_c + V_2 T_s$, (b) uses $A^\top V_2 = 0$ (by Theorem 2.1).

On one hand, let $Z = T_c^\top V_1^\top A$, using (1), we have

$$
T_c^\top B_t T_c = T_c^\top V_1^\top A \Sigma_i A^\top V_1 T_c = Z \Sigma_i Z^\top. \tag{44}
$$

On the other hand, on output of Algorithm 4, it holds that

$$
\sum_{i=1}^m \| \tilde{B}_i - \tilde{Z} \Sigma_i \tilde{Z}^\top \|_F^2 \leq C \delta^2 \leq C \phi_p^2 \| E \|_F = C \phi_p^2 \epsilon^2, \tag{45}
$$

where $\Sigma_i = \text{diag}(\Sigma_{i1}, \ldots, \Sigma_{i\ell'})$’s are all $\tilde{\tau}_p = (\tilde{p}_1, \ldots, \tilde{p}_\ell)$-block diagonal, and for each $1 \leq j \leq \tilde{\ell}$, $\{\Sigma_{ij}\}_{i=1}^m$ does not have δ-block diagonalizer.
Using (43), (44) and (45), we have
\[
\sum_{i=1}^{m} \|Z_{i}Z_{i}^{\top} - \hat{Z} \hat{Z}^{\top}\|_{F}^{2} \leq 2 \sum_{i=1}^{m} \left(\|Z_{i}Z_{i}^{\top} - \hat{B}_{i}\|_{F}^{2} + \|\hat{B}_{i} - \hat{Z} \hat{Z}^{\top}\|_{F}^{2} \right)
\leq 2 \left(\sum_{i=1}^{m} \|E_{i}\|_{F}^{2} + C \phi_{p}^{2} \epsilon^{2} \right) = \|E\|_{F}^{2} + 2C \phi_{p}^{2} \epsilon^{2}
\leq (d + 2C) \phi_{p}^{2} \epsilon^{2}. \tag{46}
\]

As \(T_{c}\) is nonsingular, \(A\) has full column rank, \(\mathcal{R}(V_{1}) = \mathcal{R}(A)\), we know that \(Z\) is nonsingular. \(\hat{Z}\) is also nonsingular since it is the product of a sequence of nonsingular matrices. Then we may let \(Y = Z^{\top} \hat{Z}^{\top}\), \(\Gamma = Y \hat{Y}^{-1} = \frac{1}{\hat{\epsilon}} \text{diag}(\gamma_{1} I_{p_{1}}, \ldots, \gamma_{\ell} I_{p_{\ell}})Y^{-1}\), where \(\gamma_{j} = -1 + \frac{2(j-1)}{\ell-1}\) for \(j = 1, \ldots, \ell\), \(\hat{\epsilon} = \|Y \text{diag}(\gamma_{1} I_{p_{1}}, \ldots, \gamma_{\ell} I_{p_{\ell}})Y^{-1}\|_{F}\). It follows
\[
\hat{\epsilon} = \sqrt{\sum_{j=1}^{\ell} \hat{\gamma}_{j}^{2}} \leq \sqrt{\kappa(Y)} \sqrt{\hat{\epsilon}}. \tag{47}
\]

Denote \(F_{i} = Z_{i}Z_{i}^{\top} - \hat{Z} \hat{Z}^{\top}\) for all \(i\). Direct calculations give rise to
\[
\sum_{i=1}^{m} \|\Sigma_{i} \Gamma^{\top} \Sigma_{i} \|_{F}^{2} = \sum_{i=1}^{m} \left(\|Z_{i}Z_{i}^{\top} - \hat{Z} \hat{Z}^{\top}\|^2_{F} - \|Z_{i}Z_{i}^{\top} - \hat{Z} \hat{Z}^{\top}\|_{F}^{2} \right)
= \sum_{i=1}^{m} \|Z_{i}Z_{i}^{\top} - \hat{Z} \hat{Z}^{\top}\|_{F}^{2} - \left(\|Z_{i}Z_{i}^{\top} - \hat{Z} \hat{Z}^{\top}\|_{F}^{2} \right)
\leq 2 \|\Gamma\|_{F}^{2} \sum_{i=1}^{m} \|Z_{i}Z_{i}^{\top} - \hat{Z} \hat{Z}^{\top}\|_{F}^{2}
\leq 2 \|\Gamma\|_{F}^{2} \sum_{i=1}^{m} \|Z_{i}Z_{i}^{\top} - \hat{Z} \hat{Z}^{\top}\|_{F}^{2} \leq \frac{2(d + 2C) \phi_{p}^{2} \epsilon^{2}}{\sigma_{\min}(Z)} \leq r^{2}, \tag{48}
\]

where (a) uses (46), \(\|\Gamma\|_{F} = 1\) and (b) uses the definition of \(r\) and \(\sigma_{\min}(T_{c}) \geq \sqrt{1 - \epsilon^{2}}\).

Partition \(\Gamma = [\Gamma_{jk}]\) with \(\Gamma_{jk} \in \mathbb{R}_{\ell \times \ell}\), and recall (4) and (5). Using (48), we get
\[
\sum_{j=1}^{\ell} \|G_{jj} \text{vec}(\Gamma_{jj})\|^{2} + \sum_{1 \leq j < k \leq \ell} \left\| G_{jk} \begin{bmatrix} \text{vec}(\Gamma_{jk}) \\ -\text{vec}(\Gamma_{kj}) \end{bmatrix} \right\|^{2} = \sum_{j=1}^{m} \|\Sigma_{j} \Gamma^{\top} \Sigma_{j} \|_{F}^{2} \leq r^{2}. \tag{49}
\]

Let \(r_{jj} = G_{jj} \text{vec}(\Gamma_{jj})\), the eigenvalues of \(\Gamma_{jj}\) be \(\gamma_{j1}, \ldots, \gamma_{jp_{j}}\), for \(j = 1, \ldots, \ell\). Then we have
\[
\Gamma_{jj} = \hat{\Gamma}_{jj} + \hat{\gamma}_{jj} I_{p_{j}},
\]
where \(\hat{\Gamma}_{jj} = \text{reshape}(G_{jj}^{\top} r_{jj}, p_{j}, p_{j})\). And it follows that
\[
\sum_{k=1}^{p_{j}} |\gamma_{jk} - \hat{\gamma}_{jk}|^{2} \leq \|\hat{\Gamma}_{jj}\|_{F}^{2} \leq \frac{\|r_{jj}\|^{2}}{\omega_{ir}^{2}}. \tag{50}
\]

Let \(r_{jk} = G_{jk} \begin{bmatrix} \text{vec}(\Gamma_{jk}) \\ -\text{vec}(\Gamma_{kj}) \end{bmatrix}\), for \(1 \leq j < k \leq \ell\). Then we have
\[
\|\Gamma_{jk}\|_{F}^{2} + \|\Gamma_{kj}\|_{F}^{2} \leq \|G_{jk}^{\top} r_{jk}\|^{2} \leq \frac{\|r_{jk}\|^{2}}{\omega_{neq}^{2}}. \tag{51}
\]
Let \(\mu_{jk} = \arg\min_{\gamma \in \{\gamma_1, \ldots, \gamma_p\}} |\frac{2}{\theta} - \gamma_{jk}| \). By Sun (1996, Remark 3.3, (2)), it holds that

\[
\sum_{j=1}^{\ell} \sum_{k=1}^{p_j} \frac{\mu_{jk}}{\theta} - \gamma_{jk}|^2 \leq \kappa^2(Y) \sum_{j<k} \left(\|\Gamma_{jk}\|_F^2 + \|\Gamma_{kj}\|_F^2 \right)
\]

(52)

Using (50), (51) and (52), we have

\[
\sum_{j=1}^{\ell} \sum_{k=1}^{p_j} \left| \frac{\mu_{jk}}{\theta} - \gamma_{jk} \right|^2 \leq \sum_{j=1}^{\ell} \sum_{k=1}^{p_j} \left| \frac{\mu_{jk}}{\theta} - \gamma_{jk} \right|^2 + \sum_{j=1}^{\ell} \sum_{k=1}^{p_j} \left| \gamma_{jk} - \gamma_j \right|^2
\]

\[
\leq \frac{\kappa^2(Y)}{\omega_{\text{neq}}} \sum_{j<k} \|r_{jk}\|^2 + \frac{1}{\omega_{\text{ir}}} \sum_{j} \|r_{jj}\|^2 \leq \max \left\{ \frac{\kappa^2(Y)}{\omega_{\text{neq}}}, \frac{1}{\omega_{\text{ir}}} \right\} r^2.
\]

(53)

Now we declare that for any \(j \), it holds that \(\mu_{j1} = \mu_{j2} = \cdots = \mu_{jp_j} \). Because otherwise, without loss of generality, say \(\mu_{j1} = \gamma_1, \mu_{j2} = \gamma_2 \), and they correspond to \(\hat{\gamma}_j \), then we have

\[
\sum_{j=1}^{\ell} \sum_{k=1}^{p_j} \left| \frac{\mu_{jk}}{\theta} - \gamma_{jk} \right|^2 \geq \frac{\gamma_1}{\theta} - \hat{\gamma}_j|^2 + \frac{\gamma_2}{\theta} - \hat{\gamma}_j|^2 \geq \frac{|\gamma_1 - \gamma_2|^2}{2\theta^2} \geq \frac{2}{(\ell - 1)^2 \kappa^2(Y)p},
\]

(54)

where the last inequality uses the definition of \(\gamma_j \) and also (47). Combining (53) and (54), we get \(\max \{ \frac{\kappa(Y)}{\omega_{\text{neq}}}, \frac{1}{\omega_{\text{ir}}} \} r \geq \frac{1}{(\ell - 1)^2 \kappa(Y)} \sqrt{\frac{p}{\rho}} \), which contradicts to the assumption that \(g_1 > 0 \). Therefore, \(\ell = \ell \), and there exists a permutation \(\{1', 2', \ldots, \ell'\} \) of \(\{1, 2, \ldots, \ell\} \) such that \(p_j = \hat{p}_j \), completing the proof of (I).

Without loss of generality, let \(j' = j \) for all \(j = 1, \ldots, \ell \). Let \(Y^{-\top} = [Y_{jk}] \),

\[
R = [R_{jk}] = \text{OffBlkdiag}_{\tau_{\rho}}(\text{OffBlkdiag}_{\tau_{\rho}}(\Gamma^\top Y^{-\top}) + \text{diag}(\Gamma_{11} - \gamma_1 I, \ldots, \Gamma_{\ell \ell} - \gamma_\ell I)) \text{OffBlkdiag}_{\tau_{\rho}}(Y^{-\top}),
\]

where \(Y_{jk}, R_{jk} \in \mathbb{R}^{p_j \times p_k} \). Using \(\Gamma = Y(Y)Y^{-1} = \frac{1}{\theta} Y \text{diag}(\gamma_1 I_{p_1}, \ldots, \gamma_\ell I_{p_\ell})Y^{-1} \), we have \(\Gamma^\top Y^{-\top} = Y^{-\top} \Gamma \), whose off-block diagonal part reads

\[
\text{diag}(\gamma_1 I, \ldots, \gamma_\ell I) \text{OffBlkdiag}_{\tau_{\rho}}(Y^{-\top}) = \text{OffBlkdiag}_{\tau_{\rho}}(Y^{-\top}) \frac{1}{\theta} \text{diag}(\gamma_1 I, \ldots, \gamma_\ell I) = -R.
\]

Then it follows that \((\hat{\gamma}_j - \frac{2}{\theta}) Y_{jk} = R_{jk} \) for \(j \neq k \). By calculations, we have

\[
\|Y_{jk}\|_F = \frac{\|R_{jk}\|_F}{|\gamma_j - \frac{2}{\theta}|} \leq \frac{\|R_{jk}\|_F}{|\gamma_j - \frac{2}{\theta}|} \leq \frac{\|R_{jk}\|_F}{\theta (\ell - 1)^2} \leq \frac{1}{\theta} \|\Gamma^\top Y^{-\top} + \frac{1}{\omega_{\text{ir}}} \sqrt{\sum_j \|r_{jj}\|^2} \|\text{OffBlkdiag}_{\tau_{\rho}}(Y^{-\top})\|_F
\]

where (a) uses the definition of \(\gamma_j \), (b) uses (47) and (53), (c) uses (50). Therefore,

\[
\|\text{OffBlkdiag}_{\tau_{\rho}}(Y^{-\top})\|_F \leq \frac{\|R\|_F}{\theta}
\]

\[
\leq \frac{1}{\theta} \left(\|\text{OffBlkdiag}_{\tau_{\rho}}(\Gamma^\top)\|_F \|Y^{-\top}\| + \frac{1}{\omega_{\text{ir}}} \sqrt{\sum_j \|r_{jj}\|^2} \|\text{OffBlkdiag}_{\tau_{\rho}}(Y^{-\top})\|_F \right),
\]

and hence

\[
\|\text{OffBlkdiag}_{\tau_{\rho}}(Y^{-\top})\|_F \leq \frac{\|\text{OffBlkdiag}_{\tau_{\rho}}(\Gamma^\top)\|_F \|Y^{-\top}\| + \frac{1}{\omega_{\text{ir}}} \sqrt{\sum_j \|r_{jj}\|^2} \|\text{OffBlkdiag}_{\tau_{\rho}}(Y^{-\top})\|_F}{\theta - \frac{r_{\text{neq}}}{\omega_{\text{ir}}}} \leq \frac{r_{\text{neq}}}{\theta (\ell - 1)^2} \leq \frac{r_{\text{neq}}}{\theta (\ell - 1)^2 \kappa(Y)},
\]

(55)
where the last inequality uses (50) and (51).

Finally, by calculations, we have

\[\hat{A} = \tilde{V}_1 \tilde{Z} = (V_1 T_c + V_2 T_s) \tilde{Z} = (V_1 T_c^{-\top} (I - T_s^\top T_s) + V_2 T_s) \tilde{Z} \]
\[= V_1 T_c^{-\top} Y Y^- \top + (-V_1 T_c^{-\top} (T_s^\top T_s) + V_2 T_s) \tilde{Z} \]
\[= A Y Y^- \top + (-V_1 T_c^{-\top} (T_s^\top T_s) + V_2 T_s) \tilde{Z} \]
\[= A \text{diag}(Y_{11}, \ldots, Y_{\ell\ell}) + A \text{OffBlkdiag}_\tau (Y^- \top) + (-V_1 T_c^{-\top} (T_s^\top T_s) + V_2 T_s) \tilde{Z}, \]

and it follows that

\[\| \hat{A} - A \text{diag}(Y_{11}, \ldots, Y_{\ell\ell}) \|_F \leq \| A \| \| \text{OffBlkdiag}_\tau (Y^- \top) \|_F + (\| T_c^{-\top} (T_s^\top T_s) + \| T_s \|) \| \tilde{Z} \|_F \]
\[\leq \| A \| \frac{\epsilon}{\omega_{\text{min}}} \| Y^- \top \| + (\epsilon^2 \sqrt{1 - \epsilon^2} + \epsilon) \| A \|_F. \]

The proof is completed.