Identification of Matrix Joint Block Diagonalization

Supplementary Materials

5 Preliminary

In this section, we present some preliminary results that will be used in subsequent proofs.
The following lemma is the well-known Weyl theorem (Stewart and Sun, 1990, p.203).

Lemma 5.1. For two Hermitian matrices A, Ae C et Ay < -+ < Apy Ay < -+ < A\, be eigenvalues of A,
A, respectively. Then

N~ NI <IA-A|, for1<j<n.

The following lemma gives some fundamental results for sin ©(U, V'), which can be easily verified via definition.

Lemma 5.2. Let [U, U] and [V, V.| be two orthogonal matrices with U € R™** V € R"*¢. Then
Isin©U, V)|l = U VI = U Vell.

The following lemma discusses the perturbation bound for the roots of a third order equation.

Lemma 5.3. Given a perturbed third order equation t3 + (p + €)t +q =0, where p, ¢ € R and € € R is a small
perturbation. Denote the roots of t3 + pt +q = 0 by t1, ta, t3, and assume that the multiplicity of each root is no
more than two. Then the roots of 2 + (p+ €)t + ¢ =0 lie in U3_{z € C | |z — t;| <}, where r = O(y/e).

Proof. Let the roots of 3 + (p + €)t + ¢ = 0 be t1, to, t3. Notice that ti, to and t3 are the eigenvalues of

0 1 0 0 1 0
A=10 0 1|,1y, 1, t3 are the eigenvalues of A= | 0 0 1|. Since the multiplicity of ¢; is no more
—-q¢ —p 0 —q¢ —p—¢€ 0

than two, the size of each diagonal block of the Jordan canonical form of A is no more than two. Using Kahan
et al. (1982, Theorem 8), we know that for each ¢;, there exists a t; such that

=ty 0 o0 0
L+t =t 0 e 0
where s = 1 or 2. Therefore, |t; —t;| < O(y/€). The conclusion follows. O

6 Proofs

In this section, we present the proofs of the theoretical results in the paper.

6.1 Proof of Theorem 2.1

Theorem 2.1. Let (7, A) be a solution to BJBDP for C. Then Z(A) = A4 (C)* = Z(C").

Proof. Using (1), for any v € A4 (A1), we have Cjz = AX; ATz = 0, similarly, C;' = 0. Therefore, #(A") C

A(Q).

Next, we show 0,(C) > 0 by contradiction. If 0,(C) = 0, there exists a nonzero vector v ¢ .4 (AT) such that

Cv =0. Let w= ATv, we know that w # 0. Partition w as w = [wy ,...,w, |, where w; € RPi for j =1,...,/.

Then there at least exists one w; # 0. Without loss of generality, assume w; # 0. It follows from Cv = 0 that
S

0=Civ=AY;ATv=AS,w=A : . (12)

E(a) Wi
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Therefore, we have 2y, = 0 for all 4. Similarly, wIsM — 0 for all i. Let w¢ € RP**®1=1) he such that
7 1“4 1

w1, w§] be nonsingular, then
i

[fwi, w§] T2 [wy, ws)

0 0 .
L) *}, fori=1,...,m,

ie,C = {2511)};»11 can be further block diagonalized, which contradicts with the assumption that (7,, A) is a
solution to the BJBDP.

Now we have dim(.#(C)) < d — p. Combining it with dim(.#(A7)) = d —p and A4 (A7) C A (C), we have

N (AT) = A#(C). Then it follows that
R(A) =N (AT)YE = (O =2(CT)
This completes the proof. O

6.2 Proof of Theorem 2.2

Theorem 2.2. Let (7,, A) be a solution to BJBDP for C. Let the columns of V, be an orthonormal basis for
N(AT), ¢1 > -+ > ¢q and ¢~)1 > > di be the singular values of C and C, respectively. Then

bp>dp—|EIl,  Spr1 < ||E||. (13)

In addition, let 51 = [U1,. .., Uy, Vl = [01,...,0p|, where 1, 0; are the left and right singular vector of E
corresponding to ¢;, respectively, and Uy, V; are both orthonormal. If ||E|| < %”, then

, ~ Ul EV;
| sin@((4), 2(V))| < 1T EVal
P
Proof. First, by Theorem 2.1, we know that ¢,41 = --- = ¢4 = 0. On the other hand, by Lemma 5.1, we have

6, — ¢l <IC—C|l = |E|, forj=1,....d.

Then (2) follows.

Second, using (2) and || E|| < %’P, we have ¢, > ¢, — || E|| > % > ||E|| > ¢ps1. Thus, Z(Vy) is well defined. By
calculations, we have

. v~ a) ~1= ~ b) ~
diag(1, ..., )V, Vo @ U7 CVa = U (C + E)VVo 2L U EVS,

where (a) uses diag(¢y, . .. ,ép)VlT = 5{"@7 (b) uses CV5 = 0. Then using Lemma 5.2, we get

- ~ - S~ U/ EV:
| sin ©((A), Z(V)|| = VT Vall = || diag(@r, .. &)~ TT EVa < W EVell

p

The proof is completed. O

6.3 Proof of Theorem 2.3

Theorem 2.3. Given C = {C;}%, with C; € R¥%. Let V; € R¥P be such that V,' V; = I,,, Z(V1) = Z(C").
Denote B; = V,' C;Vi, B = {B;}7,. Then C;’s can be factorized as in (1) with Z(A) = Z(C") if and only if
there exists a matrix X € .4#/(B), which can be factorized into

X =Y diag(X11,..., Xee)Y 1, (14)

where Y € RP*? is nonsingular, X;; € RP*Pi for 1 < j < ¢ and A(X;;) N M(Xgx) = 0 for j # k.
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Proof. (=) (Sufficiency) Let W = ATV;. Since Z(C") = #(A) = Z(V1), and Vi, A both have full column rank,
we know that W is nonsingular. Let

X =W'TW = Wt diag(vilp,, - - -, Yelp, )W, (15)
where 71, ..., be £ distinct real numbers. For all 1 <14 < m, we have

(@) ()

BXZWIS,WWITW=w's,IW=wW'rs,wW=w'Tw - "wis,w < X'"B,,
where both (a) and (b) use W = ATV, (1) and (15). Therefore, X € 4 (B), and it is of form (3).
(<) (Necessity) Substituting (3) into B; X = X B;, we get
B;Y diag(X11,...,Xp)Y ' =Y~ Tdiag(X{,,..., X2)Y " B;. (16)
Partition Y B;Y = [2Y"] with £¥) € RP»*Pr | then it follows from (16) that
SV Xp = X2, for jk=1,2,....0 (17)
Consequently, for j # k, we know that Zgjk) = 0 since A\(X,;) N A(Xgx) = 0. Then we know that
V,'CiVi=B, =Y Ty, Y1 (18)
where ¥; = diag(S"V, ..., 59). Using #(CT) = #(V1), we know that R(C;) C Z(V1) and R(C]') € #(V1).

Then it follows from (18) that
C;=VYy- T,y

Set A=V,Y~ T, the conclusion follows immediately. O
6.4 Proof of Theorem 2.4

Theorem 2.4. Let (7,, A) be a solution to the BJBDP for C, i.e., (1) holds. Then the BJBDP for C is uniquely
Tp-block-diagonalizable if and only if both (P1) and (P2) hold.

Proof. (=) (Sufficiency) First, we show (P1) by contradiction. If (P1) doesn’t hold, there exists I';; € RPi*Pi
such that vec(I';;) € A4 (G;;) and a nonsingular W; € RP*Psi such that

Tj; = W;diag(T'), 1w, (19)

337733

where I‘%) and I‘ﬁ) are two real matrices and )\(I‘( )) N )\(I‘ ) = (). Using vec(T';;) € A (Gj;), we have

20T ~TLei) =0, for1<i<m. (20)
Substituting (19) into (20), we get
SGA) s 1) (2 . 1) (@ ij .
EE”) dlag(l"gj)7l"gj)) dlag(l"gj),l"§])) Z(”) =0, forl1<i<m. (21)

where i]z(-j]) WTZ(”)W Similar to the proof of necessity for Theorem 2.3, using /\(F(l)) N )\(F(2 ) =0, we

have igjj ) for 1 < i < m are all block diagonal matrices. In other words, C;’s can be simultaneously block
diagonalizable with more than ¢ blocks. This contradicts with the fact (7, A) is the solution to the BIBDP.

Next, we show (P2), also by contradiction. Since G, is rank deficient, then there exist two matrices I'j, I';,
which are not zero at the same time, such that (4b) holds, i.e.,

IIN {0 rjk}_{oT ng} =0 (22)
0 Egkk) g 0 Ljg 0 0 Egkk)
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Since { 0 Tyk

r 0 } = 0, it has at least a nonzero eigenvalue. Now let A be a nonzero eigenvalue of { 0 Iy k} , and
kj

Iy, 0

B} be the corresponding eigenvector. Then it is easy to see that —\ is also an eigenvalue, and the corresponding

eigenvector is {—yx} . In addition,  # 0 and y # 0. Therefore, there exists a nonsingular matrix Wy, which is not

(pj, pr)-block diagonal, such that

0 T T 0 0
. -
[r ‘ (J)}:ij 0 =T 0| W}, (23)
kg 0 0 0

where T is nonsingular, A(Y) N A(—Y) = 0 and Wy, is not (p;, pk)-block diagonal. Plugging (23) into (22), similar
()

26 E(gk)} Wiy, for all 1 < ¢ <m are all block

diagonal. For the ease of notation, let j = 1, k = 2. Denote A= Adiag(Wl_zT, Ip,,...,I,,). We know that A, A

are not equivalent since Wiq is not (p1, p2)-block diagonal. This contradicts with the assumption that BJBDP for
C is uniquely 7,-block-diagonalizable, completing the proof of sufficiency.

to the proof of necessity for Theorem 2.3, we can how that Wj—; {

(<) (Necessity) Let (7, A) and (f'p,g) be two solutions to the BJBDP for C, i.e., it holds that

Ci=AS,AT = A5, AT, (24)
where X;’s are all 7,-block diagonal, ii’s are all 75-block-diagonal. It suffices if we can show that (7,, A) and
(75, W) are equivalent.

Let 7, = (p1,---,pe), 7 = (P1,--.,0;). As (7, A) and (%ﬁ,W) are both solutions, it holds that ¢ = /. By
Theorem 2.1, we know that Z(C") = Z(A) = ,%’(;1\) Since A and A are both of full column rank, we know that
p = p and there exists nonsingular matrix Z such that A = AY = T. Then it follows from (24) that

S, =YYy, forl<i<m. (25)
Let I' =Y diag(y11p,,- -, velp,)Y 1, where 71, ...,7, are distinct real numbers. Using (25), we have
LT =Y "(YTEY)diag(y;Ip,)Y ' =Y~ T diag(y,;l5,) (Y ' S,Y)Y 1 =T7%,, (26)
ie, I'e /({%:}).
Partition I = [I';;] with I';; € RPi*P*. Recall (4) and (5), by (P2), we have I';j;, = 0 for j # k, i.e., I" is 7,-block
diagonal; using (P1), I' = Y diag(y;I5,)Y " and Ui_ A(T';;) = A(I), we know that A(Tx;x,) = A(v;15,) for
1 <j < ¢, where {ki,ks,...,k;} is a permutation of {1,2,...,¢}. Thus, p; = py, for 1 < j < £. In other words,

there exists a permutation I, € R¢*¢ such that 7p = Tpllp. Let II € RP*P be the permutation matrix associated
with II,. Then

diag(y1lpy, s - -+ Yelpy,) = 07 diag(y; Iy, , - - -, YL, )L (27)
where vé is the eigenvalue of I'j;. Then it follows that
diag(T11,...,Te) = YT diag(1 Ly, - - -, Yolp, ) (YIIT) 71, (28)

Noticing that the columns of YII' are eigenvectors of I', we know that YTI" is 7,-block-diagonal. Therefore, we
can rewrite A = AY~ T as A= A(YII")~ "I, in which (YTIT)~ " is 7,-block-diagonal, II is the permutation
matrix associated with II,. So, (7,, A) and (7,, A) are equivalent. The proof is completed. O



Identification of Matrix Joint Block Diagonalization

6.5 Proof of Theorem 2.5

Theorem 2.5. Given a set D = {D;}, of ¢-by-¢ matrices with D having full column rank.
(I) If D does not have a nontrivial diagonalizer, then the feasible set of OPT(D) is empty.

(IT) If D has a nontrivial diagonalizer, then OPT(D) has a solution X,. In addition, assume

m
Z |zHD;z|2 > 0,
i=1

W = min
llzl=1

then X, has two distinct real eigenvalues, and the gap between them are no less than two.

Proof. First, we show of (I) via its the contrapositive. If the feasible set of OPT(D) is not empty, then it has a
solution X,. Using tr(X,) = 0, tr(X2) = ¢ > 0, we know that X, can be factorized into X, =Y diag(I';,['2)Y 1,
where I'1, I's are real matrices and A\(I'1), A(I'z) lie in the open left and closed right complex planes, respectively.
Therefore, A(T'1) N A(T'y) = @. By Theorem 2.3, D has a nontrivial diagonalizer, completing the proof of (T).

Next, we show (II). Let v be an arbitrary eigenvalue of X, and z be the corresponding eigenvector. Using
X, € A (D), we have

0=2"D,;X,2—1XD;z = (v- ’_y)zHDiz, for1 <i<m.

Then it follows that ,

(v=) D 12" Dz = 0.

i=1
Since g > 0 has full column rank, we know that Ele |21 D;z|? = 0. Therefore, v is real. And it follows
AMXL) CR
Now we show that X, has two distinct eigenvalues. Denote the eigenvalues of X, by 71 < -+ < 4. Then

q q

(X)) =3y =0, u(x)=32=q tx)=3 1" (20)
j=1

Jj=1 Jj=1

Using the method of Lagrange multipliers, we consider

q q q
Loy g s i) = 307+ )i +uz(2ﬁ —q>,
j=1 j=1 =1

where 1, po are Lagrange multipliers. By calculations, we have

oL

—— =47} + 1 + 297, = 0. (30)

;
Noticing that 7;’s are the real roots of the third order equation 4¢* + 2ust + py = 0, which has one real root or
three real roots, we know that either ;s are identical to the unique real root or v; is one of the three real roots for
all j. The former case is impossible since Zj v; = 0 and Zj 7]2» = q. For the latter case, set v; = --- = 74, = t1,
Y41 =" = Vgr+qo = t2 and Vg, 4qo+1 = - -+ = Yq = t3, Where t; <ty < {3 are the three real roots, g1, g2 and g¢3
are respectively the multiplicities of ¢1, to and ¢3 as eigenvalues of X,. If t; = 5 or to = t3, X, has two distinct
eigenvalues. In what follows we assume ¢; < to < t3.

Using (29), we get

Gt + @ota +qats =0, it + qots +q3t3 =g, tr(X)) = @it + qots + gsts. (31)

Introduce two vectors u = [\/qit}, /@213, /a3t3] ", v = [\/@1,/q2, /@3] - Then we have |ul| = /tr(X}),

v = \/q. Using Cauchy’s inequality, we get

tr(Xy) = [[ulP[v]*/q = (u v)?/q = (q1t] + 213 + 45t3)° /g = g,
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and the equality holds if and only if u and v are co-linear. Using the first two equalities of (31) , ¢1, ¢2, g3 can
not have more than one zeros. If one of g1, g2, q3 is zero, X, has two distinct eigenvalues. Otherwise, ¢, g2 and
g3 are all positive integers. Therefore, t? = t3 = ¢3, which implies that X, has two distinct eigenvalues.

The above proof essentially show that the optimal value is achieved at X = X,. The following statements show
that such an X is feasible in .A/(D). If D has a nontrivial diagonalizer, then there exists a matrix Z such that
D; = Z®,Z", where ®,’s are 74 = (q1,¢2)-block diagonal. Since D has full column rank, Z is nonsingular. Let

X = 77" diag(/ 21, —/21,)Z". Tt is easy to see that tr(X) = 0, tr(X?) = 1 and X € #(D). In other
words, there exists a feasible X which has two distinct real eigenvalues. Therefore, we may declare that opT(D)
is minimized at X = X,, with X, having two distinct real eigenvalues.

Lastly, let 71 > =2 be the distinct real eigenvalues of X, with multiplicities ¢; and g2, respectively, we show
71 — 2 > 2. Rewrite the first equalities of (29) as
_ 2 2 _
amnt+aer=0, av+ern =4

By calculations, we get v; = Z—f, Yo = —, /Z—;. Then it follows that

71—722\/(1*24-\/@22,
q1 q2
completing the proof. O

6.6 Proof of Theorem 2.6

Theorem 2.6. Assume that the BJBDP for C is uniquely 7,-block-diagonalizable, and let (7,, A) be a solution
satisfying (1). Then (7, A) can be identified via Algorithm 2, almost surely.

Proof. If we can show card(7,) = card(7p), then (7, ﬁ) is also a solution to the BJBDP for C. Since the BJBDP is
uniquely 7,-block-diagonalizable, we know that (7,, A) is equivalent to (7,, A), i.e., (7, A) is identified. Next, we
show card(7,) = card(r,). The following facts are needed.

(1) Given a matrix set D with D having full column rank. If D does not have any 7,-block diagonalizer with
card(ry) > 2, then 7 on Line 9 of Algorithm 2 satisfies card(7) = 1; Otherwise, card(7) = 2.

(2) Denote Z~'D;Z~ T = diag(D"), D?), DO = {DV} and D@ = {D*}. Then DV and D® both have
full column rank.

Fact (1) is because when card(#) > 1, D can be block diagonalized. Fact (2) is due to the fact Z is nonsingular
and Z7'D;Z- 7 = diag(D"), D).

Now assume that the solution (7, A\) returned by Algorithm 2 satisfies
Fo=(p1y-sBp), Ci= AT AT = Adiag(E",... SNAT, i=1,...,m, (32)

where 3;’s are all 7p-block diagonal. Then { < ¢ and {f]f” )}?;1 can be further block diagonalized for all
j=1,...,0. Next, we show card(7) = l=10= card(rp,) by contradiction.

Using (1) and (32), we have
B, =V, AS, ATV, = 25,77 =V, A, ATV = 725,77 (33)

where Z = V;T A, Z = V;T A. By Theorem 2.1, we know that Z(V;) = Z(C ") = #(A). By the construction of A,

we know Z(V1) = Z(A). Since Vi, A, A all have full column rank, we know that Z and Z are both nonsingular.
Then it follows from (33) that

S, =YYy, forl<i<nm. (34)
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where Y = ZTZ-T. Let I = Y diag(mlp,, - - - ,’ygIﬁZ)Y_l, where v1,...,7; are distinct real numbers. Using (34),
we have

ST =Y N(YTRY)diag(y;Ip,)Y ' =Y~ T diag(v;1;,) (Y 'S:Y)Y 1 =T7%,, (35)

ie, e/ ({%)).

Partition I' = [I';] with T'j; € RPi*Px. Recall (4) and (5), by (P2), we have I'j; =0 for j # k, i.e., I" is 7p-block
diagonal; using (P1), T = Ydiag('yj]ﬁj)Y_1 and Uﬁzl)\(l"jj) = A\T'), we know that for each I';; (j =1,...,¢),
its eigenvalues are all v (1 < k < é) If { < £, there exist at least two blocks of I';;’s corresponding to the same
v, Without loss of generality, let I'y1, I'so correspond to 71, the remaining blocks correspond to other 7;’s. Then
using I' = Y diag(v1 L3, , - - - ,Wlﬁz)Y_l, we know that Y = diag(Y71, Ya2), where Yi; € RP1*P1 and py = p; + po.

Using Y = Z7Z~ T and (35), we get
S =Y 5,Y = diag(Viy, Yao) ' s diag(Viy, Yao), for 1 <i<m.
Therefore, we have

EAIEH) =4 diag(Zl(-ll), 2(22))Y11, for 1 <4 <m,

which contradicts with the fact that {igll)}ﬁl can not be further block diagonalized. The proof is completed. [

6.7 Proof of Theorem 2.7

Theorem 2.7. Given a set D = {51}{21 of g-by-¢ matrices with D having full column rank. Let § = o(1) be a
small real number.

(s D does not have a nontrivial 6-diagonalizer, then the feasible set of OPT('B, J) is empty.
(IT) 1t D has a nontrivial 0-diagonalizer, then OPT(ﬁ, 0) has a solution X,. In addition, assume

= min
[Iz]l=1

> " |2MDi2|2 = 0(1),
=1

and for i = 1,2, let
Rect; 2 {z € C||Re(2) — p;| < a,|Im(2)| < b},
where a = O(4), b = O(6). Then

MX.) C UL Rect;, p1—p2>2+0(6).

Proof. First, we show of (I) via its the contrapositive. If the feasible set of OPT(ﬁ, d) is not empty, then OPT(ﬁ, 0)
has a solution X, which can be factorized into X, = Y diag(I'1,T2)Y ! (since tr(X.) = 0 and tr(X?) = g), where
Y is nonsingular, I'; € R11¥9 Ty € R%2*% and A\(T'1) N A(T2) =0. Set Z =Y~ T, & = diag(Y;' D;Y1,Y,' D;Ys),

— : HFIX_XF2”F — _ omax(Y) 3
g = min == and kK = ka(Y) = () By calculations, we have

X, 1% = tr(Y~ T diag(I'] , T3 )Y TY diag(I';,T2)Y 1)
< Y| tr(Y~ T diag(I'] , Ty ) diag(I'y, To)Y
= V|2 tr(diag(T'y, T2)Y 'Y~ T diag(T| , Ty ))
< k2 tr(diag(T'y, Ty) diag(T] , Iy )) = k2 tr(X?) = k?q, (36)
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and

(a) — m
8 ||vee(X.)|* = |L(D)vec(X.)|* = > 1 DiX. — X Dyl

=1

=> 1Z(Y T D;Y diag(T'y,T2) — diag(T{ ,T3)Y " DiY)Z" |}

=1
1 <& . ~
> s 2 1Y T DiY diag(', T2) — diag(T], I3)Y T DY 7
=1
1 & ~
> 5 Z(llYl DiYaTy — TV DiYo|[3 + ||y Dinrl—FJYJDmH%)
1=1
QP S (IVTBWIE + VT B > LS 2y T By — 0027 |2
Z Z 1Yy DiYallp + [|Ys DiYallw _K4ZH ( i DZ |IF
g o~
=a Z |D; — 22,2 "||7, (37)
=1

where (a) uses X, € A45(D), (b) uses the definition of g. Then it follows from (36) and (37) that

) 6
S 1B - 20,77 < b g o g
= 9 9

This completes the proof of (I).

Next, we show (II). If D has a nontrivial §-diagonalizer, then there exists a matrix Z such that >N ||5Z -
AR ZT||F < 152 (by setting 0 = \1@5, the constant becomes 1, and by definition, Z is still a §-diagonalizer),

where ®;’s are all 7, = (q1,¢2) block diagonal matrices. Let X = Z~ TT'ZT, where I' = diag(y/ 21y, — /L 1,,).

By calculations, we have

L@BveeX)? =3 15X — XTB2 L 23 |(Bs - 20,2T)X - XT(D, - 20,27

=1 =1

m
<AIXIPYID; — 22,27 |7 < || X|°67,
i=1
where (a) uses Z®;Z"X — X" Z®,;Z7 = 0. Therefore, ‘ILﬁ@CV&()H W< \ll‘))((l‘lé < 4. Also note that tr(X) =0 and
tr(X?) = ¢, then the feasible set of OPT(D 0) is nonempty. Consequently, OPT(D 9) has a solution X,.

Let v be an arbitrary eigenvalue of X,, and z be the corresponding unit-length eigenvector. By calculations, we
have

K2q0° > 8%|| X, [% = |L(D)vee(X)|* = Z 1D X. — X, Dy [

> M DXz — MX] Diz||7 = |y = A Z 12" Diz? = p*ly — 47, (38)

i=1

Then we know that the imaginary part of x4 is no more than */27:6 = 0(9).

Now let the eigenvalues of X, be u; +n;v/—1for j =1,...,q, where p;, n; € R. Then

q q q
=Y =0, w(X) = (v;-m)=q t(X})=>D (v} +uj—6vm). (39)
Jj=1 j=1

j=1
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Using the method of Lagrange multipliers, we consider

q q q
LV - Yoo Tigi s pi2) = () + 0 — 77?‘)“‘#12%‘"‘#2(2 =) )
j=1

j=1 j=1
where p1, po are Lagrange multipliers. By calculations, we have

oL .

A = 49] 4+ 2(p2 — 61375 + 1 = 0. (40)

O
Take (40) as perturbed third order equations of 4t + 2ust + 1 = 0. Using Lemma 5.3 and |n;| < O(d), we know
that v; C U?_ {2 | |z — t;| < O(4)}, where t1, t5 and t3 are the roots of 4t> 4+ 2ust + py = 0. Next, we consider
the following cases:

Case (1) t1 =t ¢ R, t3 €R.

In this case, set p1 = Re(t1), p2 = t3, then A(X,) C U;=1 2Rect;.

Case (2) t1,ta,t3 € R, t; =€+ 0(5) fori=1,2,3.

In this case, using t1 + t2 +t3 = 0 (by Vieta’s formulas), we get £ = O(6). Then it follows that |y;| = O(4) for all
j. Using (39) and n; = O(4), we get ¢ x O(6%) = g, which contradicts with § = o(1).

Case (3) f1,l2,t3 €R, t;, =6+ 0O(0) for i =1, 2.

In this case, set p1 = &, p2 = t3, then A(X,) C U;=1 2Rect,.

Case (4) t1,t2,t3 € R, [t; —t;| > O(9) for i # j.

In this case, without loss of generality, assume t; < to < t3, and there are p; eigenvalues of X, lie in {z | |z — ¢;] <
0(0)}, for i = 1,2,3. Using n; = O(6) and (39), we get

tr(Xy) = qit1 + gata + gsts + O(6) = 0, (41a)
tr(X2) = qit] + qot3 + g3t + O(6) = g, (41b)
tr(X1) = qit] + gots + gsts + O(9). (41c)

Let u = [\/th%, \/qigtg,\/qigtg}—r7 v = [{/q1, /q2: \/(Tg,]—r Then we have ||u]|?> + O(5) = tr(X2), |lv]| = v/q- Using

Cauchy’s inequality, we get
tr(X5) +0(8) = [lull® = [ul®[lv]*/q = (uTv)?/q = (a1t} + @213 + 5t3)* /g = ¢ + O(9),

and the equality holds if and only if u and v are co-linear. Using the first two equalities of (41) , ¢1, ¢2, g3 can
not have more than one zeros. If one of q1, g2, ¢3 is zero, say g3 = 0, then the eigenvalues of X, lie in two disks
Uiz1,2,3,02012 | |2 — ti| < O(8)}. Otherwise, g1, g2 and g3 are all positive integers. Therefore, t? = ¢3 = t%, which
implies that to = t; or to = t3. This contradicts with ¢; < t2 < t3. To summarize, the eigenvalues of X, lie in
Ui:LQRecti.

The above proof essentially show that the optimal value is achieved at X = X, with its eigenvalues lie in
Ui=1,2Rect;. The following statements show that such an X is feasible in .A45(D).

If D has a nontrivial J-diagonalizer, then there exists a matrix Z such that DOy |D; — 20,27 ||2 2, < 262, where
®,’s are all 7, = (g1, ¢2) block diagonal matrices. Let X = Z~ TI'Z T, where I' = diag(, /q—lfql, Z; I,,). We

know that X is also feasible. Therefore, we may declare that OPT(ﬁ, 0) is minimized at X = X,, with the
eigenvalues of X, lying in two disks.

Lastly, let (p1,0), (p2,0) be the centers of the two disks, and there are ¢, ¢ eigenvalues of X, lie Disk;, Disks,
respectively. We show p; — pa > 2 4+ O(9). Rewrite the first two equalities of (41) as

q1p1 + qap2 = O(8), qip; + qz2p3 = q + O(9).

By calculations, we get p1 = (/% + O(0), p2 = — /& + O(5). Then it follows that

pr—pa= 2+ /84 0©) > 2+ 006),
q1 q2

completing the proof. O
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6.8 Proof of Theorem 2.8

Theorem 2.8. Assume that the BJBDP for C = {C;}!", is uniquely 7,-block-diagonalizable, and let (7,, A) be a
solution satisfying (1). Let C = {C;}1*, = {C; + E;}I; be a perturbed matrix set of C. Denote

Tp:(plv"’vpl)7 %p:(ﬁla"'vﬁé)v A:[Ala"'vAZ]u ;{:[Alv"'vle\é]v

where (7, A) is the output of Algorithm 4. Assume N (Gjj) = Z(vec(lp,)) for all j, where G; is defined in (5a).
Also assume that p is correctly identified in Line 3 of Algorithm 4. Let the singular values of C be the same as in
Theorem 2.2,

€=”~£” Vf(d+20)¢p6 ; 7\/2 max{ n

1
) T = 5 g 7y - s — 4T, fOI'.].:1,27
(bp O min (A)(l - 62) ! (Z — 1):‘{\/]3 Wneq wir}

where C and k are two constants.

(I) If g1 > 0, then ¢ = ¢, and there exists a permutation {1/,2/,... ¢} of {1,2,...,¢} such that pj = pjr. In order
words, T, ~ Tp.

(IT) Further assume gy > wiir, then there exists a 7,-block diagonal matrix D such that

cT 2

~ ~ Wneq € ~
IAvs--, Ae} = AD|lr < =5 [ Al + +O)llAllr = O(e),

where ¢ is a constant.

Proof. Using ||E|| < ¢, and Theorem 2.2, we have

7T
|07 EVall _ JEI _

6=0pi1 IIEI S edp, [|sinOR(A), Z(V1))] < < =< (42)
Pp Pp
Let [Vi, Vo] be an orthogonal matrix such that 2(Vy) = Z(A), #(Va) = A (AT). Then we can write Vi =WT, +
VoTs, where {gj is orthonormal, ||T,|| = ||sin®(Vi,V1)|| < €, omin(TL) = \/1 — [|sin®@(V4, W)z > VI—e.
Therefore, T, is nonsingular. Let B; = vfcivl, EZ = '171T5[171 And by calculations, we have
|Bi = T BTe|lp = VAT (Ci + B VA = TV G T
< ||,‘71T0i,‘71 ~T.)V,"CN T, + /‘71TE7/‘71HF
NIV CVaT, + TV CVAT, + TV CVAT, + Vi B |5
2B, (43)
where (a) uses 171 = WT. + VoTs, (b) uses ATVo =0 (by Theorem 2.1).
On one hand, let Z = T V;" A, using (1), we have
T)BT. =TV, AS; A"V T, = Z%, 27, (44)
On the other hand, on output of Algorithm 4, it holds that
SCUB - 28,2713 < OF = €, < O3, (45)

i=1

where 3; = diag(2;1, . . ., iil;)’s are all 7, = (p1,...,py)-block diagonal, and for each 1 < j < ¢, {2i;}™, does not
have 0-block diagonalizer.
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Using (43), (44) and (45), we have

m m
DZEzT - 28273 <2) (12527 - Billy + 1B — ZE: 27 |7)

=1 i=1

203 | Eill: + Co2€*) = |E||% + 2Ch2€* < d||E|* + 2C 7€

i=1

< (d+20)¢%€. (46)

As T, is nonsingular, A has full column rank, Z(V;) = Z(A), we know that Z is nonsingular. Z is also nonsingular
since it is the product of a sequence of nonsingular matrlces Then we may let Y = ZTZ- T I =YIY ! =
%Y diag(y1lp,, - - 7,”]%)3/—1’ where v; = —1 + 26021 for j=1,...,0, 0 =|Y diag(yil3,,. - ,'ygIﬁé)Y*HF. It
follows

o= ollllr = Y diag(y11p,. - -, elp,)Y "Hlp < K(Y) (47)
Denote F;, = Z%, 7" — 2&2—'— for all ¢. Direct calculations give rise to
Z |o0 —TTs% = Z AN RS VAR A U Ay WAV Rl 1
- Z—1 Z5 72T +F)Z7 T2 - 20T Z7 Y Z%ZT + F)zZ T3
F
= ZHZ ‘pz= -1z Rz T2
i=1
i ( 2(d + 2C)¢2 2 )
< 2|3 7Rz T QA 295 Q) 48
N s (18)
where (a) uses (46), ||T||r = 1 and (b) uses the definition of r and omin(Te) > V1 — €2.
Partition I = [I';,] with I';j, € RPi*Px and recall (4) and (5). Using (48), we get
‘ vec(Tin) 1112 ~—
S G+ 3 e | e i) [ = S Imr-TTR <2 (49)
j=1 1<j<k<t kj i1
Let r;; = Gj;vec(I';;), the eigenvalues of I'j; be 7;1,...,7;p,, for j =1,...,£. Then we have
Ujg = L5 + %1y,
where fjj = reshape(G;jrjj,pj,pj). And it follows that
I G
> ik =457 < ITG501% < jjz : (50)
k=1 ir
B vec(I'jx) }
Let 7, = G { Vec(I‘T) for 1 < j <k < /. Then we have
751>
10500 + ITasllfe < G ersel® < =5 (51)

neq
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Let 15 = argmin — k|- By Sun (1996, Remark 3.3, (2)), it holds that

|1
YE{V1,--7: 1 0

Pj

¢
/~L ik
SO TS =yl < 82) D (ITklF + ITk5117) (52)

j=1 k:l j<k

<

Using (50), (51) and (52), we have

4
> % %I2<ZZIM Vik |2+ZZ|W*%

pj

j=1k=1 = Jj=1k=1
) 2 2 ( ) Ly
ZHTJICH 2 ZHT]J” <m X{ ) —5 (53)
neq <k g neq ir
Now we declare that for any j, it holds that pj; = pjo = -+ = pjp,. Because otherwise, without loss of generality,
say [4j1 = Y1, 4j2 = Y2, and they corresponds to 45, then we have
‘
2 :qu m 2 2 2o el 2
DN P AP S A T 2 (54)
Pt 0 0 0 (0 —1)2R2(Y)p

where the last inequality uses the definition of ; and also (47). Combining (53) and (54), we get max{% Ly >

m\/% , which contradicts to the assumption that g; > 0. Therefore, /= ¢, and there exists a permutation
{U',2/,...,0'} of {1,2,..., ¢} such that p; = p;s, completing the proof of (I).

Without loss of generality, let j' = j for all j =1,...,0 Let Y~ T = [Yz],

R = [Rj;] = OffBlkdiag, (OffBlkdiag, (I'")Y ™ ")+ diag(T11 — 411, .., Ter — 4¢I) OffBlkdiag, (Y~ ),

where Yy, Rj; € RP7*Pr. Using I' = YIy-1 = 1Yd1ag(’yllp1, sVl )Y, we have TTY - T =Y~ TT, whose
off-block dlagonal part reads

diag(311, . ..,%.I) OffBlkdiag_ (Y~ ") — OffBlkdiag, (Y~ T)1 diag(y11,...,vI) = —R.
p p Q

Then it follows that (%; — %)ij = Rjj, for j # k. By calculations, we have

o Rlle Rl 7 (@) Rl 7 © |R; k||F
I¥iellr = s — /el = Tile—wle -y — /el ~ ZiH g
Y (A Vj Yk Yi — Vi o(=1) — |’yJ fy]/g| 2
|R||F < || OffBlkdiag, (I'T)[[[IY~ T + max |[Tj; — 3;1|||| OffBlkdiag,, (Y Dlle
© > Imisl?
< || OffBlkdiag,, (LT)[[|Y |+ ¥=L—"—|| OffBlkdiag (¥~ )],

where (a) uses the definition of «;, (b) uses (47) and (53), (c) uses (50). Therefore,

R
| OffBlikdiag, (v~ T)r < ”gl'F

225 735112
wlI’

1 . _ i _
<~ (llofBiKdiag,, (") |r v~ 7| + | OffBIkdiag,, (¥~ ")llr ).

and hence

I OﬁBlkdiang(FT)“FHY_TH v LG

— )
g >, sl g2 — o
2= T o ir

Wneq

| OffBlkdiag, (v~ T)]lr < (55)
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where the last inequality uses (50) and (51).

Finally, by calculations, we have

A=ViZ =T, +VT)Z = (WIT; (I -T)T,) + VaT:)Z
=WT; T2y~ T 4+ (W7 T(T)T,) + VeT)Z
=AY T+ (-WT, V(T T) + VoT)Z
= Adiag(Ya1, ..., Yer) + AOffBlkdiag, (Y~ 7))+ (-ViT. (T T,) + VaT0) Z,
and it follows that

|4 — Adiag(Yas, ..., Yar)l|» < [|All] OFBlkdiag, (V™ 7) e + (1T, "I T + 1D 2]

YT e
< |4 —

The proof is completed.
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