Supplementary Materials

5 Preliminary

In this section, we present some preliminary results that will be used in subsequent proofs.
The following lemma is the well-known Weyl theorem (Stewart and Sun, 1990, p.203).
Lemma 5.1. For two Hermitian matrices $A, \widetilde{A} \in \mathbb{C}^{n \times n}$, let $\lambda_{1} \leq \cdots \leq \lambda_{n}, \tilde{\lambda}_{1} \leq \cdots \leq \tilde{\lambda}_{n}$ be eigenvalues of A, \widetilde{A}, respectively. Then

$$
\left|\lambda_{j}-\tilde{\lambda}_{j}\right| \leq\|A-\widetilde{A}\|, \quad \text { for } 1 \leq j \leq n
$$

The following lemma gives some fundamental results for $\sin \Theta(U, V)$, which can be easily verified via definition.
Lemma 5.2. Let $\left[U, U_{\mathrm{c}}\right]$ and $\left[V, V_{\mathrm{c}}\right]$ be two orthogonal matrices with $U \in \mathbb{R}^{n \times k}, V \in \mathbb{R}^{n \times \ell}$. Then

$$
\|\sin \Theta(U, V)\|=\left\|U_{\mathrm{c}}^{\top} V\right\|=\left\|U^{\top} V_{\mathrm{c}}\right\|
$$

The following lemma discusses the perturbation bound for the roots of a third order equation.
Lemma 5.3. Given a perturbed third order equation $t^{3}+(p+\epsilon) t+q=0$, where $p, q \in \mathbb{R}$ and $\epsilon \in \mathbb{R}$ is a small perturbation. Denote the roots of $t^{3}+p t+q=0$ by t_{1}, t_{2}, t_{3}, and assume that the multiplicity of each root is no more than two. Then the roots of $t^{3}+(p+\epsilon) t+q=0$ lie in $\cup_{i=1}^{3}\left\{z \in \mathbb{C}| | z-t_{i} \mid \leq r\right\}$, where $r=O(\sqrt{\epsilon})$.

Proof. Let the roots of $t^{3}+(p+\epsilon) t+q=0$ be $\tilde{t}_{1}, \tilde{t}_{2}, \tilde{t}_{3}$. Notice that t_{1}, t_{2} and t_{3} are the eigenvalues of $A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -q & -p & 0\end{array}\right], \tilde{t}_{1}, \tilde{t}_{2}, \tilde{t}_{3}$ are the eigenvalues of $\widetilde{A}=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -q & -p-\epsilon & 0\end{array}\right]$. Since the multiplicity of t_{i} is no more than two, the size of each diagonal block of the Jordan canonical form of A is no more than two. Using Kahan et al. (1982, Theorem 8), we know that for each \tilde{t}_{i}, there exists a t_{j} such that

$$
\frac{\left|\tilde{t}_{i}-t_{j}\right|^{s}}{1+\left|\tilde{t}_{i}-t_{j}\right|^{s-1}} \leq O(1)\left\|\left[\begin{array}{ccc}
0 & 0 & 0 \tag{11}\\
0 & 0 & 0 \\
0 & \epsilon & 0
\end{array}\right]\right\|=O(\epsilon)
$$

where $s=1$ or 2 . Therefore, $\left|\tilde{t}_{i}-t_{j}\right| \leq O(\sqrt{\epsilon})$. The conclusion follows.

6 Proofs

In this section, we present the proofs of the theoretical results in the paper.

6.1 Proof of Theorem 2.1

Theorem 2.1. Let $\left(\tau_{p}, A\right)$ be a solution to BJBDP for \mathcal{C}. Then $\mathscr{R}(A)=\mathscr{N}(\underline{C})^{\perp}=\mathscr{R}\left(\underline{C}{ }^{\top}\right)$.

Proof. Using (1), for any $v \in \mathscr{N}\left(A^{\top}\right)$, we have $C_{i} x=A \Sigma_{i} A^{\top} x=0$, similarly, $C_{i}^{\top} x=0$. Therefore, $\mathscr{N}\left(A^{\top}\right) \subset$ $\mathscr{N}(\underline{C})$.
Next, we show $\sigma_{p}(\underline{C})>0$ by contradiction. If $\sigma_{p}(\underline{C})=0$, there exists a nonzero vector $v \notin \mathscr{N}\left(A^{\top}\right)$ such that $\underline{C} v=0$. Let $w=A^{\top} v$, we know that $w \neq 0$. Partition w as $w=\left[w_{1}^{\top}, \ldots, w_{\ell}^{\top}\right]^{\top}$, where $w_{j} \in \mathbb{R}^{p_{j}}$ for $j=1, \ldots, \ell$. Then there at least exists one $w_{j} \neq 0$. Without loss of generality, assume $w_{1} \neq 0$. It follows from $\underline{C v}=0$ that

$$
0=C_{i} v=A \Sigma_{i} A^{\top} v=A \Sigma_{i} w=A\left[\begin{array}{c}
\Sigma_{i}^{(11)} w_{1} \tag{12}\\
\vdots \\
\Sigma_{i}^{(\ell \ell)} w_{t}
\end{array}\right]
$$

Therefore, we have $\Sigma_{i}^{(11)} w_{1}=0$ for all i. Similarly, $w_{1}^{\top} \Sigma_{i}^{(11)}=0$ for all i. Let $w_{1}^{c} \in \mathbb{R}^{p_{1} \times\left(p_{1}-1\right)}$ be such that [w_{1}, w_{1}^{c}] be nonsingular, then

$$
\left[w_{1}, w_{1}^{c}\right]^{\top} \Sigma_{i}^{(11)}\left[w_{1}, w_{1}^{c}\right]=\left[\begin{array}{cc}
0 & 0 \\
0 & *
\end{array}\right], \quad \text { for } i=1, \ldots, m
$$

i.e., $\mathcal{C}_{1}=\left\{\Sigma_{i}^{(11)}\right\}_{i=1}^{m}$ can be further block diagonalized, which contradicts with the assumption that $\left(\tau_{p}, A\right)$ is a solution to the BJBDP.

Now we have $\operatorname{dim}(\mathscr{N}(\underline{C})) \leq d-p$. Combining it with $\operatorname{dim}\left(\mathscr{N}\left(A^{\top}\right)\right)=d-p$ and $\mathscr{N}\left(A^{\top}\right) \subset \mathscr{N}(\underline{C})$, we have $\mathscr{N}\left(A^{\top}\right)=\mathscr{N}(\underline{C})$. Then it follows that

$$
\mathscr{R}(A)=\mathscr{N}\left(A^{\top}\right)^{\perp}=\mathscr{N}(\underline{C})^{\perp}=\mathscr{R}\left(\underline{C}^{\top}\right)
$$

This completes the proof.

6.2 Proof of Theorem 2.2

Theorem 2.2. Let $\left(\tau_{p}, A\right)$ be a solution to BJBDP for \mathcal{C}. Let the columns of V_{2} be an orthonormal basis for $\mathscr{N}\left(A^{\top}\right), \phi_{1} \geq \cdots \geq \phi_{d}$ and $\tilde{\phi}_{1} \geq \cdots \geq \tilde{\phi}_{d}$ be the singular values of \underline{C} and $\underline{\widetilde{C}}$, respectively. Then

$$
\begin{equation*}
\tilde{\phi}_{p} \geq \phi_{p}-\|\underline{E}\|, \quad \tilde{\phi}_{p+1} \leq\|\underline{E}\| . \tag{13}
\end{equation*}
$$

In addition, let $\widetilde{U}_{\tilde{1}}=\left[\tilde{u}_{1}, \ldots, \tilde{u}_{p}\right], \widetilde{V}_{1}=\left[\tilde{v}_{1}, \ldots, \tilde{v}_{p}\right]$, where $\tilde{u}_{j}, \tilde{v}_{j}$ are the left and right singular vector of $\underline{\widetilde{C}}$ corresponding to $\tilde{\phi}_{j}$, respectively, and $\widetilde{U}_{1}, \widetilde{V}_{1}$ are both orthonormal. If $\|\underline{E}\|<\frac{\phi_{p}}{2}$, then

$$
\left\|\sin \Theta\left(\mathscr{R}(A), \mathscr{R}\left(\widetilde{V}_{1}\right)\right)\right\| \leq \frac{\left\|\widetilde{U}_{1}^{\top} \underline{E} V_{2}\right\|}{\tilde{\phi}_{p}}
$$

Proof. First, by Theorem 2.1, we know that $\phi_{p+1}=\cdots=\phi_{d}=0$. On the other hand, by Lemma 5.1, we have

$$
\left|\tilde{\phi}_{j}-\phi_{j}\right| \leq\|\underline{\widetilde{C}}-\underline{C}\|=\|\underline{E}\|, \quad \text { for } j=1, \ldots, d
$$

Then (2) follows.
Second, using (2) and $\|\underline{E}\|<\frac{\phi_{p}}{2}$, we have $\tilde{\phi}_{p} \geq \phi_{p}-\|\underline{E}\|>\frac{\phi_{p}}{2}>\|\underline{E}\| \geq \tilde{\phi}_{p+1}$. Thus, $\mathscr{R}\left(\widetilde{V}_{1}\right)$ is well defined. By calculations, we have

$$
\operatorname{diag}\left(\tilde{\phi}_{1}, \ldots, \tilde{\phi}_{p}\right) \widetilde{V}_{1}^{\top} V_{2} \stackrel{(a)}{=} \widetilde{U}_{1}^{\top} \widetilde{C} V_{2}=\widetilde{U}_{1}^{\top}(\underline{C}+\underline{E}) V_{2} \stackrel{(b)}{=} \widetilde{U}_{1}^{\top} \underline{E} V_{2}
$$

where (a) uses $\operatorname{diag}\left(\tilde{\phi}_{1}, \ldots, \tilde{\phi}_{p}\right) \widetilde{V}_{1}^{\top}=\widetilde{U}_{1}^{\top} \underline{\widetilde{C}}$, (b) uses $\underline{C} V_{2}=0$. Then using Lemma 5.2 , we get

$$
\left\|\sin \Theta\left(\mathscr{R}(A), \mathscr{R}\left(\tilde{V}_{1}\right)\right)\right\|=\left\|\widetilde{V}_{1}^{\top} V_{2}\right\|=\left\|\operatorname{diag}\left(\tilde{\phi}_{1}, \ldots, \tilde{\phi}_{p}\right)^{-1} \widetilde{U}_{1}^{\top} \underline{E} V_{2}\right\| \leq \frac{\left\|\widetilde{U}_{1}^{\top} \underline{\underline{E}} V_{2}\right\|}{\tilde{\phi}_{p}}
$$

The proof is completed.

6.3 Proof of Theorem 2.3

Theorem 2.3. Given $\mathcal{C}=\left\{C_{i}\right\}_{i=1}^{m}$ with $C_{i} \in \mathbb{R}^{d \times d}$. Let $V_{1} \in \mathbb{R}^{d \times p}$ be such that $V_{1}^{\top} V_{1}=I_{p}, \mathscr{R}\left(V_{1}\right)=\mathscr{R}\left(\underline{C}^{\top}\right)$. Denote $B_{i}=V_{1}^{\top} C_{i} V_{1}, \mathcal{B}=\left\{B_{i}\right\}_{i=1}^{m}$. Then C_{i} 's can be factorized as in (1) with $\mathscr{R}(A)=\mathscr{R}\left(\underline{C}^{\top}\right)$ if and only if there exists a matrix $X \in \mathscr{N}(\mathcal{B})$, which can be factorized into

$$
\begin{equation*}
X=Y \operatorname{diag}\left(X_{11}, \ldots, X_{\ell \ell}\right) Y^{-1} \tag{14}
\end{equation*}
$$

where $Y \in \mathbb{R}^{p \times p}$ is nonsingular, $X_{j j} \in \mathbb{R}^{p_{j} \times p_{j}}$ for $1 \leq j \leq \ell$ and $\lambda\left(X_{j j}\right) \cap \lambda\left(X_{k k}\right)=\emptyset$ for $j \neq k$.

Proof. (\Rightarrow) (Sufficiency) Let $W=A^{\top} V_{1}$. Since $\mathscr{R}\left(\underline{C}^{\top}\right)=\mathscr{R}(A)=\mathscr{R}\left(V_{1}\right)$, and V_{1}, A both have full column rank, we know that W is nonsingular. Let

$$
\begin{equation*}
X=W^{-1} \Gamma W=W^{-1} \operatorname{diag}\left(\gamma_{1} I_{p_{1}}, \ldots, \gamma_{\ell} I_{p_{\ell}}\right) W \tag{15}
\end{equation*}
$$

where $\gamma_{1}, \ldots, \gamma_{\ell}$ be ℓ distinct real numbers. For all $1 \leq i \leq m$, we have

$$
B_{i} X \stackrel{(a)}{=} W^{\top} \Sigma_{i} W W^{-1} \Gamma W=W^{\top} \Sigma_{i} \Gamma W=W^{\top} \Gamma \Sigma_{i} W=W^{\top} \Gamma W^{-\top} W^{\top} \Sigma_{i} W \stackrel{(b)}{=} X^{\top} B_{i},
$$

where both (a) and (b) use $W=A^{\top} V_{1},(1)$ and (15). Therefore, $X \in \mathscr{N}(\mathcal{B})$, and it is of form (3).
(\Leftarrow) (Necessity) Substituting (3) into $B_{i} X=X^{T} B_{i}$, we get

$$
\begin{equation*}
B_{i} Y \operatorname{diag}\left(X_{11}, \ldots, X_{\ell \ell}\right) Y^{-1}=Y^{-\top} \operatorname{diag}\left(X_{11}^{T}, \ldots, X_{\ell \ell}^{T}\right) Y^{\top} B_{i} \tag{16}
\end{equation*}
$$

Partition $Y^{\top} B_{i} Y=\left[\Sigma_{i}^{(j k)}\right]$ with $\Sigma_{i}^{(j k)} \in \mathbb{R}^{p_{j} \times p_{k}}$, then it follows from (16) that

$$
\begin{equation*}
\Sigma_{i}^{(j k)} X_{k k}=X_{j j}^{\top} \Sigma_{i}^{(j k)}, \quad \text { for } \quad j, k=1,2, \ldots, \ell \tag{17}
\end{equation*}
$$

Consequently, for $j \neq k$, we know that $\Sigma_{i}^{(j k)}=0$ since $\lambda\left(X_{j j}\right) \cap \lambda\left(X_{k k}\right)=\emptyset$. Then we know that

$$
\begin{equation*}
V_{1}^{\top} C_{i} V_{1}=B_{i}=Y^{-\top} \Sigma_{i} Y^{-1} \tag{18}
\end{equation*}
$$

where $\Sigma_{i}=\operatorname{diag}\left(\Sigma_{i}^{(11)}, \ldots, \Sigma_{i}^{(\ell \ell)}\right)$. Using $\mathscr{R}\left(\underline{C}^{\top}\right)=\mathscr{R}\left(V_{1}\right)$, we know that $\mathcal{R}\left(C_{i}\right) \subset \mathscr{R}\left(V_{1}\right)$ and $\mathcal{R}\left(C_{i}^{\top}\right) \subset \mathscr{R}\left(V_{1}\right)$. Then it follows from (18) that

$$
C_{i}=V_{1} Y^{-\top} \Sigma_{i} Y^{-1} V_{1}^{\top}
$$

Set $A=V_{1} Y^{-\top}$, the conclusion follows immediately.

6.4 Proof of Theorem 2.4

Theorem 2.4. Let $\left(\tau_{p}, A\right)$ be a solution to the BJBDP for \mathcal{C}, i.e., (1) holds. Then the BJBDP for \mathcal{C} is uniquely τ_{p}-block-diagonalizable if and only if both (P1) and (P2) hold.

Proof. (\Rightarrow) (Sufficiency) First, we show (P1) by contradiction. If (P1) doesn't hold, there exists $\Gamma_{j j} \in \mathbb{R}^{p_{j} \times p_{j}}$ such that $\operatorname{vec}\left(\Gamma_{j j}\right) \in \mathscr{N}\left(G_{j j}\right)$ and a nonsingular $W_{j} \in \mathbb{R}^{p_{j} \times p_{j}}$ such that

$$
\begin{equation*}
\Gamma_{j j}=W_{j} \operatorname{diag}\left(\Gamma_{j j}^{(1)}, \Gamma_{j j}^{(2)}\right) W_{j}^{-1} \tag{19}
\end{equation*}
$$

where $\Gamma_{j j}^{(1)}$ and $\Gamma_{j j}^{(2)}$ are two real matrices and $\lambda\left(\Gamma_{j j}^{(1)}\right) \cap \lambda\left(\Gamma_{j j}^{(2)}\right)=\emptyset$. Using $\operatorname{vec}\left(\Gamma_{j j}\right) \in \mathscr{N}\left(G_{j j}\right)$, we have

$$
\begin{equation*}
\Sigma_{i}^{(j j)} \Gamma_{j j}-\Gamma_{j j}^{\top} \Sigma_{i}^{(j j)}=0, \quad \text { for } 1 \leq i \leq m \tag{20}
\end{equation*}
$$

Substituting (19) into (20), we get

$$
\begin{equation*}
\widetilde{\Sigma}_{i}^{(j j)} \operatorname{diag}\left(\Gamma_{j j}^{(1)}, \Gamma_{j j}^{(2)}\right)-\operatorname{diag}\left(\Gamma_{j j}^{(1)}, \Gamma_{j j}^{(2)}\right)^{\top} \widetilde{\Sigma}_{i}^{(j j)}=0, \quad \text { for } 1 \leq i \leq m . \tag{21}
\end{equation*}
$$

where $\widetilde{\Sigma}_{i}^{(j j)}=W_{j}^{\top} \Sigma_{i}^{(j j)} W_{j}$. Similar to the proof of necessity for Theorem 2.3, using $\lambda\left(\Gamma_{j j}^{(1)}\right) \cap \lambda\left(\Gamma_{j j}^{(2)}\right)=\emptyset$, we have $\widetilde{\Sigma}_{i}^{(j j)}$ for $1 \leq i \leq m$ are all block diagonal matrices. In other words, C_{i} 's can be simultaneously block diagonalizable with more than ℓ blocks. This contradicts with the fact $\left(\tau_{p}, A\right)$ is the solution to the BJBDP.
Next, we show (P2), also by contradiction. Since $G_{j k}$ is rank deficient, then there exist two matrices $\Gamma_{j k}, \Gamma_{k j}$, which are not zero at the same time, such that (4b) holds, i.e.,

$$
\left[\begin{array}{cc}
\Sigma_{i}^{(j j)} & 0 \tag{22}\\
0 & \Sigma_{i}^{(k k)}
\end{array}\right]\left[\begin{array}{cc}
0 & \Gamma_{j k} \\
\Gamma_{k j} & 0
\end{array}\right]-\left[\begin{array}{cc}
0 & \Gamma_{k j}^{\top} \\
\Gamma_{j k}^{\top} & 0
\end{array}\right]\left[\begin{array}{cc}
\Sigma_{i}^{(j j)} & 0 \\
0 & \Sigma_{i}^{(k k)}
\end{array}\right]=0
$$

Since $\left[\begin{array}{cc}0 & \Gamma_{j k} \\ \Gamma_{k j} & 0\end{array}\right] \neq 0$, it has at least a nonzero eigenvalue. Now let λ be a nonzero eigenvalue of $\left[\begin{array}{cc}0 & \Gamma_{j k} \\ \Gamma_{k j} & 0\end{array}\right]$, and $\left[\begin{array}{l}x \\ y\end{array}\right]$ be the corresponding eigenvector. Then it is easy to see that $-\lambda$ is also an eigenvalue, and the corresponding eigenvector is $\left[\begin{array}{c}-x \\ y\end{array}\right]$. In addition, $x \neq 0$ and $y \neq 0$. Therefore, there exists a nonsingular matrix $W_{j k}$, which is not $\left(p_{j}, p_{k}\right)$-block diagonal, such that

$$
\left[\begin{array}{cc}
0 & \Gamma_{j k} \tag{23}\\
\Gamma_{k j} & 0
\end{array}\right]=W_{j k}\left[\begin{array}{ccc}
\Upsilon & 0 & 0 \\
0 & -\Upsilon & 0 \\
0 & 0 & 0
\end{array}\right] W_{j k}^{-1}
$$

where Υ is nonsingular, $\lambda(\Upsilon) \cap \lambda(-\Upsilon)=\emptyset$ and $W_{j k}$ is not (p_{j}, p_{k})-block diagonal. Plugging (23) into (22), similar to the proof of necessity for Theorem 2.3, we can how that $W_{j k}^{\top}\left[\begin{array}{cc}\Sigma_{i}^{(j j)} & 0 \\ 0 & \Sigma_{i}^{(k k)}\end{array}\right] W_{j k}$ for all $1 \leq i \leq m$ are all block diagonal. For the ease of notation, let $j=1, k=2$. Denote $\widehat{A}=A \operatorname{diag}\left(W_{12}^{-\top}, I_{p_{3}}, \ldots, I_{p_{\ell}}\right)$. We know that A, \widehat{A} are not equivalent since W_{12} is not $\left(p_{1}, p_{2}\right)$-block diagonal. This contradicts with the assumption that BJBDP for \mathcal{C} is uniquely τ_{p}-block-diagonalizable, completing the proof of sufficiency.
(\Leftarrow) (Necessity) Let $\left(\tau_{p}, A\right)$ and $\left(\hat{\tau}_{\hat{p}}, \widehat{A}\right)$ be two solutions to the BJBDP for \mathcal{C}, i.e., it holds that

$$
\begin{equation*}
C_{i}=A \Sigma_{i} A^{\top}=\widehat{A} \widehat{\Sigma}_{i} \widehat{A}^{\top} \tag{24}
\end{equation*}
$$

where Σ_{i} 's are all τ_{p}-block diagonal, $\widehat{\Sigma}_{i}$'s are all $\hat{\tau}_{\hat{p}}$-block-diagonal. It suffices if we can show that $\left(\tau_{p}, A\right)$ and $\left(\hat{\tau}_{\hat{p}}, \widehat{W}\right)$ are equivalent.
Let $\tau_{p}=\left(p_{1}, \ldots, p_{\ell}\right), \hat{\tau}_{\hat{p}}=\left(\hat{p}_{1}, \ldots, \hat{p}_{\hat{\ell}}\right)$. As $\left(\tau_{p}, A\right)$ and $\left(\hat{\tau}_{\hat{p}}, \widehat{W}\right)$ are both solutions, it holds that $\ell=\hat{\ell}$. By Theorem 2.1, we know that $\mathscr{R}\left(\underline{C}^{\top}\right)=\mathscr{R}(A)=\mathscr{R}(\widehat{A})$. Since A and \widehat{A} are both of full column rank, we know that $p=\hat{p}$ and there exists nonsingular matrix Z such that $\widehat{A}=A Y^{-\top}$. Then it follows from (24) that

$$
\begin{equation*}
\widehat{\Sigma}_{i}=Y^{\top} \Sigma_{i} Y, \quad \text { for } 1 \leq i \leq m \tag{25}
\end{equation*}
$$

Let $\Gamma=Y \operatorname{diag}\left(\gamma_{1} I_{\hat{p}_{1}}, \ldots, \gamma_{\ell} I_{\hat{p}_{\ell}}\right) Y^{-1}$, where $\gamma_{1}, \ldots, \gamma_{\ell}$ are distinct real numbers. Using (25), we have

$$
\begin{equation*}
\Sigma_{i} \Gamma=Y^{-\top}\left(Y^{\top} \Sigma_{i} Y\right) \operatorname{diag}\left(\gamma_{j} I_{\hat{p}_{j}}\right) Y^{-1}=Y^{-\top} \operatorname{diag}\left(\gamma_{j} I_{\hat{p}_{j}}\right)\left(Y^{\top} \Sigma_{i} Y\right) Y^{-1}=\Gamma^{\top} \Sigma_{i} \tag{26}
\end{equation*}
$$

i.e., $\Gamma \in \mathscr{N}\left(\left\{\Sigma_{i}\right\}\right)$.

Partition $\Gamma=\left[\Gamma_{j k}\right]$ with $\Gamma_{j k} \in \mathbb{R}^{p_{j} \times p_{k}}$. Recall (4) and (5), by (P2), we have $\Gamma_{j k}=0$ for $j \neq k$, i.e., Γ is τ_{p}-block diagonal; using ($\mathbf{P} 1), \Gamma=Y \operatorname{diag}\left(\gamma_{j} I_{\hat{p}_{j}}\right) Y^{-1}$ and $\cup_{j=1}^{\ell} \lambda\left(\Gamma_{j j}\right)=\lambda(\Gamma)$, we know that $\lambda\left(\Gamma_{k_{j} k_{j}}\right)=\lambda\left(\gamma_{j} I_{\hat{p}_{j}}\right)$ for $1 \leq j \leq \ell$, where $\left\{k_{1}, k_{2}, \ldots, k_{\ell}\right\}$ is a permutation of $\{1,2, \ldots, \ell\}$. Thus, $\hat{p}_{j}=p_{k_{j}}$ for $1 \leq j \leq \ell$. In other words, there exists a permutation $\Pi_{\ell} \in \mathbb{R}^{\ell \times \ell}$ such that $\hat{\tau}_{p}=\tau_{p} \Pi_{\ell}$. Let $\Pi \in \mathbb{R}^{p \times p}$ be the permutation matrix associated with Π_{ℓ}. Then

$$
\begin{equation*}
\operatorname{diag}\left(\gamma_{1} I_{p_{k_{1}}}, \ldots, \gamma_{\ell} I_{p_{k_{\ell}}}\right)=\Pi^{\top} \operatorname{diag}\left(\gamma_{1}^{\prime} I_{p_{1}}, \ldots, \gamma_{\ell}^{\prime} I_{p_{\ell}}\right) \Pi \tag{27}
\end{equation*}
$$

where γ_{j}^{\prime} is the eigenvalue of $\Gamma_{j j}$. Then it follows that

$$
\begin{equation*}
\operatorname{diag}\left(\Gamma_{11}, \ldots, \Gamma_{\ell \ell}\right)=Y \Pi^{\top} \operatorname{diag}\left(\gamma_{1}^{\prime} I_{p_{1}}, \ldots, \gamma_{\ell}^{\prime} I_{p_{\ell}}\right)\left(Y \Pi^{\top}\right)^{-1} \tag{28}
\end{equation*}
$$

Noticing that the columns of $Y \Pi^{\top}$ are eigenvectors of Γ, we know that $Y \Pi^{\top}$ is τ_{p}-block-diagonal. Therefore, we can rewrite $\widehat{A}=A Y^{-\top}$ as $\widehat{A}=A\left(Y \Pi^{\top}\right)^{-\top} \Pi$, in which $\left(Y \Pi^{\top}\right)^{-\top}$ is τ_{p}-block-diagonal, Π is the permutation matrix associated with Π_{ℓ}. So, $\left(\tau_{p}, A\right)$ and $\left(\hat{\tau}_{p}, \widehat{A}\right)$ are equivalent. The proof is completed.

6.5 Proof of Theorem 2.5

Theorem 2.5. Given a set $\mathcal{D}=\left\{D_{i}\right\}_{i=1}^{m}$ of q-by- q matrices with \underline{D} having full column rank.
(I) If \mathcal{D} does not have a nontrivial diagonalizer, then the feasible set of $\operatorname{OPT}(\mathcal{D})$ is empty.
(II) If \mathcal{D} has a nontrivial diagonalizer, then $\operatorname{OPT}(\mathcal{D})$ has a solution X_{*}. In addition, assume

$$
\mu=\min _{\|z\|=1} \sqrt{\sum_{i=1}^{m}\left|z^{\mathrm{H}} D_{i} z\right|^{2}}>0
$$

then X_{*} has two distinct real eigenvalues, and the gap between them are no less than two.

Proof. First, we show of (I) via its the contrapositive. If the feasible set of $\operatorname{OPT}(\mathcal{D})$ is not empty, then it has a solution X_{*}. Using $\operatorname{tr}\left(X_{*}\right)=0, \operatorname{tr}\left(X_{*}^{2}\right)=q>0$, we know that X_{*} can be factorized into $X_{*}=Y \operatorname{diag}\left(\Gamma_{1}, \Gamma_{2}\right) Y^{-1}$, where Γ_{1}, Γ_{2} are real matrices and $\lambda\left(\Gamma_{1}\right), \lambda\left(\Gamma_{2}\right)$ lie in the open left and closed right complex planes, respectively. Therefore, $\lambda\left(\Gamma_{1}\right) \cap \lambda\left(\Gamma_{2}\right)=\emptyset$. By Theorem 2.3, \mathcal{D} has a nontrivial diagonalizer, completing the proof of (I).

Next, we show (II). Let γ be an arbitrary eigenvalue of X_{*}, and z be the corresponding eigenvector. Using $X_{*} \in \mathscr{N}(\mathcal{D})$, we have

$$
0=z^{\mathrm{H}} D_{i} X_{*} z-z^{\mathrm{H}} X_{*}^{\top} D_{i} z=(\gamma-\bar{\gamma}) z^{\mathrm{H}} D_{i} z, \quad \text { for } 1 \leq i \leq m
$$

Then it follows that

$$
(\gamma-\bar{\gamma}) \sum_{i=1}^{\ell}\left|z^{\mathrm{H}} D_{i} z\right|^{2}=0
$$

Since $\mu>0$ has full column rank, we know that $\sum_{i=1}^{\ell}\left|z^{\mathrm{H}} D_{i} z\right|^{2}=0$. Therefore, γ is real. And it follows $\lambda\left(X_{*}\right) \subset \mathbb{R}$.
Now we show that X_{*} has two distinct eigenvalues. Denote the eigenvalues of X_{*} by $\gamma_{1} \leq \cdots \leq \gamma_{q}$. Then

$$
\begin{equation*}
\operatorname{tr}\left(X_{*}\right)=\sum_{j=1}^{q} \gamma_{j}=0, \quad \operatorname{tr}\left(X_{*}^{2}\right)=\sum_{j=1}^{q} \gamma_{j}^{2}=q, \quad \operatorname{tr}\left(X_{*}^{4}\right)=\sum_{j=1}^{q} \gamma_{j}^{4} . \tag{29}
\end{equation*}
$$

Using the method of Lagrange multipliers, we consider

$$
L\left(\gamma_{1}, \ldots, \gamma_{q} ; \mu_{1}, \mu_{2}\right)=\sum_{j=1}^{q} \gamma_{j}^{4}+\mu_{1} \sum_{j=1}^{q} \gamma_{j}+\mu_{2}\left(\sum_{j=1}^{q} \gamma_{j}^{2}-q\right),
$$

where μ_{1}, μ_{2} are Lagrange multipliers. By calculations, we have

$$
\begin{equation*}
\frac{\partial L}{\partial \gamma_{j}}=4 \gamma_{j}^{3}+\mu_{1}+2 \mu_{2} \gamma_{j}=0 \tag{30}
\end{equation*}
$$

Noticing that γ_{j} 's are the real roots of the third order equation $4 t^{3}+2 \mu_{2} t+\mu_{1}=0$, which has one real root or three real roots, we know that either γ_{j} 's are identical to the unique real root or γ_{j} is one of the three real roots for all j. The former case is impossible since $\sum_{j} \gamma_{j}=0$ and $\sum_{j} \gamma_{j}^{2}=q$. For the latter case, set $\gamma_{1}=\cdots=\gamma_{q_{1}}=t_{1}$, $\gamma_{q_{1}+1}=\cdots=\gamma_{q_{1}+q_{2}}=t_{2}$ and $\gamma_{q_{1}+q_{2}+1}=\cdots=\gamma_{q}=t_{3}$, where $t_{1} \leq t_{2} \leq t_{3}$ are the three real roots, q_{1}, q_{2} and q_{3} are respectively the multiplicities of t_{1}, t_{2} and t_{3} as eigenvalues of X_{*}. If $t_{1}=t_{2}$ or $t_{2}=t_{3}, X_{*}$ has two distinct eigenvalues. In what follows we assume $t_{1}<t_{2}<t_{3}$.

Using (29), we get

$$
\begin{equation*}
q_{1} t_{1}+q_{2} t_{2}+q_{3} t_{3}=0, \quad q_{1} t_{1}^{2}+q_{2} t_{2}^{2}+q_{3} t_{3}^{2}=q, \quad \operatorname{tr}\left(X_{*}^{4}\right)=q_{1} t_{1}^{4}+q_{2} t_{2}^{4}+q_{3} t_{3}^{4} . \tag{31}
\end{equation*}
$$

Introduce two vectors $u=\left[\sqrt{q_{1}} t_{1}^{2}, \sqrt{q_{2}} t_{2}^{2}, \sqrt{q_{3}} t_{3}^{2}\right]^{\top}, v=\left[\sqrt{q_{1}}, \sqrt{q_{2}}, \sqrt{q_{3}}\right]^{\top}$. Then we have $\|u\|=\sqrt{\operatorname{tr}\left(X_{*}^{4}\right)}$, $\|v\|=\sqrt{q}$. Using Cauchy's inequality, we get

$$
\operatorname{tr}\left(X_{*}^{4}\right)=\|u\|^{2}\|v\|^{2} / q \geq\left(u^{\top} v\right)^{2} / q=\left(q_{1} t_{1}^{2}+q_{2} t_{2}^{2}+q_{3} t_{3}^{2}\right)^{2} / q=q
$$

and the equality holds if and only if u and v are co-linear. Using the first two equalities of $(31), q_{1}, q_{2}, q_{3}$ can not have more than one zeros. If one of q_{1}, q_{2}, q_{3} is zero, X_{*} has two distinct eigenvalues. Otherwise, q_{1}, q_{2} and q_{3} are all positive integers. Therefore, $t_{1}^{2}=t_{2}^{2}=t_{3}^{2}$, which implies that X_{*} has two distinct eigenvalues.
The above proof essentially show that the optimal value is achieved at $X=X_{*}$. The following statements show that such an X is feasible in $\mathscr{N}(\mathcal{D})$. If \mathcal{D} has a nontrivial diagonalizer, then there exists a matrix Z such that $D_{i}=Z \Phi_{i} Z^{\top}$, where Φ_{i} 's are $\tau_{q}=\left(q_{1}, q_{2}\right)$-block diagonal. Since \underline{D} has full column rank, Z is nonsingular. Let $X=Z^{-T} \operatorname{diag}\left(\sqrt{\frac{q_{2}}{q_{1}}} I_{q_{1}},-\sqrt{\frac{q_{1}}{q_{2}}} I_{q_{2}}\right) Z^{\top}$. It is easy to see that $\operatorname{tr}(X)=0, \operatorname{tr}\left(X^{2}\right)=1$ and $X \in \mathscr{N}(\mathcal{D})$. In other words, there exists a feasible X which has two distinct real eigenvalues. Therefore, we may declare that opt (\mathcal{D}) is minimized at $X=X_{*}$, with X_{*} having two distinct real eigenvalues.
Lastly, let $\gamma_{1}>\gamma_{2}$ be the distinct real eigenvalues of X_{*}, with multiplicities q_{1} and q_{2}, respectively, we show $\gamma_{1}-\gamma_{2} \geq 2$. Rewrite the first equalities of (29) as

$$
q_{1} \gamma_{1}+q_{2} \gamma_{2}=0, \quad q_{1} \gamma_{1}^{2}+q_{2} \gamma_{2}^{2}=q
$$

By calculations, we get $\gamma_{1}=\sqrt{\frac{q_{2}}{q_{1}}}, \gamma_{2}=-\sqrt{\frac{q_{1}}{q_{2}}}$. Then it follows that

$$
\gamma_{1}-\gamma_{2}=\sqrt{\frac{q_{2}}{q_{1}}}+\sqrt{\frac{q_{1}}{q_{2}}} \geq 2
$$

completing the proof.

6.6 Proof of Theorem 2.6

Theorem 2.6. Assume that the BJBDP for \mathcal{C} is uniquely τ_{p}-block-diagonalizable, and let $\left(\tau_{p}, A\right)$ be a solution satisfying (1). Then $\left(\tau_{p}, A\right)$ can be identified via Algorithm 2, almost surely.

Proof. If we can show $\operatorname{card}\left(\hat{\tau}_{p}\right)=\operatorname{card}\left(\tau_{p}\right)$, then $\left(\hat{\tau}_{p}, \widehat{A}\right)$ is also a solution to the BJBDP for \mathcal{C}. Since the BJBDP is uniquely τ_{p}-block-diagonalizable, we know that $\left(\hat{\tau}_{p}, \widehat{A}\right)$ is equivalent to $\left(\tau_{p}, A\right)$, i.e., $\left(\tau_{p}, A\right)$ is identified. Next, we show $\operatorname{card}\left(\hat{\tau}_{p}\right)=\operatorname{card}\left(\tau_{p}\right)$. The following facts are needed.
(1) Given a matrix set \mathcal{D} with \underline{D} having full column rank. If \mathcal{D} does not have any τ_{q}-block diagonalizer with $\operatorname{card}\left(\tau_{q}\right) \geq 2$, then $\hat{\tau}$ on Line 9 of Algorithm 2 satisfies $\operatorname{card}(\hat{\tau})=1$; Otherwise, $\operatorname{card}(\hat{\tau})=2$.
(2) Denote $\widehat{Z}^{-1} D_{i} \widehat{Z}^{-\top}=\operatorname{diag}\left(D_{i}^{(1)}, D_{i}^{(2)}\right), \mathcal{D}^{(1)}=\left\{D_{i}^{(1)}\right\}$ and $\mathcal{D}^{(2)}=\left\{D_{i}^{(2)}\right\}$. Then $\underline{D}^{(1)}$ and $\underline{D}^{(2)}$ both have full column rank.
Fact (1) is because when $\operatorname{card}(\hat{\tau})>1, \mathcal{D}$ can be block diagonalized. Fact (2) is due to the fact \widehat{Z} is nonsingular and $\widehat{Z}^{-1} D_{i} \widehat{Z}^{-\top}=\operatorname{diag}\left(D_{i}^{(1)}, D_{i}^{(2)}\right)$.

Now assume that the solution ($\hat{\tau}_{p}, \widehat{A}$) returned by Algorithm 2 satisfies

$$
\begin{equation*}
\hat{\tau}_{p}=\left(\hat{p}_{1}, \ldots, \hat{p}_{\hat{\ell}}\right), \quad C_{i}=\widehat{A} \widehat{\Sigma}_{i} \widehat{A}^{\top}=\widehat{A} \operatorname{diag}\left(\widehat{\Sigma}_{i}^{(11)}, \ldots, \widehat{\Sigma}_{i}^{(\hat{\ell} \hat{\ell})}\right) \widehat{A}^{\top}, \quad i=1, \ldots, m \tag{32}
\end{equation*}
$$

where $\widehat{\Sigma}_{i}$'s are all $\hat{\tau}_{p}$-block diagonal. Then $\hat{\ell} \leq \ell$ and $\left\{\widehat{\Sigma}_{i}^{(j j)}\right\}_{i=1}^{m}$ can be further block diagonalized for all $j=1, \ldots, \hat{\ell}$. Next, we show $\operatorname{card}\left(\hat{\tau}_{p}\right)=\hat{\ell}=\ell=\operatorname{card}\left(\tau_{p}\right)$ by contradiction.
Using (1) and (32), we have

$$
\begin{equation*}
B_{i}=V_{1}^{\top} \widehat{A} \widehat{\Sigma}_{i} \widehat{A}^{\top} V_{1}=\widehat{Z} \widehat{\Sigma}_{i} \widehat{Z}^{\top}=V_{1}^{\top} A \Sigma_{i} A^{\top} V_{1}=Z \Sigma_{i} Z^{\top} \tag{33}
\end{equation*}
$$

where $\widehat{Z}=V_{1}^{\top} \widehat{A}, Z=V_{1}^{\top} A$. By Theorem 2.1, we know that $\mathscr{R}\left(V_{1}\right)=\mathscr{R}\left(\underline{C}^{\top}\right)=\mathscr{R}(A)$. By the construction of \widehat{A}, we know $\mathscr{R}\left(V_{1}\right)=\mathscr{R}(\widehat{A})$. Since V_{1}, A, \widehat{A} all have full column rank, we know that \widehat{Z} and Z are both nonsingular. Then it follows from (33) that

$$
\begin{equation*}
\widehat{\Sigma}_{i}=Y^{\top} \Sigma_{i} Y, \quad \text { for } 1 \leq i \leq m \tag{34}
\end{equation*}
$$

where $Y=Z^{\top} \widehat{Z}^{-\top}$. Let $\Gamma=Y \operatorname{diag}\left(\gamma_{1} I_{\hat{p}_{1}}, \ldots, \gamma_{\ell} I_{\hat{p}_{\widehat{\ell}}}\right) Y^{-1}$, where $\gamma_{1}, \ldots, \gamma_{\hat{\ell}}$ are distinct real numbers. Using (34), we have

$$
\begin{equation*}
\Sigma_{i} \Gamma=Y^{-\top}\left(Y^{\top} \Sigma_{i} Y\right) \operatorname{diag}\left(\gamma_{j} I_{\hat{p}_{j}}\right) Y^{-1}=Y^{-\top} \operatorname{diag}\left(\gamma_{j} I_{\hat{p}_{j}}\right)\left(Y^{\top} \Sigma_{i} Y\right) Y^{-1}=\Gamma^{\top} \Sigma_{i} \tag{35}
\end{equation*}
$$

i.e., $\Gamma \in \mathscr{N}\left(\left\{\Sigma_{i}\right\}\right)$.

Partition $\Gamma=\left[\Gamma_{j k}\right]$ with $\Gamma_{j k} \in \mathbb{R}^{p_{j} \times p_{k}}$. Recall (4) and (5), by (P2), we have $\Gamma_{j k}=0$ for $j \neq k$, i.e., Γ is τ_{p}-block diagonal; using (P1), $\Gamma=Y \operatorname{diag}\left(\gamma_{j} I_{\hat{p}_{j}}\right) Y^{-1}$ and $\cup_{j=1}^{\ell} \lambda\left(\Gamma_{j j}\right)=\lambda(\Gamma)$, we know that for each $\Gamma_{j j}(j=1, \ldots, \ell)$, its eigenvalues are all $\gamma_{k}(1 \leq k \leq \hat{\ell})$. If $\hat{\ell}<\ell$, there exist at least two blocks of $\Gamma_{j j}$'s corresponding to the same γ_{k}. Without loss of generality, let Γ_{11}, Γ_{22} correspond to γ_{1}, the remaining blocks correspond to other γ_{k} 's. Then using $\Gamma=Y \operatorname{diag}\left(\gamma_{1} I_{\hat{p}_{1}}, \ldots, \gamma_{\ell} I_{\hat{p}_{\hat{\ell}}}\right) Y^{-1}$, we know that $Y=\operatorname{diag}\left(Y_{11}, Y_{22}\right)$, where $Y_{11} \in \mathbb{R}^{\hat{p}_{1} \times \hat{p}_{1}}$ and $\hat{p}_{1}=p_{1}+p_{2}$. Using $Y=Z^{\top} \widehat{Z}^{-\top}$ and (35), we get

$$
\widehat{\Sigma}_{i}=Y^{\top} \Sigma_{i} Y=\operatorname{diag}\left(Y_{11}, Y_{22}\right)^{\top} \Sigma_{i} \operatorname{diag}\left(Y_{11}, Y_{22}\right), \quad \text { for } 1 \leq i \leq m
$$

Therefore, we have

$$
\widehat{\Sigma}_{i}^{(11)}=Y_{11}^{\top} \operatorname{diag}\left(\Sigma_{i}^{(11)}, \Sigma_{i}^{(22)}\right) Y_{11}, \quad \text { for } 1 \leq i \leq m
$$

which contradicts with the fact that $\left\{\widehat{\Sigma}_{i}^{(11)}\right\}_{i=1}^{m}$ can not be further block diagonalized. The proof is completed.

6.7 Proof of Theorem 2.7

Theorem 2.7. Given a set $\widetilde{\mathcal{D}}=\left\{\widetilde{D}_{i}\right\}_{i=1}^{m}$ of q-by- q matrices with $\underline{\widetilde{D}}$ having full column rank. Let $\delta=o(1)$ be a small real number.
(I) If $\widetilde{\mathcal{D}}$ does not have a nontrivial δ-diagonalizer, then the feasible set of $\operatorname{OPT}(\widetilde{\mathcal{D}}, \delta)$ is empty.
(II) If $\widetilde{\mathcal{D}}$ has a nontrivial δ-diagonalizer, then $\operatorname{OPT}(\widetilde{\mathcal{D}}, \delta)$ has a solution X_{*}. In addition, assume

$$
\mu=\min _{\|z\|=1} \sqrt{\sum_{i=1}^{m}\left|z^{\mathrm{H}} \widetilde{D}_{i} z\right|^{2}}=O(1)
$$

and for $i=1,2$, let

$$
\operatorname{Rect}_{i} \triangleq\left\{z \in \mathbb{C}| | \operatorname{Re}(z)-\rho_{i}|\leq a,|\operatorname{Im}(z)| \leq b\}\right.
$$

where $a=O(\delta), b=O(\delta)$. Then

$$
\lambda\left(X_{*}\right) \subset \cup_{i=1}^{2} \operatorname{Rect}_{i}, \quad \rho_{1}-\rho_{2} \geq 2+O(\delta)
$$

Proof. First, we show of (I) via its the contrapositive. If the feasible set of $\operatorname{Opt}(\widetilde{\mathcal{D}}, \delta)$ is not empty, then $\operatorname{OPT}(\widetilde{\mathcal{D}}, \delta)$ has a solution X_{*}, which can be factorized into $X_{*}=Y \operatorname{diag}\left(\Gamma_{1}, \Gamma_{2}\right) Y^{-1}$ (since $\operatorname{tr}\left(X_{*}\right)=0$ and $\left.\operatorname{tr}\left(X_{*}^{2}\right)=q\right)$, where Y is nonsingular, $\Gamma_{1} \in \mathbb{R}^{q_{1} \times q_{1}}, \Gamma_{2} \in \mathbb{R}^{q_{2} \times q_{2}}$ and $\lambda\left(\Gamma_{1}\right) \cap \lambda\left(\Gamma_{2}\right)=\emptyset$. Set $Z=Y^{-\top}, \Phi_{i}=\operatorname{diag}\left(Y_{1}^{\top} \widetilde{D}_{i} Y_{1}, Y_{2}^{\top} \widetilde{D}_{i} Y_{2}\right)$, $g=\min \frac{\left\|\Gamma_{1}^{\top} X-X \Gamma_{2}\right\|_{F}}{\|X\|_{F}}$ and $\kappa=\kappa_{2}(Y)=\frac{\sigma_{\max }(Y)}{\sigma_{\min }(Y)}$. By calculations, we have

$$
\begin{align*}
\left\|X_{*}\right\|_{F}^{2} & =\operatorname{tr}\left(Y^{-\top} \operatorname{diag}\left(\Gamma_{1}^{\top}, \Gamma_{2}^{\top}\right) Y^{\top} Y \operatorname{diag}\left(\Gamma_{1}, \Gamma_{2}\right) Y^{-1}\right) \\
& \leq\|Y\|^{2} \operatorname{tr}\left(Y^{-\top} \operatorname{diag}\left(\Gamma_{1}^{\top}, \Gamma_{2}^{\top}\right) \operatorname{diag}\left(\Gamma_{1}, \Gamma_{2}\right) Y^{-1}\right. \\
& =\|Y\|^{2} \operatorname{tr}\left(\operatorname{diag}\left(\Gamma_{1}, \Gamma_{2}\right) Y^{-1} Y^{-\top} \operatorname{diag}\left(\Gamma_{1}^{\top}, \Gamma_{2}^{\top}\right)\right) \\
& \leq \kappa^{2} \operatorname{tr}\left(\operatorname{diag}\left(\Gamma_{1}, \Gamma_{2}\right) \operatorname{diag}\left(\Gamma_{1}^{\top}, \Gamma_{2}^{\top}\right)\right)=\kappa^{2} \operatorname{tr}\left(X_{*}^{2}\right)=\kappa^{2} q \tag{36}
\end{align*}
$$

and

$$
\begin{align*}
\delta^{2}\left\|\operatorname{vec}\left(X_{*}\right)\right\|^{2} & \stackrel{(a)}{\geq}\left\|\mathbf{L}(\widetilde{\mathcal{D}}) \operatorname{vec}\left(X_{*}\right)\right\|^{2}=\sum_{i=1}^{m}\left\|\widetilde{D}_{i} X_{*}-X_{*}^{\top} \widetilde{D}_{i}\right\|_{F}^{2} \\
& =\sum_{i=1}^{m}\left\|Z\left(Y^{\top} \widetilde{D}_{i} Y \operatorname{diag}\left(\Gamma_{1}, \Gamma_{2}\right)-\operatorname{diag}\left(\Gamma_{1}^{\top}, \Gamma_{2}^{\top}\right) Y^{\top} \widetilde{D}_{i} Y\right) Z^{\top}\right\|_{F}^{2} \\
& \geq \frac{1}{\|Y\|^{4}} \sum_{i=1}^{m}\left\|Y^{\top} \widetilde{D}_{i} Y \operatorname{diag}\left(\Gamma_{1}, \Gamma_{2}\right)-\operatorname{diag}\left(\Gamma_{1}^{\top}, \Gamma_{2}^{\top}\right) Y^{\top} \widetilde{D}_{i} Y\right\|_{F}^{2} \\
& \geq \frac{1}{\|Y\|^{4}} \sum_{i=1}^{m}\left(\left\|Y_{1}^{\top} \widetilde{D}_{i} Y_{2} \Gamma_{2}-\Gamma_{1}^{\top} Y_{1}^{\top} \widetilde{D}_{i} Y_{2}\right\|_{F}^{2}+\left\|Y_{2}^{\top} \widetilde{D}_{i} Y_{1} \Gamma_{1}-\Gamma_{2}^{\top} Y_{2}^{\top} \widetilde{D}_{i} Y_{1}\right\|_{F}^{2}\right) \\
& \stackrel{(b)}{\geq} \frac{g^{2}}{\|Y\|^{4}} \sum_{i=1}^{m}\left(\left\|Y_{1}^{\top} \widetilde{D}_{i} Y_{2}\right\|_{F}^{2}+\left\|Y_{2}^{\top} \widetilde{D}_{i} Y_{1}\right\|_{F}^{2}\right) \geq \frac{g^{2}}{\kappa^{4}} \sum_{i=1}^{m}\left\|Z\left(Y^{\top} \widetilde{D}_{i} Y-\Phi_{i}\right) Z^{\top}\right\|_{F}^{2} \\
& =\frac{g^{2}}{\kappa^{4}} \sum_{i=1}^{m}\left\|\widetilde{D}_{i}-Z \Phi_{i} Z^{\top}\right\|_{F}^{2}, \tag{37}
\end{align*}
$$

where (a) uses $X_{*} \in \mathscr{N}_{\delta}(\widetilde{\mathcal{D}})$, (b) uses the definition of g. Then it follows from (36) and (37) that

$$
\sum_{i=1}^{m}\left\|\widetilde{D}_{i}-Z \Phi_{i} Z^{\top}\right\|_{F}^{2} \leq \frac{\kappa^{4}\left\|X_{*}\right\|_{F}^{2}}{g^{2}} \delta^{2} \leq \frac{\kappa^{6}}{g^{2} q} \delta^{2}
$$

This completes the proof of (I).
Next, we show (II). If $\widetilde{\mathcal{D}}$ has a nontrivial δ-diagonalizer, then there exists a matrix Z such that $\sum_{i=1}^{m} \| \widetilde{D}_{i}-$ $Z \Phi_{i} Z^{\top} \|_{F}^{2} \leq \frac{1}{4} \delta^{2}$ (by setting $\delta=\frac{1}{2 \sqrt{C}} \delta$, the constant becomes $\frac{1}{4}$, and by definition, Z is still a δ-diagonalizer), where Φ_{i} 's are all $\tau_{q}=\left(q_{1}, q_{2}\right)$ block diagonal matrices. Let $X=Z^{-\top} \Gamma Z^{\top}$, where $\Gamma=\operatorname{diag}\left(\sqrt{\frac{q_{2}}{q_{1}}} I_{q_{1}},-\sqrt{\frac{q_{1}}{q_{2}}} I_{q_{2}}\right)$. By calculations, we have

$$
\begin{aligned}
\|\mathbf{L}(\widetilde{\mathcal{D}}) \operatorname{vec}(X)\|^{2} & =\sum_{i=1}^{m}\left\|\widetilde{D}_{i} X-X^{\top} \widetilde{D}_{i}\right\|_{F}^{2} \stackrel{(a)}{\leq} 2 \sum_{i=1}^{m}\left\|\left(\widetilde{D}_{i}-Z \Phi_{i} Z^{\top}\right) X-X^{\top}\left(\widetilde{D}_{i}-Z \Phi_{i} Z^{\top}\right)\right\|_{F}^{2} \\
& \leq 4\|X\|^{2} \sum_{i=1}^{m}\left\|\widetilde{D}_{i}-Z \Phi_{i} Z^{\top}\right\|_{F}^{2} \leq\|X\|^{2} \delta^{2},
\end{aligned}
$$

where (a) uses $Z \Phi_{i} Z^{\top} X-X^{\top} Z \Phi_{i} Z^{\top}=0$. Therefore, $\frac{\| \mathbf{L}(\widetilde{\mathcal{D}}) \text { vec }(X) \|}{\|\operatorname{vec}(X)\|} \leq \frac{\|X\| \delta}{\|X\|_{F}} \leq \delta$. Also note that $\operatorname{tr}(X)=0$ and $\operatorname{tr}\left(X^{2}\right)=q$, then the feasible set of $\operatorname{OPT}(\widetilde{\mathcal{D}}, \delta)$ is nonempty. Consequently, opt $(\widetilde{\mathcal{D}}, \delta)$ has a solution X_{*}.
Let γ be an arbitrary eigenvalue of X_{*}, and z be the corresponding unit-length eigenvector. By calculations, we have

$$
\begin{align*}
\kappa^{2} q \delta^{2} & \geq \delta^{2}\left\|X_{*}\right\|_{F}^{2}=\|\mathbf{L}(\widetilde{\mathcal{D}}) \operatorname{vec}(X)\|^{2} \geq \sum_{i=1}^{m}\left\|\widetilde{D}_{i} X_{*}-X_{*}^{\top} \widetilde{D}_{i}\right\|_{F}^{2} \\
& \geq \sum_{i=1}^{m}\left\|z^{\mathrm{H}} \widetilde{D}_{i} X_{*} z-z^{\mathrm{H}} X_{*}^{\top} \widetilde{D}_{i} z\right\|_{F}^{2}=|\gamma-\bar{\gamma}|^{2} \sum_{i=1}^{m}\left|z^{\mathrm{H}} \widetilde{D}_{i} z\right|^{2} \geq \mu^{2}|\gamma-\bar{\gamma}|^{2}, \tag{38}
\end{align*}
$$

Then we know that the imaginary part of μ is no more than $\frac{\sqrt{q} \kappa \delta}{2 \mu}=O(\delta)$.
Now let the eigenvalues of X_{*} be $\mu_{j}+\eta_{j} \sqrt{-1}$ for $j=1, \ldots, q$, where $\mu_{j}, \eta_{j} \in \mathbb{R}$. Then

$$
\begin{equation*}
\operatorname{tr}\left(X_{*}\right)=\sum_{j=1}^{q} \gamma_{j}=0, \quad \operatorname{tr}\left(X_{*}^{2}\right)=\sum_{j=1}^{q}\left(\gamma_{j}^{2}-\eta_{j}^{2}\right)=q, \quad \operatorname{tr}\left(X_{*}^{4}\right)=\sum_{j=1}^{q}\left(\gamma_{j}^{4}+\eta_{j}^{4}-6 \gamma_{j}^{2} \eta_{j}^{2}\right) . \tag{39}
\end{equation*}
$$

Using the method of Lagrange multipliers, we consider

$$
L\left(\gamma_{1}, \eta_{1}, \ldots, \gamma_{q}, \eta_{q} ; \mu_{1}, \mu_{2}\right)=\sum_{j=1}^{q}\left(\gamma_{j}^{4}+\eta_{j}^{4}-6 \gamma_{j}^{2} \eta_{j}^{2}\right)+\mu_{1} \sum_{j=1}^{q} \gamma_{j}+\mu_{2}\left(\sum_{j=1}^{q}\left(\gamma_{j}^{2}-\eta_{j}^{2}\right)-q\right)
$$

where μ_{1}, μ_{2} are Lagrange multipliers. By calculations, we have

$$
\begin{equation*}
\frac{\partial L}{\partial \gamma_{j}}=4 \gamma_{j}^{3}+2\left(\mu_{2}-6 \eta_{j}^{2}\right) \gamma_{j}+\mu_{1}=0 \tag{40}
\end{equation*}
$$

Take (40) as perturbed third order equations of $4 t^{3}+2 \mu_{2} t+\mu_{1}=0$. Using Lemma 5.3 and $\left|\eta_{j}\right| \leq O(\delta)$, we know that $\gamma_{j} \subset \cup_{i=1}^{3}\left\{z| | z-t_{i} \mid \leq O(\delta)\right\}$, where t_{1}, t_{2} and t_{3} are the roots of $4 t^{3}+2 \mu_{2} t+\mu_{1}=0$. Next, we consider the following cases:

Case (1) $\quad t_{1}=\bar{t}_{2} \notin \mathbb{R}, t_{3} \in \mathbb{R}$.
In this case, set $\rho_{1}=\operatorname{Re}\left(t_{1}\right), \rho_{2}=t_{3}$, then $\lambda\left(X_{*}\right) \subset \cup_{i=1,2} \operatorname{Rect}_{i}$.
Case (2) $t_{1}, t_{2}, t_{3} \in \mathbb{R}, t_{i}=\xi+O(\delta)$ for $i=1,2,3$.
In this case, using $t_{1}+t_{2}+t_{3}=0$ (by Vieta's formulas), we get $\xi=O(\delta)$. Then it follows that $\left|\gamma_{j}\right|=O(\delta)$ for all j. Using (39) and $\eta_{j}=O(\delta)$, we get $q \times O\left(\delta^{2}\right)=q$, which contradicts with $\delta=o(1)$.
Case (3) $t_{1}, t_{2}, t_{3} \in \mathbb{R}, t_{i}=\xi+O(\delta)$ for $i=1,2$.
In this case, set $\rho_{1}=\xi, \rho_{2}=t_{3}$, then $\lambda\left(X_{*}\right) \subset \cup_{i=1,2}$ Rect $_{i}$.
Case (4) $t_{1}, t_{2}, t_{3} \in \mathbb{R},\left|t_{i}-t_{j}\right|>O(\delta)$ for $i \neq j$.
In this case, without loss of generality, assume $t_{1}<t_{2}<t_{3}$, and there are p_{i} eigenvalues of X_{*} lie in $\left\{z\left|\left|z-t_{i}\right| \leq\right.\right.$ $O(\delta)\}$, for $i=1,2,3$. Using $\eta_{j}=O(\delta)$ and (39), we get

$$
\begin{align*}
& \operatorname{tr}\left(X_{*}\right)=q_{1} t_{1}+q_{2} t_{2}+q_{3} t_{3}+O(\delta)=0, \tag{41a}\\
& \operatorname{tr}\left(X_{*}^{2}\right)=q_{1} t_{1}^{2}+q_{2} t_{2}^{2}+q_{3} t_{3}^{2}+O(\delta)=q, \tag{41b}\\
& \operatorname{tr}\left(X_{*}^{4}\right)=q_{1} t_{1}^{4}+q_{2} t_{2}^{4}+q_{3} t_{3}^{4}+O(\delta) . \tag{41c}
\end{align*}
$$

Let $u=\left[\sqrt{q_{1}} t_{1}^{2}, \sqrt{q_{2}} t_{2}^{2}, \sqrt{q_{3}} t_{3}^{2}\right]^{\top}, v=\left[\sqrt{q_{1}}, \sqrt{q_{2}}, \sqrt{q_{3}}\right]^{\top}$. Then we have $\|u\|^{2}+O(\delta)=\operatorname{tr}\left(X_{*}^{4}\right),\|v\|=\sqrt{q}$. Using Cauchy's inequality, we get

$$
\operatorname{tr}\left(X_{*}^{4}\right)+O(\delta)=\|u\|^{2}=\|u\|^{2}\|v\|^{2} / q \geq\left(u^{\top} v\right)^{2} / q=\left(q_{1} t_{1}^{2}+q_{2} t_{2}^{2}+q_{3} t_{3}^{2}\right)^{2} / q=q+O(\delta)
$$

and the equality holds if and only if u and v are co-linear. Using the first two equalities of $(41), q_{1}, q_{2}, q_{3}$ can not have more than one zeros. If one of q_{1}, q_{2}, q_{3} is zero, say $q_{3}=0$, then the eigenvalues of X_{*} lie in two disks $\cup_{i=1,2,3, q_{i} \neq 0}\left\{z| | z-t_{i} \mid \leq O(\delta)\right\}$. Otherwise, q_{1}, q_{2} and q_{3} are all positive integers. Therefore, $t_{1}^{2}=t_{2}^{2}=t_{3}^{2}$, which implies that $t_{2}=t_{1}$ or $t_{2}=t_{3}$. This contradicts with $t_{1}<t_{2}<t_{3}$. To summarize, the eigenvalues of X_{*} lie in $\cup_{i=1,2}$ Rect $_{i}$.
The above proof essentially show that the optimal value is achieved at $X=X_{*}$, with its eigenvalues lie in $\cup_{i=1,2} \operatorname{Rect}_{i}$. The following statements show that such an X is feasible in $\mathscr{N}_{\delta}(\widetilde{\mathcal{D}})$.
If $\widetilde{\mathcal{D}}$ has a nontrivial δ-diagonalizer, then there exists a matrix Z such that $\sum_{i=1}^{m}\left\|\widetilde{D}_{i}-Z \Phi_{i} Z^{\top}\right\|_{F}^{2} \leq \frac{1}{4} \delta^{2}$, where Φ_{i} 's are all $\tau_{q}=\left(q_{1}, q_{2}\right)$ block diagonal matrices. Let $X=Z^{-\top} \Gamma Z^{\top}$, where $\Gamma=\operatorname{diag}\left(\sqrt{\frac{q_{2}}{q_{1}}} I_{q_{1}},-\sqrt{\frac{q_{1}}{q_{2}}} I_{q_{2}}\right)$. We know that X is also feasible. Therefore, we may declare that $\operatorname{Opt}(\widetilde{\mathcal{D}}, \delta)$ is minimized at $X=X_{*}$, with the eigenvalues of X_{*} lying in two disks.

Lastly, let $\left(\rho_{1}, 0\right),\left(\rho_{2}, 0\right)$ be the centers of the two disks, and there are q_{1}, q_{2} eigenvalues of X_{*} lie Disk $_{1}$, Disk $_{2}$, respectively. We show $\rho_{1}-\rho_{2} \geq 2+O(\delta)$. Rewrite the first two equalities of (41) as

$$
q_{1} \rho_{1}+q_{2} \rho_{2}=O(\delta), \quad q_{1} \rho_{1}^{2}+q_{2} \rho_{2}^{2}=q+O(\delta)
$$

By calculations, we get $\rho_{1}=\sqrt{\frac{q_{2}}{q_{1}}}+O(\delta), \rho_{2}=-\sqrt{\frac{q_{1}}{q_{2}}}+O(\delta)$. Then it follows that

$$
\rho_{1}-\rho_{2}=\sqrt{\frac{q_{2}}{q_{1}}}+\sqrt{\frac{q_{1}}{q_{2}}}+O(\delta) \geq 2+O(\delta)
$$

completing the proof.

6.8 Proof of Theorem 2.8

Theorem 2.8. Assume that the BJBDP for $\mathcal{C}=\left\{C_{i}\right\}_{i=1}^{m}$ is uniquely τ_{p}-block-diagonalizable, and let $\left(\tau_{p}, A\right)$ be a solution satisfying (1). Let $\widetilde{\mathcal{C}}=\left\{\widetilde{C}_{i}\right\}_{i=1}^{m}=\left\{C_{i}+E_{i}\right\}_{i=1}^{m}$ be a perturbed matrix set of \mathcal{C}. Denote

$$
\tau_{p}=\left(p_{1}, \ldots, p_{\ell}\right), \quad \hat{\tau}_{p}=\left(\hat{p}_{1}, \ldots, \hat{p}_{\hat{\ell}}\right), \quad A=\left[A_{1}, \ldots, A_{\ell}\right], \quad \widehat{A}=\left[\widehat{A}_{1}, \ldots, \widehat{A}_{\hat{\ell}}\right]
$$

where $\left(\hat{\tau}_{p}, \widehat{A}\right)$ is the output of Algorithm 4. Assume $\mathscr{N}\left(G_{j j}\right)=\mathscr{R}\left(\operatorname{vec}\left(I_{p_{j}}\right)\right)$ for all j, where $G_{j j}$ is defined in (5a). Also assume that p is correctly identified in Line 3 of Algorithm 4. Let the singular values of \widetilde{C} be the same as in Theorem 2.2,

$$
\epsilon=\frac{\|\underline{E}\|}{\tilde{\phi}_{p}}, \quad r=\frac{\sqrt{2(d+2 C)} \tilde{\phi}_{p} \epsilon}{\sigma_{\min }^{2}(A)\left(1-\epsilon^{2}\right)}, \quad g_{j}=\frac{\sqrt{2 j}}{(\hat{\ell}-1) \kappa \sqrt{p}}-\max \left\{\frac{\kappa}{\omega_{\text {neq }}}, \frac{1}{\omega_{\mathrm{ir}}}\right\} r, \quad \text { for } j=1,2
$$

where C and κ are two constants.
(I) If $g_{1}>0$, then $\hat{\ell}=\ell$, and there exists a permutation $\left\{1^{\prime}, 2^{\prime}, \ldots, \ell^{\prime}\right\}$ of $\{1,2, \ldots, \ell\}$ such that $p_{j}=\hat{p}_{j^{\prime}}$. In order words, $\hat{\tau}_{p} \sim \tau_{p}$.
(II) Further assume $g_{2}>\frac{r}{\omega_{\text {ir }}}$, then there exists a τ_{p}-block diagonal matrix D such that

$$
\left\|\left[\widehat{A}_{1^{\prime}}, \ldots, \widehat{A}_{\ell^{\prime}}\right]-A D\right\|_{F} \leq \frac{\frac{c r}{\omega_{\mathrm{neq}}}}{g_{2}-\frac{r}{\omega_{\mathrm{ir}}}}\|A\|_{F}+\left(\frac{\epsilon^{2}}{\sqrt{1-\epsilon^{2}}}+\epsilon\right)\|\widehat{A}\|_{F}=O(\epsilon)
$$

where c is a constant.
Proof. Using $\|\underline{E}\|<\epsilon \tilde{\phi}_{p}$ and Theorem 2.2, we have

$$
\begin{equation*}
\delta=\tilde{\phi}_{p+1} \leq\|\underline{E}\| \leq \epsilon \tilde{\phi}_{p}, \quad\left\|\sin \Theta\left(\mathscr{R}(A), \mathscr{R}\left(\widetilde{V}_{1}\right)\right)\right\| \leq \frac{\left\|\widetilde{U}_{1}^{\top} \underline{\underline{E}} V_{2}\right\|}{\tilde{\phi}_{p}} \leq \frac{\|\underline{E}\|}{\tilde{\phi}_{p}} \leq \epsilon \tag{42}
\end{equation*}
$$

Let $\left[V_{1}, V_{2}\right]$ be an orthogonal matrix such that $\mathscr{R}\left(V_{1}\right)=\mathscr{R}(A), \mathscr{R}\left(V_{2}\right)=\mathscr{N}\left(A^{\top}\right)$. Then we can write $\widetilde{V}_{1}=V_{1} T_{c}+$ $V_{2} T_{s}$, where $\left[\begin{array}{l}T_{c} \\ T_{s}\end{array}\right]$ is orthonormal, $\left\|T_{s}\right\|=\left\|\sin \Theta\left(V_{1}, \widetilde{V}_{1}\right)\right\| \leq \epsilon, \sigma_{\min }\left(T_{c}\right)=\sqrt{1-\left\|\sin \Theta\left(V_{1}, \widetilde{V}_{1}\right)\right\|^{2}} \geq \sqrt{1-\epsilon^{2}}$. Therefore, T_{c} is nonsingular. Let $B_{i}=V_{1}^{\top} C_{i} V_{1}, \widetilde{B}_{i}=\widetilde{V}_{1}^{\top} \widetilde{C}_{i} \widetilde{V}_{1}$. And by calculations, we have

$$
\begin{align*}
\left\|\widetilde{B}_{i}-T_{c}^{\top} B_{i} T_{c}\right\|_{F} & =\left\|\widetilde{V}_{1}^{\top}\left(C_{i}+E_{i}\right) \widetilde{V}_{1}-T_{c}^{\top} V_{1}^{\top} C_{i} V_{1} T_{c}\right\|_{F} \\
& \leq\left\|\widetilde{V}_{1}^{\top} C_{i} \widetilde{V}_{1}-T_{c}^{\top} V_{1}^{\top} C_{i} V_{1} T_{c}+\widetilde{V}_{1}^{\top} E_{i} \widetilde{V}_{1}\right\|_{F} \\
& \stackrel{(a)}{\leq}\left\|T_{c}^{\top} V_{1}^{\top} C_{i} V_{2} T_{s}+T_{s}^{\top} V_{2}^{\top} C_{i} V_{1} T_{c}+T_{s}^{\top} V_{2}^{\top} C_{i} V_{2} T_{s}+\widetilde{V}_{1}^{\top} E_{i} \widetilde{V}_{1}\right\|_{F} \\
& \stackrel{(b)}{=}\left\|E_{i}\right\|_{F} \tag{43}
\end{align*}
$$

where (a) uses $\widetilde{V}_{1}=V_{1} T_{c}+V_{2} T_{s}$, (b) uses $A^{\top} V_{2}=0$ (by Theorem 2.1).
On one hand, let $Z=T_{c}^{\top} V_{1}^{\top} A$, using (1), we have

$$
\begin{equation*}
T_{c}^{\top} B_{i} T_{c}=T_{c}^{\top} V_{1}^{\top} A \Sigma_{i} A^{\top} V_{1} T_{c}=Z \Sigma_{i} Z^{\top} \tag{44}
\end{equation*}
$$

On the other hand, on output of Algorithm 4, it holds that

$$
\begin{equation*}
\sum_{i=1}^{m}\left\|\widetilde{B}_{i}-\widehat{Z} \widehat{\Sigma}_{i} \widehat{Z}^{\top}\right\|_{F}^{2} \leq C \delta^{2}=C \tilde{\phi}_{p+1}^{2} \leq C \tilde{\phi}_{p}^{2} \epsilon^{2} \tag{45}
\end{equation*}
$$

where $\widehat{\Sigma}_{i}=\operatorname{diag}\left(\Sigma_{i 1}, \ldots, \widehat{\Sigma}_{i \hat{\ell}}\right)$'s are all $\hat{\tau}_{p}=\left(\hat{p}_{1}, \ldots, \hat{p}_{\hat{\ell}}\right)$-block diagonal, and for each $1 \leq j \leq \hat{\ell},\left\{\Sigma_{i j}\right\}_{i=1}^{m}$ does not have δ-block diagonalizer.

Using (43), (44) and (45), we have

$$
\begin{align*}
\sum_{i=1}^{m}\left\|Z \Sigma_{i} Z^{\top}-\widehat{Z} \widehat{\Sigma}_{i} \widehat{Z}^{\top}\right\|_{F}^{2} & \leq 2 \sum_{i=1}^{m}\left(\left\|Z \Sigma_{i} Z^{\top}-\widetilde{B}_{i}\right\|_{F}^{2}+\left\|\widetilde{B}_{i}-\widehat{Z} \widehat{\Sigma}_{i} \widehat{Z}^{\top}\right\|_{F}^{2}\right) \\
& \leq 2\left(\sum_{i=1}^{m}\left\|E_{i}\right\|_{F}^{2}+C \tilde{\phi}_{p}^{2} \epsilon^{2}\right)=\|\underline{E}\|_{F}^{2}+2 C \tilde{\phi}_{p}^{2} \epsilon^{2} \leq d\|\underline{E}\|^{2}+2 C \tilde{\phi}_{p}^{2} \epsilon^{2} \\
& \leq(d+2 C) \tilde{\phi}_{p}^{2} \epsilon^{2} \tag{46}
\end{align*}
$$

As T_{c} is nonsingular, A has full column rank, $\mathscr{R}\left(V_{1}\right)=\mathscr{R}(A)$, we know that Z is nonsingular. \widehat{Z} is also nonsingular since it is the product of a sequence of nonsingular matrices. Then we may let $Y=Z^{\top} \widehat{Z}^{-\top}, \Gamma=Y \widehat{\Gamma} Y^{-1}=$ $\frac{1}{\varrho} Y \operatorname{diag}\left(\gamma_{1} I_{\hat{p}_{1}}, \ldots, \gamma_{\ell} I_{\hat{p}_{\hat{\ell}}}\right) Y^{-1}$, where $\gamma_{j}=-1+\frac{2(j-1)}{\hat{\ell}-1}$ for $j=1, \ldots, \hat{\ell}, \varrho=\left\|Y \operatorname{diag}\left(\gamma_{1} I_{\hat{p}_{1}}, \ldots, \gamma_{\ell} I_{\hat{p}_{\hat{\ell}}}\right) Y^{-1}\right\|_{F}$. It follows

$$
\begin{equation*}
\varrho=\varrho\|\Gamma\|_{F}=\left\|Y \operatorname{diag}\left(\gamma_{1} I_{\hat{p}_{1}}, \ldots, \gamma_{\ell} I_{\hat{p}_{\hat{\ell}}}\right) Y^{-1}\right\|_{F} \leq \kappa(Y) \sqrt{\sum_{j=1}^{\hat{\ell}} \hat{p}_{j} \gamma_{j}^{2}} \leq \kappa(Y) \sqrt{p} \tag{47}
\end{equation*}
$$

Denote $F_{i}=Z \Sigma_{i} Z^{\top}-\widehat{Z} \widehat{\Sigma}_{i} \widehat{Z}^{\top}$ for all i. Direct calculations give rise to

$$
\begin{align*}
\sum_{i=1}^{m}\left\|\Sigma_{i} \Gamma-\Gamma^{\top} \Sigma_{i}\right\|_{F}^{2} & =\sum_{i=1}^{m}\left\|Z^{-1}\left(Z \Sigma_{i} Z^{\top} \widehat{Z}^{-\top} \widehat{\Gamma} \widehat{Z}^{\top}-\widehat{Z} \widehat{\Gamma}^{\top} \widehat{Z}^{-1} Z \Sigma_{i} Z^{\top}\right) Z^{-\top}\right\|_{F}^{2} \\
& =\sum_{i=1}^{m}\left\|Z^{-1}\left(\left(\widehat{Z} \widehat{\Sigma}_{i} \widehat{Z}^{\top}+F_{i}\right) \widehat{Z}^{-\top} \widehat{\Gamma} \widehat{Z}^{\top}-\widehat{Z} \widehat{\Gamma}^{\top} \widehat{Z}^{-1}\left(\widehat{Z} \widehat{\Sigma}_{i} \widehat{Z}^{\top}+F_{i}\right)\right) Z^{-\top}\right\|_{F}^{2} \\
& =\sum_{i=1}^{m}\left\|Z^{-1} F_{i} Z^{-\top} \Gamma-\Gamma^{\top} Z^{-1} F_{i} Z^{-\top}\right\|_{F}^{2} \\
& \leq 2\|\Gamma\|_{F}^{2} \sum_{i=1}^{m}\left\|Z^{-1} F_{i} Z^{-\top}\right\|^{2} \stackrel{(a)}{\leq} \frac{2(d+2 C) \tilde{\phi}_{p}^{2} \epsilon^{2}}{\sigma_{\min }^{4}(Z)} \stackrel{(b)}{\leq} r^{2} \tag{48}
\end{align*}
$$

where (a) uses (46), $\|\Gamma\|_{F}=1$ and (b) uses the definition of r and $\sigma_{\min }\left(T_{c}\right) \geq \sqrt{1-\epsilon^{2}}$.
Partition $\Gamma=\left[\Gamma_{j k}\right]$ with $\Gamma_{j k} \in \mathbb{R}^{p_{j} \times p_{k}}$, and recall (4) and (5). Using (48), we get

$$
\sum_{j=1}^{\ell}\left\|G_{j j} \operatorname{vec}\left(\Gamma_{j j}\right)\right\|^{2}+\sum_{1<j<k \leq \ell}\left\|G_{j k}\left[\begin{array}{c}
\operatorname{vec}\left(\Gamma_{j k}\right) \tag{49}\\
-\operatorname{vec}\left(\Gamma_{k j}^{\top}\right)
\end{array}\right]\right\|^{2}=\sum_{i=1}^{m}\left\|\Sigma_{i} \Gamma-\Gamma^{\top} \Sigma_{i}\right\|_{F}^{2} \leq r^{2}
$$

Let $r_{j j}=G_{j j} \operatorname{vec}\left(\Gamma_{j j}\right)$, the eigenvalues of $\Gamma_{j j}$ be $\gamma_{j 1}, \ldots, \gamma_{j p_{j}}$, for $j=1, \ldots, \ell$. Then we have

$$
\Gamma_{j j}=\widehat{\Gamma}_{j j}+\hat{\gamma}_{j} I_{p_{j}}
$$

where $\widehat{\Gamma}_{j j}=\operatorname{reshape}\left(G_{j j}^{\dagger} r_{j j}, p_{j}, p_{j}\right)$. And it follows that

$$
\begin{equation*}
\sum_{k=1}^{p_{j}}\left|\gamma_{j k}-\hat{\gamma}_{j}\right|^{2} \leq\left\|\widehat{\Gamma}_{j j}\right\|_{F}^{2} \leq \frac{\left\|r_{j j}\right\|^{2}}{\omega_{\mathrm{ir}}^{2}} \tag{50}
\end{equation*}
$$

Let $r_{j k}=G_{j k}\left[\begin{array}{c}\operatorname{vec}\left(\Gamma_{j k}\right) \\ -\operatorname{vec}\left(\Gamma_{k j}^{\top}\right)\end{array}\right]$, for $1 \leq j<k<\ell$. Then we have

$$
\begin{equation*}
\left\|\Gamma_{j k}\right\|_{F}^{2}+\left\|\Gamma_{k j}\right\|_{F}^{2} \leq\left\|G_{j k}^{\dagger} r_{j k}\right\|^{2} \leq \frac{\left\|r_{j k}\right\|^{2}}{\omega_{\mathrm{neq}}^{2}} \tag{51}
\end{equation*}
$$

Let $\mu_{j k}=\operatorname{argmin}_{\gamma \in\left\{\gamma_{1}, \ldots, \gamma_{\hat{\ell}}\right\}}\left|\frac{\gamma}{\varrho}-\gamma_{j k}\right|$. By Sun (1996, Remark 3.3, (2)), it holds that

$$
\begin{equation*}
\sum_{j=1}^{\ell} \sum_{k=1}^{p_{j}}\left|\frac{\mu_{j k}}{\varrho}-\gamma_{j k}\right|^{2} \leq \kappa^{2}(Y) \sum_{j<k}\left(\left\|\Gamma_{j k}\right\|_{F}^{2}+\left\|\Gamma_{k j}\right\|_{F}^{2}\right) \tag{52}
\end{equation*}
$$

Using (50), (51) and (52), we have

$$
\begin{align*}
\sum_{j=1}^{\ell} \sum_{k=1}^{p_{j}}\left|\frac{\mu_{j k}}{\varrho}-\hat{\gamma}_{j}\right|^{2} & \leq \sum_{j=1}^{\ell} \sum_{k=1}^{p_{j}}\left|\frac{\mu_{j k}}{\varrho}-\gamma_{j k}\right|^{2}+\sum_{j=1}^{\ell} \sum_{k=1}^{p_{j}}\left|\gamma_{j k}-\hat{\gamma}_{j}\right|^{2} \\
& \leq \frac{\kappa^{2}(Y)}{\omega_{\text {neq }}^{2}} \sum_{j<k}\left\|r_{j k}\right\|^{2}+\frac{1}{\omega_{\mathrm{ir}}^{2}} \sum_{j}\left\|r_{j j}\right\|^{2} \leq \max \left\{\frac{\kappa^{2}(Y)}{\omega_{\mathrm{neq}}^{2}}, \frac{1}{\omega_{\mathrm{ir}}^{2}}\right\} r^{2} \tag{53}
\end{align*}
$$

Now we declare that for any j, it holds that $\mu_{j 1}=\mu_{j 2}=\cdots=\mu_{j p_{j}}$. Because otherwise, without loss of generality, say $\mu_{j 1}=\gamma_{1}, \mu_{j 2}=\gamma_{2}$, and they corresponds to $\hat{\gamma}_{j}$, then we have

$$
\begin{equation*}
\sum_{j=1}^{\ell} \sum_{k=1}^{p_{j}}\left|\frac{\mu_{j k}}{\varrho}-\gamma_{j k}\right|^{2} \geq\left|\frac{\gamma_{1}}{\varrho}-\hat{\gamma}_{j}\right|^{2}+\left|\frac{\gamma_{2}}{\varrho}-\hat{\gamma}_{j}\right|^{2} \geq \frac{\left|\gamma_{1}-\gamma_{2}\right|^{2}}{2 \varrho^{2}} \geq \frac{2}{(\hat{\ell}-1)^{2} \kappa^{2}(Y) p} \tag{54}
\end{equation*}
$$

where the last inequality uses the definition of γ_{j} and also (47). Combining (53) and (54), we get max $\left\{\frac{\kappa(Y)}{\omega_{\text {neq }}}, \frac{1}{\omega_{\mathrm{ir}}}\right\} r \geq$ $\frac{1}{(\hat{\ell}-1) \kappa(Y)} \sqrt{\frac{2}{p}}$, which contradicts to the assumption that $g_{1}>0$. Therefore, $\hat{\ell}=\ell$, and there exists a permutation $\left\{1^{\prime}, 2^{\prime}, \ldots, \ell^{\prime}\right\}$ of $\{1,2, \ldots, \ell\}$ such that $p_{j}=\hat{p}_{j^{\prime}}$, completing the proof of (I).
Without loss of generality, let $j^{\prime}=j$ for all $j=1, \ldots, \ell$. Let $Y^{-\top}=\left[Y_{j k}\right]$,

$$
R=\left[R_{j k}\right]=\text { OffBlkdiag }_{\tau_{p}}\left(\text { OffBlkdiag }_{\tau_{p}}\left(\Gamma^{\top}\right) Y^{-\top}\right)+\operatorname{diag}\left(\Gamma_{11}-\hat{\gamma}_{1} I, \ldots, \Gamma_{\ell \ell}-\hat{\gamma}_{\ell} I\right) \text { OffBlkdiag }_{\tau_{p}}\left(Y^{-\top}\right),
$$

where $Y_{j k}, R_{j k} \in \mathbb{R}^{p_{j} \times p_{k}}$. Using $\Gamma=Y \widehat{\Gamma} Y^{-1}=\frac{1}{\varrho} Y \operatorname{diag}\left(\gamma_{1} I_{p_{1}}, \ldots, \gamma_{\ell} I_{p_{\ell}}\right) Y^{-1}$, we have $\Gamma^{\top} Y^{-\top}=Y^{-\top} \widehat{\Gamma}$, whose off-block diagonal part reads

$$
\operatorname{diag}\left(\hat{\gamma}_{1} I, \ldots, \hat{\gamma}_{\ell} I\right) \operatorname{OffBlkdiag}_{\tau_{p}}\left(Y^{-\top}\right)-\operatorname{OffBlkdiag} \tau_{\tau_{p}}\left(Y^{-\top}\right) \frac{1}{\varrho} \operatorname{diag}\left(\gamma_{1} I, \ldots, \gamma_{\ell} I\right)=-R
$$

Then it follows that $\left(\hat{\gamma}_{j}-\frac{\gamma_{k}}{\varrho}\right) Y_{j k}=R_{j k}$ for $j \neq k$. By calculations, we have

$$
\begin{aligned}
\left\|Y_{j k}\right\|_{F} & =\frac{\left\|R_{j k}\right\|_{F}}{\left|\hat{\gamma}_{j}-\gamma_{k} / \varrho\right|} \leq \frac{\left\|R_{j k}\right\|_{F}}{\left|\gamma_{j} / \varrho-\gamma_{k} / \varrho\right|-\left|\hat{\gamma}_{j}-\gamma_{j} / \varrho\right|} \stackrel{(a)}{\leq} \frac{\left\|R_{j k}\right\|_{F}}{\frac{2|j-k|}{\varrho(\ell-1)}-\left|\hat{\gamma}_{j}-\gamma_{j} / \varrho\right|} \stackrel{(b)}{\leq} \frac{\left\|R_{j k}\right\|_{F}}{g_{2}} \\
\|R\|_{F} & \leq \| \text { OffBlkdiag }_{\tau_{p}}\left(\Gamma^{\top}\right)\| \| Y^{-\top}\left\|+\max _{j}\right\| \Gamma_{j j}-\hat{\gamma}_{j} I\| \| \operatorname{OffBlkdiag}_{\tau_{p}}\left(Y^{-\top}\right) \|_{F} \\
& \stackrel{(c)}{\leq} \| \text { OffBlkdiag }_{\tau_{p}}\left(\Gamma^{\top}\right)\| \| Y^{-\top}\left\|+\frac{\sqrt{\sum_{j}\left\|r_{j j}\right\|^{2}}}{\omega_{\mathrm{ir}}}\right\| \text { OffBlkdiag }_{\tau_{p}}\left(Y^{-\top}\right) \|_{F}
\end{aligned}
$$

where (a) uses the definition of γ_{j}, (b) uses (47) and (53), (c) uses (50). Therefore,

$$
\begin{aligned}
& \| \text { OffBlkdiag }_{\tau_{p}}\left(Y^{-\top}\right) \|_{F} \leq \frac{\|R\|_{F}}{g_{2}} \\
\leq & \frac{1}{g_{2}}\left(\| \text { OffBlkdiag }_{\tau_{p}}\left(\Gamma^{\top}\right)\left\|_{F}\right\| Y^{-\top}\left\|+\frac{\sqrt{\sum_{j}\left\|r_{j j}\right\|^{2}}}{\omega_{\mathrm{ir}}}\right\| \text { OffBlkdiag }_{\tau_{p}}\left(Y^{-\top}\right) \|_{F}\right),
\end{aligned}
$$

and hence

$$
\begin{equation*}
\| \text { OffBlkdiag }_{\tau_{p}}\left(Y^{-\top}\right) \|_{F} \leq \frac{\| \text { OffBlkdiag }_{\tau_{p}}\left(\Gamma^{\top}\right)\left\|_{F}\right\| Y^{-\top} \|}{g_{2}-\frac{\sqrt{\sum_{j}\left\|r_{j j}\right\|^{2}}}{\omega_{\mathrm{ir}}}} \leq \frac{\frac{r}{\omega_{\mathrm{neq}}}\left\|Y^{-1}\right\|}{g_{2}-\frac{r}{\omega_{\mathrm{ir}}}} \tag{55}
\end{equation*}
$$

where the last inequality uses (50) and (51).
Finally, by calculations, we have

$$
\begin{aligned}
\widehat{A} & =\widetilde{V}_{1} \widehat{Z}=\left(V_{1} T_{c}+V_{2} T_{s}\right) \widehat{Z}=\left(V_{1} T_{c}^{-\top}\left(I-T_{s}^{\top} T_{s}\right)+V_{2} T_{s}\right) \widehat{Z} \\
& =V_{1} T_{c}^{-\top} Z Y^{-\top}+\left(-V_{1} T_{c}^{-\top}\left(T_{s}^{\top} T_{s}\right)+V_{2} T_{s}\right) \widehat{Z} \\
& =A Y^{-\top}+\left(-V_{1} T_{c}^{-\top}\left(T_{s}^{\top} T_{s}\right)+V_{2} T_{s}\right) \widehat{Z} \\
& =A \operatorname{diag}\left(Y_{11}, \ldots, Y_{\ell \ell}\right)+A \text { OffBlkdiag }_{\tau_{p}}\left(Y^{-\top}\right)+\left(-V_{1} T_{c}^{-\top}\left(T_{s}^{\top} T_{s}\right)+V_{2} T_{s}\right) \widehat{Z},
\end{aligned}
$$

and it follows that

$$
\begin{aligned}
\left\|\widehat{A}-A \operatorname{diag}\left(Y_{11}, \ldots, Y_{\ell \ell}\right)\right\|_{F} & \leq\|A\|\left\|\operatorname{OffBlkdiag}_{\tau_{p}}\left(Y^{-\top}\right)\right\|_{F}+\left(\left\|T_{c}^{-\top} T_{s}^{\top} T_{s}\right\|+\left\|T_{s}\right\|\right)\|\widehat{Z}\|_{F} \\
& \leq\|A\| \frac{\frac{r}{\omega_{\text {eq }}}\left\|Y^{-\top}\right\|}{g_{2}-\frac{r}{\omega_{\mathrm{ir}}}}+\left(\frac{\epsilon^{2}}{\sqrt{1-\epsilon^{2}}}+\epsilon\right)\|\widehat{A}\|_{F} .
\end{aligned}
$$

The proof is completed.

