Supplementary Materials

5 Preliminary

In this section, we present some preliminary results that will be used in subsequent proofs.

The following lemma is the well-known Weyl theorem (Stewart and Sun, 1990, p.203).

Lemma 5.1. For two Hermitian matrices $A, \tilde{A} \in \mathbb{C}^{n \times n}$, let $\lambda_1 \leq \cdots \leq \lambda_n, \tilde{\lambda}_1 \leq \cdots \leq \tilde{\lambda}_n$ be eigenvalues of A, \tilde{A} , respectively. Then

$$|\lambda_j - \hat{\lambda}_j| \le ||A - \hat{A}||, \quad \text{for } 1 \le j \le n.$$

The following lemma gives some fundamental results for $\sin \Theta(U, V)$, which can be easily verified via definition. Lemma 5.2. Let $[U, U_c]$ and $[V, V_c]$ be two orthogonal matrices with $U \in \mathbb{R}^{n \times k}, V \in \mathbb{R}^{n \times \ell}$. Then

$$\|\sin\Theta(U,V)\| = \|U_{c}^{\top}V\| = \|U^{\top}V_{c}\|.$$

The following lemma discusses the perturbation bound for the roots of a third order equation.

Lemma 5.3. Given a perturbed third order equation $t^3 + (p + \epsilon)t + q = 0$, where $p, q \in \mathbb{R}$ and $\epsilon \in \mathbb{R}$ is a small perturbation. Denote the roots of $t^3 + pt + q = 0$ by t_1, t_2, t_3 , and assume that the multiplicity of each root is no more than two. Then the roots of $t^3 + (p + \epsilon)t + q = 0$ lie in $\bigcup_{i=1}^3 \{z \in \mathbb{C} \mid |z - t_i| \leq r\}$, where $r = O(\sqrt{\epsilon})$.

Proof. Let the roots of $t^3 + (p+\epsilon)t + q = 0$ be \tilde{t}_1 , \tilde{t}_2 , \tilde{t}_3 . Notice that t_1 , t_2 and t_3 are the eigenvalues of $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -q & -p & 0 \end{bmatrix}$, \tilde{t}_1 , \tilde{t}_2 , \tilde{t}_3 are the eigenvalues of $\tilde{A} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -q & -p - \epsilon & 0 \end{bmatrix}$. Since the multiplicity of t_i is no more

than two, the size of each diagonal block of the Jordan canonical form of A is no more than two. Using Kahan et al. (1982, Theorem 8), we know that for each \tilde{t}_i , there exists a t_j such that

$$\frac{|\tilde{t}_i - t_j|^s}{1 + |\tilde{t}_i - t_j|^{s-1}} \le O(1) \left\| \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & \epsilon & 0 \end{bmatrix} \right\| = O(\epsilon),$$
(11)

where s = 1 or 2. Therefore, $|\tilde{t}_i - t_j| \leq O(\sqrt{\epsilon})$. The conclusion follows.

6 Proofs

In this section, we present the proofs of the theoretical results in the paper.

6.1 Proof of Theorem 2.1

Theorem 2.1. Let (τ_p, A) be a solution to BJBDP for \mathcal{C} . Then $\mathscr{R}(A) = \mathscr{N}(\underline{C})^{\perp} = \mathscr{R}(\underline{C}^{\top})$.

Proof. Using (1), for any $v \in \mathcal{N}(A^{\top})$, we have $C_i x = A \Sigma_i A^{\top} x = 0$, similarly, $C_i^{\top} x = 0$. Therefore, $\mathcal{N}(A^{\top}) \subset \mathcal{N}(\underline{C})$.

Next, we show $\sigma_p(\underline{C}) > 0$ by contradiction. If $\sigma_p(\underline{C}) = 0$, there exists a nonzero vector $v \notin \mathcal{N}(A^{\top})$ such that $\underline{C}v = 0$. Let $w = A^{\top}v$, we know that $w \neq 0$. Partition w as $w = [w_1^{\top}, \ldots, w_{\ell}^{\top}]^{\top}$, where $w_j \in \mathbb{R}^{p_j}$ for $j = 1, \ldots, \ell$. Then there at least exists one $w_j \neq 0$. Without loss of generality, assume $w_1 \neq 0$. It follows from $\underline{C}v = 0$ that

$$0 = C_i v = A \Sigma_i A^\top v = A \Sigma_i w = A \begin{bmatrix} \Sigma_i^{(11)} w_1 \\ \vdots \\ \Sigma_i^{(\ell\ell)} w_t \end{bmatrix}.$$
(12)

Therefore, we have $\Sigma_i^{(11)} w_1 = 0$ for all *i*. Similarly, $w_1^{\top} \Sigma_i^{(11)} = 0$ for all *i*. Let $w_1^c \in \mathbb{R}^{p_1 \times (p_1 - 1)}$ be such that $[w_1, w_1^c]$ be nonsingular, then

$$[w_1, w_1^c]^{\top} \Sigma_i^{(11)}[w_1, w_1^c] = \begin{bmatrix} 0 & 0 \\ 0 & * \end{bmatrix}, \text{ for } i = 1, \dots, m,$$

i.e., $C_1 = \{\Sigma_i^{(11)}\}_{i=1}^m$ can be further block diagonalized, which contradicts with the assumption that (τ_p, A) is a solution to the BJBDP.

Now we have $\dim(\mathscr{N}(\underline{C})) \leq d - p$. Combining it with $\dim(\mathscr{N}(A^{\top})) = d - p$ and $\mathscr{N}(A^{\top}) \subset \mathscr{N}(\underline{C})$, we have $\mathscr{N}(A^{\top}) = \mathscr{N}(\underline{C})$. Then it follows that

$$\mathscr{R}(A) = \mathscr{N}(A^{\top})^{\perp} = \mathscr{N}(\underline{C})^{\perp} = \mathscr{R}(\underline{C}^{\top})^{\perp}$$

This completes the proof.

6.2 Proof of Theorem 2.2

Theorem 2.2. Let (τ_p, A) be a solution to BJBDP for C. Let the columns of V_2 be an orthonormal basis for $\mathscr{N}(A^{\top}), \phi_1 \geq \cdots \geq \phi_d$ and $\tilde{\phi}_1 \geq \cdots \geq \tilde{\phi}_d$ be the singular values of \underline{C} and $\underline{\widetilde{C}}$, respectively. Then

$$\tilde{\phi}_p \ge \phi_p - \|\underline{E}\|, \qquad \tilde{\phi}_{p+1} \le \|\underline{E}\|. \tag{13}$$

In addition, let $\widetilde{U}_1 = [\widetilde{u}_1, \ldots, \widetilde{u}_p]$, $\widetilde{V}_1 = [\widetilde{v}_1, \ldots, \widetilde{v}_p]$, where \widetilde{u}_j , \widetilde{v}_j are the left and right singular vector of $\underline{\widetilde{C}}$ corresponding to $\widetilde{\phi}_j$, respectively, and \widetilde{U}_1 , \widetilde{V}_1 are both orthonormal. If $||\underline{E}|| < \frac{\phi_p}{2}$, then

$$\|\sin\Theta(\mathscr{R}(A),\mathscr{R}(\widetilde{V}_1))\| \le \frac{\|\widetilde{U}_1^\top \underline{E} V_2\|}{\widetilde{\phi}_p}.$$

Proof. First, by Theorem 2.1, we know that $\phi_{p+1} = \cdots = \phi_d = 0$. On the other hand, by Lemma 5.1, we have

$$|\widetilde{\phi}_j - \phi_j| \le ||\widetilde{\underline{C}} - \underline{C}|| = ||\underline{E}||, \text{ for } j = 1, \dots, d.$$

Then (2) follows.

Second, using (2) and $\|\underline{E}\| < \frac{\phi_p}{2}$, we have $\tilde{\phi}_p \ge \phi_p - \|\underline{E}\| > \frac{\phi_p}{2} > \|\underline{E}\| \ge \tilde{\phi}_{p+1}$. Thus, $\mathscr{R}(\widetilde{V}_1)$ is well defined. By calculations, we have

$$\operatorname{diag}(\widetilde{\phi}_1,\ldots,\widetilde{\phi}_p)\widetilde{V}_1^\top V_2 \stackrel{(a)}{=} \widetilde{U}_1^\top \underline{\widetilde{C}} V_2 = \widetilde{U}_1^\top (\underline{C} + \underline{E}) V_2 \stackrel{(b)}{=} \widetilde{U}_1^\top \underline{E} V_2$$

where (a) uses diag $(\tilde{\phi}_1, \ldots, \tilde{\phi}_p)\widetilde{V}_1^{\top} = \widetilde{U}_1^{\top}\widetilde{\underline{C}}$, (b) uses $\underline{C}V_2 = 0$. Then using Lemma 5.2, we get

$$\|\sin\Theta(\mathscr{R}(A),\mathscr{R}(\tilde{V}_1))\| = \|\widetilde{V}_1^{\top}V_2\| = \|\operatorname{diag}(\tilde{\phi}_1,\ldots,\tilde{\phi}_p)^{-1}\widetilde{U}_1^{\top}\underline{E}V_2\| \le \frac{\|U_1^{\top}\underline{E}V_2\|}{\tilde{\phi}_p}.$$

The proof is completed.

6.3 Proof of Theorem 2.3

Theorem 2.3. Given $C = \{C_i\}_{i=1}^m$ with $C_i \in \mathbb{R}^{d \times d}$. Let $V_1 \in \mathbb{R}^{d \times p}$ be such that $V_1^{\top}V_1 = I_p, \mathscr{R}(V_1) = \mathscr{R}(\underline{C}^{\top})$. Denote $B_i = V_1^{\top}C_iV_1, \mathcal{B} = \{B_i\}_{i=1}^m$. Then C_i 's can be factorized as in (1) with $\mathscr{R}(A) = \mathscr{R}(\underline{C}^{\top})$ if and only if there exists a matrix $X \in \mathscr{N}(\mathcal{B})$, which can be factorized into

$$X = Y \operatorname{diag}(X_{11}, \dots, X_{\ell\ell}) Y^{-1},$$
(14)

where $Y \in \mathbb{R}^{p \times p}$ is nonsingular, $X_{jj} \in \mathbb{R}^{p_j \times p_j}$ for $1 \le j \le \ell$ and $\lambda(X_{jj}) \cap \lambda(X_{kk}) = \emptyset$ for $j \ne k$.

Proof. (\Rightarrow) (Sufficiency) Let $W = A^{\top}V_1$. Since $\mathscr{R}(\underline{C}^{\top}) = \mathscr{R}(A) = \mathscr{R}(V_1)$, and V_1 , A both have full column rank, we know that W is nonsingular. Let

$$X = W^{-1} \Gamma W = W^{-1} \operatorname{diag}(\gamma_1 I_{p_1}, \dots, \gamma_\ell I_{p_\ell}) W,$$
(15)

where $\gamma_1, \ldots, \gamma_\ell$ be ℓ distinct real numbers. For all $1 \le i \le m$, we have

$$B_i X \stackrel{(a)}{=} W^{\top} \Sigma_i W W^{-1} \Gamma W = W^{\top} \Sigma_i \Gamma W = W^{\top} \Gamma \Sigma_i W = W^{\top} \Gamma W^{-\top} W^{\top} \Sigma_i W \stackrel{(b)}{=} X^{\top} B_i,$$

where both (a) and (b) use $W = A^{\top}V_1$, (1) and (15). Therefore, $X \in \mathcal{N}(\mathcal{B})$, and it is of form (3).

(\Leftarrow) (Necessity) Substituting (3) into $B_i X = X^T B_i$, we get

$$B_i Y \operatorname{diag}(X_{11}, \dots, X_{\ell\ell}) Y^{-1} = Y^{-\top} \operatorname{diag}(X_{11}^T, \dots, X_{\ell\ell}^T) Y^{\top} B_i.$$
(16)

Partition $Y^{\top}B_iY = [\Sigma_i^{(jk)}]$ with $\Sigma_i^{(jk)} \in \mathbb{R}^{p_j \times p_k}$, then it follows from (16) that

$$\Sigma_{i}^{(jk)} X_{kk} = X_{jj}^{\top} \Sigma_{i}^{(jk)}, \quad \text{for} \quad j, k = 1, 2, \dots, \ell.$$
(17)

Consequently, for $j \neq k$, we know that $\Sigma_i^{(jk)} = 0$ since $\lambda(X_{jj}) \cap \lambda(X_{kk}) = \emptyset$. Then we know that

$$V_1^{\top} C_i V_1 = B_i = Y^{-\top} \Sigma_i Y^{-1}, \tag{18}$$

where $\Sigma_i = \operatorname{diag}(\Sigma_i^{(11)}, \dots, \Sigma_i^{(\ell\ell)})$. Using $\mathscr{R}(\underline{C}^{\top}) = \mathscr{R}(V_1)$, we know that $\mathcal{R}(C_i) \subset \mathscr{R}(V_1)$ and $\mathcal{R}(C_i^{\top}) \subset \mathscr{R}(V_1)$. Then it follows from (18) that

$$C_i = V_1 Y^{-\top} \Sigma_i Y^{-1} V_1^{\top}.$$

Set $A = V_1 Y^{-\top}$, the conclusion follows immediately.

6.4 Proof of Theorem 2.4

Theorem 2.4. Let (τ_p, A) be a solution to the BJBDP for C, i.e., (1) holds. Then the BJBDP for C is uniquely τ_p -block-diagonalizable if and only if both (P1) and (P2) hold.

Proof. (\Rightarrow) (Sufficiency) First, we show (**P1**) by contradiction. If (**P1**) doesn't hold, there exists $\Gamma_{jj} \in \mathbb{R}^{p_j \times p_j}$ such that $\operatorname{vec}(\Gamma_{jj}) \in \mathcal{N}(G_{jj})$ and a nonsingular $W_j \in \mathbb{R}^{p_j \times p_j}$ such that

$$\Gamma_{jj} = W_j \operatorname{diag}(\Gamma_{jj}^{(1)}, \Gamma_{jj}^{(2)}) W_j^{-1},$$
(19)

where $\Gamma_{jj}^{(1)}$ and $\Gamma_{jj}^{(2)}$ are two real matrices and $\lambda(\Gamma_{jj}^{(1)}) \cap \lambda(\Gamma_{jj}^{(2)}) = \emptyset$. Using $\operatorname{vec}(\Gamma_{jj}) \in \mathscr{N}(G_{jj})$, we have

$$\Sigma_i^{(jj)} \Gamma_{jj} - \Gamma_{jj}^\top \Sigma_i^{(jj)} = 0, \quad \text{for } 1 \le i \le m.$$

$$\tag{20}$$

Substituting (19) into (20), we get

$$\widetilde{\Sigma}_{i}^{(jj)}\operatorname{diag}(\Gamma_{jj}^{(1)},\Gamma_{jj}^{(2)}) - \operatorname{diag}(\Gamma_{jj}^{(1)},\Gamma_{jj}^{(2)})^{\top}\widetilde{\Sigma}_{i}^{(jj)} = 0, \quad \text{for } 1 \le i \le m.$$

$$(21)$$

where $\widetilde{\Sigma}_{i}^{(jj)} = W_{j}^{\top} \Sigma_{i}^{(jj)} W_{j}$. Similar to the proof of necessity for Theorem 2.3, using $\lambda(\Gamma_{jj}^{(1)}) \cap \lambda(\Gamma_{jj}^{(2)}) = \emptyset$, we have $\widetilde{\Sigma}_{i}^{(jj)}$ for $1 \leq i \leq m$ are all block diagonal matrices. In other words, C_{i} 's can be simultaneously block diagonalizable with more than ℓ blocks. This contradicts with the fact (τ_{p}, A) is the solution to the BJBDP.

Next, we show (P2), also by contradiction. Since G_{jk} is rank deficient, then there exist two matrices Γ_{jk} , Γ_{kj} , which are not zero at the same time, such that (4b) holds, i.e.,

$$\begin{bmatrix} \Sigma_i^{(jj)} & 0\\ 0 & \Sigma_i^{(kk)} \end{bmatrix} \begin{bmatrix} 0 & \Gamma_{jk}\\ \Gamma_{kj} & 0 \end{bmatrix} - \begin{bmatrix} 0 & \Gamma_{kj}^\top\\ \Gamma_{jk}^\top & 0 \end{bmatrix} \begin{bmatrix} \Sigma_i^{(jj)} & 0\\ 0 & \Sigma_i^{(kk)} \end{bmatrix} = 0.$$
(22)

Since $\begin{bmatrix} 0 & \Gamma_{jk} \\ \Gamma_{kj} & 0 \end{bmatrix} \neq 0$, it has at least a nonzero eigenvalue. Now let λ be a nonzero eigenvalue of $\begin{bmatrix} 0 & \Gamma_{jk} \\ \Gamma_{kj} & 0 \end{bmatrix}$, and $\begin{bmatrix} x \\ y \end{bmatrix}$ be the corresponding eigenvector. Then it is easy to see that $-\lambda$ is also an eigenvalue, and the corresponding eigenvector is $\begin{bmatrix} -x \\ y \end{bmatrix}$. In addition, $x \neq 0$ and $y \neq 0$. Therefore, there exists a nonsingular matrix W_{jk} , which is not (p_i, p_k) -block diagonal, such that

$$\begin{bmatrix} 0 & \Gamma_{jk} \\ \Gamma_{kj} & 0 \end{bmatrix} = W_{jk} \begin{bmatrix} \Upsilon & 0 & 0 \\ 0 & -\Upsilon & 0 \\ 0 & 0 & 0 \end{bmatrix} W_{jk}^{-1},$$
(23)

where Υ is nonsingular, $\lambda(\Upsilon) \cap \lambda(-\Upsilon) = \emptyset$ and W_{jk} is not (p_j, p_k) -block diagonal. Plugging (23) into (22), similar to the proof of necessity for Theorem 2.3, we can how that $W_{jk}^{\top} \begin{bmatrix} \Sigma_i^{(jj)} & 0\\ 0 & \Sigma_i^{(kk)} \end{bmatrix} W_{jk}$ for all $1 \le i \le m$ are all block diagonal. For the ease of notation, let j = 1, k = 2. Denote $\widehat{A} = A \operatorname{diag}(W_{12}^{-\top}, I_{p_3}, \ldots, I_{p_\ell})$. We know that A, \widehat{A} are not equivalent since W_{12} is not (p_1, p_2) -block diagonal. This contradicts with the assumption that BJBDP for \mathcal{C} is uniquely τ_p -block-diagonalizable, completing the proof of sufficiency.

 (\Leftarrow) (Necessity) Let (τ_p, A) and $(\hat{\tau}_{\hat{p}}, \hat{A})$ be two solutions to the BJBDP for \mathcal{C} , i.e., it holds that

$$C_i = A \Sigma_i A^{\top} = \widehat{A} \widehat{\Sigma}_i \widehat{A}^{\top}, \qquad (24)$$

where Σ_i 's are all τ_p -block diagonal, $\widehat{\Sigma}_i$'s are all $\widehat{\tau}_p$ -block-diagonal. It suffices if we can show that (τ_p, A) and $(\widehat{\tau}_p, \widehat{W})$ are equivalent.

Let $\tau_p = (p_1, \ldots, p_\ell)$, $\hat{\tau}_{\hat{p}} = (\hat{p}_1, \ldots, \hat{p}_{\hat{\ell}})$. As (τ_p, A) and $(\hat{\tau}_{\hat{p}}, \widehat{W})$ are both solutions, it holds that $\ell = \hat{\ell}$. By Theorem 2.1, we know that $\mathscr{R}(\underline{C}^{\top}) = \mathscr{R}(A) = \mathscr{R}(\widehat{A})$. Since A and \widehat{A} are both of full column rank, we know that $p = \hat{p}$ and there exists nonsingular matrix Z such that $\widehat{A} = AY^{-\top}$. Then it follows from (24) that

$$\widehat{\Sigma}_i = Y^{\top} \Sigma_i Y, \quad \text{for } 1 \le i \le m.$$
(25)

Let $\Gamma = Y \operatorname{diag}(\gamma_1 I_{\hat{p}_1}, \ldots, \gamma_\ell I_{\hat{p}_\ell}) Y^{-1}$, where $\gamma_1, \ldots, \gamma_\ell$ are distinct real numbers. Using (25), we have

$$\Sigma_i \Gamma = Y^{-\top} (Y^{\top} \Sigma_i Y) \operatorname{diag}(\gamma_j I_{\hat{p}_j}) Y^{-1} = Y^{-\top} \operatorname{diag}(\gamma_j I_{\hat{p}_j}) (Y^{\top} \Sigma_i Y) Y^{-1} = \Gamma^{\top} \Sigma_i,$$
(26)

i.e., $\Gamma \in \mathcal{N}(\{\Sigma_i\})$.

Partition $\Gamma = [\Gamma_{jk}]$ with $\Gamma_{jk} \in \mathbb{R}^{p_j \times p_k}$. Recall (4) and (5), by (**P2**), we have $\Gamma_{jk} = 0$ for $j \neq k$, i.e., Γ is τ_p -block diagonal; using (**P1**), $\Gamma = Y \operatorname{diag}(\gamma_j I_{\hat{p}_j}) Y^{-1}$ and $\cup_{j=1}^{\ell} \lambda(\Gamma_{jj}) = \lambda(\Gamma)$, we know that $\lambda(\Gamma_{k_j k_j}) = \lambda(\gamma_j I_{\hat{p}_j})$ for $1 \leq j \leq \ell$, where $\{k_1, k_2, \ldots, k_\ell\}$ is a permutation of $\{1, 2, \ldots, \ell\}$. Thus, $\hat{p}_j = p_{k_j}$ for $1 \leq j \leq \ell$. In other words, there exists a permutation $\Pi_\ell \in \mathbb{R}^{\ell \times \ell}$ such that $\hat{\tau}_p = \tau_p \Pi_\ell$. Let $\Pi \in \mathbb{R}^{p \times p}$ be the permutation matrix associated with Π_ℓ . Then

$$\operatorname{diag}(\gamma_1 I_{p_{k_1}}, \dots, \gamma_\ell I_{p_{k_\ell}}) = \Pi^{\top} \operatorname{diag}(\gamma_1' I_{p_1}, \dots, \gamma_\ell' I_{p_\ell}) \Pi.$$

$$(27)$$

where γ'_{j} is the eigenvalue of Γ_{jj} . Then it follows that

$$\operatorname{diag}(\Gamma_{11},\ldots,\Gamma_{\ell\ell}) = Y\Pi^{\top}\operatorname{diag}(\gamma_1'I_{p_1},\ldots,\gamma_\ell'I_{p_\ell})(Y\Pi^{\top})^{-1}.$$
(28)

Noticing that the columns of $Y\Pi^{\top}$ are eigenvectors of Γ , we know that $Y\Pi^{\top}$ is τ_p -block-diagonal. Therefore, we can rewrite $\hat{A} = AY^{-\top}$ as $\hat{A} = A(Y\Pi^{\top})^{-\top}\Pi$, in which $(Y\Pi^{\top})^{-\top}$ is τ_p -block-diagonal, Π is the permutation matrix associated with Π_{ℓ} . So, (τ_p, A) and $(\hat{\tau}_p, \hat{A})$ are equivalent. The proof is completed.

6.5 Proof of Theorem 2.5

Theorem 2.5. Given a set $\mathcal{D} = \{D_i\}_{i=1}^m$ of q-by-q matrices with \underline{D} having full column rank.

(I) If \mathcal{D} does not have a nontrivial diagonalizer, then the feasible set of $OPT(\mathcal{D})$ is empty.

(II) If \mathcal{D} has a nontrivial diagonalizer, then $OPT(\mathcal{D})$ has a solution X_* . In addition, assume

$$\mu = \min_{\|z\|=1} \sqrt{\sum_{i=1}^{m} |z^{\mathrm{H}} D_i z|^2} > 0,$$

then X_* has two distinct real eigenvalues, and the gap between them are no less than two.

Proof. First, we show of (I) via its the contrapositive. If the feasible set of $OPT(\mathcal{D})$ is not empty, then it has a solution X_* . Using $tr(X_*) = 0$, $tr(X_*^2) = q > 0$, we know that X_* can be factorized into $X_* = Y \operatorname{diag}(\Gamma_1, \Gamma_2)Y^{-1}$, where Γ_1, Γ_2 are real matrices and $\lambda(\Gamma_1), \lambda(\Gamma_2)$ lie in the open left and closed right complex planes, respectively. Therefore, $\lambda(\Gamma_1) \cap \lambda(\Gamma_2) = \emptyset$. By Theorem 2.3, \mathcal{D} has a nontrivial diagonalizer, completing the proof of (I).

Next, we show (II). Let γ be an arbitrary eigenvalue of X_* , and z be the corresponding eigenvector. Using $X_* \in \mathcal{N}(\mathcal{D})$, we have

$$0 = z^{H} D_{i} X_{*} z - z^{H} X_{*}^{\top} D_{i} z = (\gamma - \bar{\gamma}) z^{H} D_{i} z, \text{ for } 1 \le i \le m.$$

Then it follows that

$$(\gamma - \bar{\gamma}) \sum_{i=1}^{\ell} |z^{\mathrm{H}} D_i z|^2 = 0.$$

Since $\mu > 0$ has full column rank, we know that $\sum_{i=1}^{\ell} |z^H D_i z|^2 = 0$. Therefore, γ is real. And it follows $\lambda(X_*) \subset \mathbb{R}$.

Now we show that X_* has two distinct eigenvalues. Denote the eigenvalues of X_* by $\gamma_1 \leq \cdots \leq \gamma_q$. Then

$$\operatorname{tr}(X_*) = \sum_{j=1}^q \gamma_j = 0, \quad \operatorname{tr}(X_*^2) = \sum_{j=1}^q \gamma_j^2 = q, \quad \operatorname{tr}(X_*^4) = \sum_{j=1}^q \gamma_j^4.$$
(29)

Using the method of Lagrange multipliers, we consider

$$L(\gamma_1, \dots, \gamma_q; \mu_1, \mu_2) = \sum_{j=1}^q \gamma_j^4 + \mu_1 \sum_{j=1}^q \gamma_j + \mu_2 \Big(\sum_{j=1}^q \gamma_j^2 - q \Big),$$

where μ_1 , μ_2 are Lagrange multipliers. By calculations, we have

$$\frac{\partial L}{\partial \gamma_j} = 4\gamma_j^3 + \mu_1 + 2\mu_2\gamma_j = 0.$$
(30)

Noticing that γ_j 's are the real roots of the third order equation $4t^3 + 2\mu_2t + \mu_1 = 0$, which has one real root or three real roots, we know that either γ_j 's are identical to the unique real root or γ_j is one of the three real roots for all j. The former case is impossible since $\sum_j \gamma_j = 0$ and $\sum_j \gamma_j^2 = q$. For the latter case, set $\gamma_1 = \cdots = \gamma_{q_1} = t_1$, $\gamma_{q_1+1} = \cdots = \gamma_{q_1+q_2} = t_2$ and $\gamma_{q_1+q_2+1} = \cdots = \gamma_q = t_3$, where $t_1 \leq t_2 \leq t_3$ are the three real roots, q_1, q_2 and q_3 are respectively the multiplicities of t_1, t_2 and t_3 as eigenvalues of X_* . If $t_1 = t_2$ or $t_2 = t_3$, X_* has two distinct eigenvalues. In what follows we assume $t_1 < t_2 < t_3$.

Using (29), we get

$$q_1t_1 + q_2t_2 + q_3t_3 = 0, \quad q_1t_1^2 + q_2t_2^2 + q_3t_3^2 = q, \quad \operatorname{tr}(X_*^4) = q_1t_1^4 + q_2t_2^4 + q_3t_3^4.$$
(31)

Introduce two vectors $u = [\sqrt{q_1}t_1^2, \sqrt{q_2}t_2^2, \sqrt{q_3}t_3^2]^\top$, $v = [\sqrt{q_1}, \sqrt{q_2}, \sqrt{q_3}]^\top$. Then we have $||u|| = \sqrt{\operatorname{tr}(X_*^4)}$, $||v|| = \sqrt{q}$. Using Cauchy's inequality, we get

$$\operatorname{tr}(X_*^4) = \|u\|^2 \|v\|^2 / q \ge (u^\top v)^2 / q = (q_1 t_1^2 + q_2 t_2^2 + q_3 t_3^2)^2 / q = q,$$

and the equality holds if and only if u and v are co-linear. Using the first two equalities of (31), q_1 , q_2 , q_3 can not have more than one zeros. If one of q_1 , q_2 , q_3 is zero, X_* has two distinct eigenvalues. Otherwise, q_1 , q_2 and q_3 are all positive integers. Therefore, $t_1^2 = t_2^2 = t_3^2$, which implies that X_* has two distinct eigenvalues.

The above proof essentially show that the optimal value is achieved at $X = X_*$. The following statements show that such an X is feasible in $\mathscr{N}(\mathcal{D})$. If \mathcal{D} has a nontrivial diagonalizer, then there exists a matrix Z such that $D_i = Z\Phi_i Z^{\top}$, where Φ_i 's are $\tau_q = (q_1, q_2)$ -block diagonal. Since \underline{D} has full column rank, Z is nonsingular. Let $X = Z^{-T} \operatorname{diag}(\sqrt{\frac{q_2}{q_1}}I_{q_1}, -\sqrt{\frac{q_1}{q_2}}I_{q_2})Z^{\top}$. It is easy to see that $\operatorname{tr}(X) = 0$, $\operatorname{tr}(X^2) = 1$ and $X \in \mathscr{N}(\mathcal{D})$. In other words, there exists a feasible X which has two distinct real eigenvalues. Therefore, we may declare that $\operatorname{OPT}(\mathcal{D})$ is minimized at $X = X_*$, with X_* having two distinct real eigenvalues.

Lastly, let $\gamma_1 > \gamma_2$ be the distinct real eigenvalues of X_* , with multiplicities q_1 and q_2 , respectively, we show $\gamma_1 - \gamma_2 \ge 2$. Rewrite the first equalities of (29) as

$$q_1\gamma_1 + q_2\gamma_2 = 0, \quad q_1\gamma_1^2 + q_2\gamma_2^2 = q$$

By calculations, we get $\gamma_1 = \sqrt{\frac{q_2}{q_1}}, \ \gamma_2 = -\sqrt{\frac{q_1}{q_2}}$. Then it follows that

$$\gamma_1 - \gamma_2 = \sqrt{\frac{q_2}{q_1}} + \sqrt{\frac{q_1}{q_2}} \ge 2,$$

completing the proof.

6.6 Proof of Theorem 2.6

Theorem 2.6. Assume that the BJBDP for C is uniquely τ_p -block-diagonalizable, and let (τ_p, A) be a solution satisfying (1). Then (τ_p, A) can be identified via Algorithm 2, almost surely.

Proof. If we can show $\operatorname{card}(\hat{\tau}_p) = \operatorname{card}(\tau_p)$, then $(\hat{\tau}_p, \widehat{A})$ is also a solution to the BJBDP for \mathcal{C} . Since the BJBDP is uniquely τ_p -block-diagonalizable, we know that $(\hat{\tau}_p, \widehat{A})$ is equivalent to (τ_p, A) , i.e., (τ_p, A) is identified. Next, we show $\operatorname{card}(\hat{\tau}_p) = \operatorname{card}(\tau_p)$. The following facts are needed.

(1) Given a matrix set \mathcal{D} with \underline{D} having full column rank. If \mathcal{D} does not have any τ_q -block diagonalizer with $\operatorname{card}(\tau_q) \geq 2$, then $\hat{\tau}$ on Line 9 of Algorithm 2 satisfies $\operatorname{card}(\hat{\tau}) = 1$; Otherwise, $\operatorname{card}(\hat{\tau}) = 2$.

(2) Denote $\widehat{Z}^{-1}D_i\widehat{Z}^{-\top} = \operatorname{diag}(D_i^{(1)}, D_i^{(2)}), \mathcal{D}^{(1)} = \{D_i^{(1)}\} \text{ and } \mathcal{D}^{(2)} = \{D_i^{(2)}\}.$ Then $\underline{D}^{(1)}$ and $\underline{D}^{(2)}$ both have full column rank.

Fact (1) is because when $\operatorname{card}(\hat{\tau}) > 1$, \mathcal{D} can be block diagonalized. Fact (2) is due to the fact \hat{Z} is nonsingular and $\hat{Z}^{-1}D_i\hat{Z}^{-\top} = \operatorname{diag}(D_i^{(1)}, D_i^{(2)})$.

Now assume that the solution $(\hat{\tau}_p, \hat{A})$ returned by Algorithm 2 satisfies

$$\hat{\tau}_p = (\hat{p}_1, \dots, \hat{p}_{\hat{\ell}}), \quad C_i = \widehat{A}\widehat{\Sigma}_i\widehat{A}^\top = \widehat{A}\operatorname{diag}(\widehat{\Sigma}_i^{(11)}, \dots, \widehat{\Sigma}_i^{(\hat{\ell}\hat{\ell})})\widehat{A}^\top, \quad i = 1, \dots, m,$$
(32)

where $\widehat{\Sigma}_i$'s are all $\widehat{\tau}_p$ -block diagonal. Then $\widehat{\ell} \leq \ell$ and $\{\widehat{\Sigma}_i^{(jj)}\}_{i=1}^m$ can be further block diagonalized for all $j = 1, \ldots, \widehat{\ell}$. Next, we show $\operatorname{card}(\widehat{\tau}_p) = \widehat{\ell} = \ell = \operatorname{card}(\tau_p)$ by contradiction.

Using (1) and (32), we have

$$B_i = V_1^{\top} \widehat{A} \widehat{\Sigma}_i \widehat{A}^{\top} V_1 = \widehat{Z} \widehat{\Sigma}_i \widehat{Z}^{\top} = V_1^{\top} A \Sigma_i A^{\top} V_1 = Z \Sigma_i Z^{\top}.$$
(33)

where $\hat{Z} = V_1^{\top} \hat{A}$, $Z = V_1^{\top} A$. By Theorem 2.1, we know that $\mathscr{R}(V_1) = \mathscr{R}(\underline{C}^{\top}) = \mathscr{R}(A)$. By the construction of \hat{A} , we know $\mathscr{R}(V_1) = \mathscr{R}(\hat{A})$. Since V_1 , A, \hat{A} all have full column rank, we know that \hat{Z} and Z are both nonsingular. Then it follows from (33) that

$$\Sigma_i = Y^{\top} \Sigma_i Y, \quad \text{for } 1 \le i \le m.$$
 (34)

where $Y = Z^{\top} \widehat{Z}^{-\top}$. Let $\Gamma = Y \operatorname{diag}(\gamma_1 I_{\hat{p}_1}, \ldots, \gamma_{\ell} I_{\hat{p}_{\ell}}) Y^{-1}$, where $\gamma_1, \ldots, \gamma_{\hat{\ell}}$ are distinct real numbers. Using (34), we have

$$\Sigma_i \Gamma = Y^{-\top} (Y^{\top} \Sigma_i Y) \operatorname{diag}(\gamma_j I_{\hat{p}_j}) Y^{-1} = Y^{-\top} \operatorname{diag}(\gamma_j I_{\hat{p}_j}) (Y^{\top} \Sigma_i Y) Y^{-1} = \Gamma^{\top} \Sigma_i,$$
(35)

i.e., $\Gamma \in \mathcal{N}(\{\Sigma_i\})$.

Partition $\Gamma = [\Gamma_{jk}]$ with $\Gamma_{jk} \in \mathbb{R}^{p_j \times p_k}$. Recall (4) and (5), by (**P2**), we have $\Gamma_{jk} = 0$ for $j \neq k$, i.e., Γ is τ_p -block diagonal; using (**P1**), $\Gamma = Y \operatorname{diag}(\gamma_j I_{\hat{p}_j}) Y^{-1}$ and $\cup_{j=1}^{\ell} \lambda(\Gamma_{jj}) = \lambda(\Gamma)$, we know that for each Γ_{jj} $(j = 1, \ldots, \ell)$, its eigenvalues are all γ_k $(1 \leq k \leq \hat{\ell})$. If $\hat{\ell} < \ell$, there exist at least two blocks of Γ_{jj} 's corresponding to the same γ_k . Without loss of generality, let Γ_{11}, Γ_{22} correspond to γ_1 , the remaining blocks correspond to other γ_k 's. Then using $\Gamma = Y \operatorname{diag}(\gamma_1 I_{\hat{p}_1}, \ldots, \gamma_\ell I_{\hat{p}_\ell}) Y^{-1}$, we know that $Y = \operatorname{diag}(Y_{11}, Y_{22})$, where $Y_{11} \in \mathbb{R}^{\hat{p}_1 \times \hat{p}_1}$ and $\hat{p}_1 = p_1 + p_2$. Using $Y = Z^\top \hat{Z}^{-\top}$ and (35), we get

$$\widehat{\Sigma}_i = Y^{\top} \Sigma_i Y = \operatorname{diag}(Y_{11}, Y_{22})^{\top} \Sigma_i \operatorname{diag}(Y_{11}, Y_{22}), \quad \text{for } 1 \le i \le m.$$

Therefore, we have

$$\widehat{\Sigma}_{i}^{(11)} = Y_{11}^{\top} \operatorname{diag}(\Sigma_{i}^{(11)}, \Sigma_{i}^{(22)}) Y_{11}, \quad \text{for } 1 \le i \le m,$$

which contradicts with the fact that $\{\widehat{\Sigma}_{i}^{(11)}\}_{i=1}^{m}$ can not be further block diagonalized. The proof is completed. \Box

6.7 Proof of Theorem 2.7

Theorem 2.7. Given a set $\widetilde{\mathcal{D}} = {\widetilde{D}_i}_{i=1}^m$ of q-by-q matrices with $\underline{\widetilde{D}}$ having full column rank. Let $\delta = o(1)$ be a small real number.

- (I) If $\widetilde{\mathcal{D}}$ does not have a nontrivial δ -diagonalizer, then the feasible set of $OPT(\widetilde{\mathcal{D}}, \delta)$ is empty.
- (II) If $\widetilde{\mathcal{D}}$ has a nontrivial δ -diagonalizer, then $OPT(\widetilde{\mathcal{D}}, \delta)$ has a solution X_* . In addition, assume

$$\mu = \min_{\|z\|=1} \sqrt{\sum_{i=1}^{m} |z^{\mathbf{H}} \widetilde{D}_i z|^2} = O(1),$$

and for i = 1, 2, let

$$\operatorname{Rect}_i \triangleq \{z \in \mathbb{C} \mid |\operatorname{Re}(z) - \rho_i| \le a, |\operatorname{Im}(z)| \le b\},\$$

where $a = O(\delta), b = O(\delta)$. Then

$$\lambda(X_*) \subset \bigcup_{i=1}^2 \operatorname{Rect}_i, \quad \rho_1 - \rho_2 \ge 2 + O(\delta).$$

Proof. First, we show of (I) via its the contrapositive. If the feasible set of $OPT(\widetilde{\mathcal{D}}, \delta)$ is not empty, then $OPT(\widetilde{\mathcal{D}}, \delta)$ has a solution X_* , which can be factorized into $X_* = Y \operatorname{diag}(\Gamma_1, \Gamma_2)Y^{-1}$ (since $\operatorname{tr}(X_*) = 0$ and $\operatorname{tr}(X_*^2) = q$), where Y is nonsingular, $\Gamma_1 \in \mathbb{R}^{q_1 \times q_1}$, $\Gamma_2 \in \mathbb{R}^{q_2 \times q_2}$ and $\lambda(\Gamma_1) \cap \lambda(\Gamma_2) = \emptyset$. Set $Z = Y^{-\top}$, $\Phi_i = \operatorname{diag}(Y_1^{\top} \widetilde{\mathcal{D}}_i Y_1, Y_2^{\top} \widetilde{\mathcal{D}}_i Y_2)$, $g = \min \frac{\|\Gamma_1^{\top} X - X \Gamma_2\|_F}{\|X\|_F}$ and $\kappa = \kappa_2(Y) = \frac{\sigma_{\max}(Y)}{\sigma_{\min}(Y)}$. By calculations, we have

$$\begin{split} \|X_*\|_F^2 &= \operatorname{tr}(Y^{-\top}\operatorname{diag}(\Gamma_1^{\top},\Gamma_2^{\top})Y^{\top}Y\operatorname{diag}(\Gamma_1,\Gamma_2)Y^{-1}) \\ &\leq \|Y\|^2\operatorname{tr}(Y^{-\top}\operatorname{diag}(\Gamma_1^{\top},\Gamma_2^{\top})\operatorname{diag}(\Gamma_1,\Gamma_2)Y^{-1} \\ &= \|Y\|^2\operatorname{tr}(\operatorname{diag}(\Gamma_1,\Gamma_2)Y^{-1}Y^{-\top}\operatorname{diag}(\Gamma_1^{\top},\Gamma_2^{\top})) \\ &\leq \kappa^2\operatorname{tr}(\operatorname{diag}(\Gamma_1,\Gamma_2)\operatorname{diag}(\Gamma_1^{\top},\Gamma_2^{\top})) = \kappa^2\operatorname{tr}(X_*^2) = \kappa^2 q, \end{split}$$
(36)

and

$$\delta^{2} \|\operatorname{vec}(X_{*})\|^{2} \stackrel{(a)}{\geq} \|\mathbf{L}(\widetilde{\mathcal{D}})\operatorname{vec}(X_{*})\|^{2} = \sum_{i=1}^{m} \|\widetilde{D}_{i}X_{*} - X_{*}^{\top}\widetilde{D}_{i}\|_{F}^{2}$$

$$= \sum_{i=1}^{m} \|Z(Y^{\top}\widetilde{D}_{i}Y\operatorname{diag}(\Gamma_{1},\Gamma_{2}) - \operatorname{diag}(\Gamma_{1}^{\top},\Gamma_{2}^{\top})Y^{\top}\widetilde{D}_{i}Y)Z^{\top}\|_{F}^{2}$$

$$\geq \frac{1}{\|Y\|^{4}} \sum_{i=1}^{m} \|Y^{\top}\widetilde{D}_{i}Y\operatorname{diag}(\Gamma_{1},\Gamma_{2}) - \operatorname{diag}(\Gamma_{1}^{\top},\Gamma_{2}^{\top})Y^{\top}\widetilde{D}_{i}Y\|_{F}^{2}$$

$$\geq \frac{1}{\|Y\|^{4}} \sum_{i=1}^{m} \left(\|Y_{1}^{\top}\widetilde{D}_{i}Y_{2}\Gamma_{2} - \Gamma_{1}^{\top}Y_{1}^{\top}\widetilde{D}_{i}Y_{2}\|_{F}^{2} + \|Y_{2}^{\top}\widetilde{D}_{i}Y_{1}\Gamma_{1} - \Gamma_{2}^{\top}Y_{2}^{\top}\widetilde{D}_{i}Y_{1}\|_{F}^{2}\right)$$

$$\stackrel{(b)}{\geq} \frac{g^{2}}{\|Y\|^{4}} \sum_{i=1}^{m} \left(\|Y_{1}^{\top}\widetilde{D}_{i}Y_{2}\|_{F}^{2} + \|Y_{2}^{\top}\widetilde{D}_{i}Y_{1}\|_{F}^{2}\right) \geq \frac{g^{2}}{\kappa^{4}} \sum_{i=1}^{m} \|Z(Y^{\top}\widetilde{D}_{i}Y - \Phi_{i})Z^{\top}\|_{F}^{2}$$

$$= \frac{g^{2}}{\kappa^{4}} \sum_{i=1}^{m} \|\widetilde{D}_{i} - Z\Phi_{i}Z^{\top}\|_{F}^{2}, \qquad (37)$$

where (a) uses $X_* \in \mathcal{N}_{\delta}(\widetilde{\mathcal{D}})$, (b) uses the definition of g. Then it follows from (36) and (37) that

$$\sum_{i=1}^{m} \|\widetilde{D}_{i} - Z\Phi_{i}Z^{\top}\|_{F}^{2} \le \frac{\kappa^{4} \|X_{*}\|_{F}^{2}}{g^{2}}\delta^{2} \le \frac{\kappa^{6}}{g^{2}q}\delta^{2}.$$

This completes the proof of (I).

Next, we show (II). If $\widetilde{\mathcal{D}}$ has a nontrivial δ -diagonalizer, then there exists a matrix Z such that $\sum_{i=1}^{m} \|\widetilde{D}_i - Z\Phi_i Z^{\top}\|_F^2 \leq \frac{1}{4}\delta^2$ (by setting $\delta = \frac{1}{2\sqrt{C}}\delta$, the constant becomes $\frac{1}{4}$, and by definition, Z is still a δ -diagonalizer), where Φ_i 's are all $\tau_q = (q_1, q_2)$ block diagonal matrices. Let $X = Z^{-\top} \Gamma Z^{\top}$, where $\Gamma = \text{diag}(\sqrt{\frac{q_2}{q_1}}I_{q_1}, -\sqrt{\frac{q_1}{q_2}}I_{q_2})$. By calculations, we have

$$\begin{split} \|\mathbf{L}(\widetilde{\mathcal{D}})\mathrm{vec}(X)\|^{2} &= \sum_{i=1}^{m} \|\widetilde{D}_{i}X - X^{\top}\widetilde{D}_{i}\|_{F}^{2} \stackrel{(a)}{\leq} 2\sum_{i=1}^{m} \|(\widetilde{D}_{i} - Z\Phi_{i}Z^{\top})X - X^{\top}(\widetilde{D}_{i} - Z\Phi_{i}Z^{\top})\|_{F}^{2} \\ &\leq 4\|X\|^{2}\sum_{i=1}^{m} \|\widetilde{D}_{i} - Z\Phi_{i}Z^{\top}\|_{F}^{2} \leq \|X\|^{2}\delta^{2}, \end{split}$$

where (a) uses $Z\Phi_i Z^\top X - X^\top Z\Phi_i Z^\top = 0$. Therefore, $\frac{\|\mathbf{L}(\widetilde{\mathcal{D}})\operatorname{vec}(X)\|}{\|\operatorname{vec}(X)\|} \leq \frac{\|X\|\delta}{\|X\|_F} \leq \delta$. Also note that $\operatorname{tr}(X) = 0$ and $\operatorname{tr}(X^2) = q$, then the feasible set of $\operatorname{OPT}(\widetilde{\mathcal{D}}, \delta)$ is nonempty. Consequently, $\operatorname{OPT}(\widetilde{\mathcal{D}}, \delta)$ has a solution X_* .

Let γ be an arbitrary eigenvalue of X_* , and z be the corresponding unit-length eigenvector. By calculations, we have

$$\kappa^{2}q\delta^{2} \geq \delta^{2} \|X_{*}\|_{F}^{2} = \|\mathbf{L}(\widetilde{\mathcal{D}})\operatorname{vec}(X)\|^{2} \geq \sum_{i=1}^{m} \|\widetilde{D}_{i}X_{*} - X_{*}^{\top}\widetilde{D}_{i}\|_{F}^{2}$$
$$\geq \sum_{i=1}^{m} \|z^{\mathrm{H}}\widetilde{D}_{i}X_{*}z - z^{\mathrm{H}}X_{*}^{\top}\widetilde{D}_{i}z\|_{F}^{2} = |\gamma - \bar{\gamma}|^{2}\sum_{i=1}^{m} |z^{\mathrm{H}}\widetilde{D}_{i}z|^{2} \geq \mu^{2}|\gamma - \bar{\gamma}|^{2},$$
(38)

Then we know that the imaginary part of μ is no more than $\frac{\sqrt{q\kappa\delta}}{2\mu} = O(\delta)$. Now let the eigenvalues of X_* be $\mu_j + \eta_j \sqrt{-1}$ for $j = 1, \ldots, q$, where $\mu_j, \eta_j \in \mathbb{R}$. Then

$$\operatorname{tr}(X_*) = \sum_{j=1}^q \gamma_j = 0, \quad \operatorname{tr}(X_*^2) = \sum_{j=1}^q (\gamma_j^2 - \eta_j^2) = q, \quad \operatorname{tr}(X_*^4) = \sum_{j=1}^q (\gamma_j^4 + \eta_j^4 - 6\gamma_j^2\eta_j^2). \tag{39}$$

Using the method of Lagrange multipliers, we consider

$$L(\gamma_1, \eta_1, \dots, \gamma_q, \eta_q; \mu_1, \mu_2) = \sum_{j=1}^q (\gamma_j^4 + \eta_j^4 - 6\gamma_j^2 \eta_j^2) + \mu_1 \sum_{j=1}^q \gamma_j + \mu_2 \Big(\sum_{j=1}^q (\gamma_j^2 - \eta_j^2) - q \Big),$$

where μ_1 , μ_2 are Lagrange multipliers. By calculations, we have

$$\frac{\partial L}{\partial \gamma_j} = 4\gamma_j^3 + 2(\mu_2 - 6\eta_j^2)\gamma_j + \mu_1 = 0.$$
(40)

Take (40) as perturbed third order equations of $4t^3 + 2\mu_2t + \mu_1 = 0$. Using Lemma 5.3 and $|\eta_j| \leq O(\delta)$, we know that $\gamma_j \subset \bigcup_{i=1}^3 \{z \mid |z - t_i| \leq O(\delta)\}$, where t_1, t_2 and t_3 are the roots of $4t^3 + 2\mu_2t + \mu_1 = 0$. Next, we consider the following cases:

Case (1) $t_1 = \overline{t}_2 \notin \mathbb{R}, t_3 \in \mathbb{R}$. In this case, set $\rho_1 = \operatorname{Re}(t_1), \rho_2 = t_3$, then $\lambda(X_*) \subset \bigcup_{i=1,2} \operatorname{Rect}_i$.

Case (2) $t_1, t_2, t_3 \in \mathbb{R}, t_i = \xi + O(\delta)$ for i = 1, 2, 3. In this case, using $t_1 + t_2 + t_3 = 0$ (by Vieta's formulas), we get $\xi = O(\delta)$. Then it follows that $|\gamma_j| = O(\delta)$ for all j. Using (39) and $\eta_j = O(\delta)$, we get $q \times O(\delta^2) = q$, which contradicts with $\delta = o(1)$.

Case (3) $t_1, t_2, t_3 \in \mathbb{R}, t_i = \xi + O(\delta)$ for i = 1, 2. In this case, set $\rho_1 = \xi, \rho_2 = t_3$, then $\lambda(X_*) \subset \bigcup_{i=1,2} \operatorname{Rect}_i$.

Case (4) $t_1, t_2, t_3 \in \mathbb{R}, |t_i - t_j| > O(\delta)$ for $i \neq j$. In this case, without loss of generality, assume $t_1 < t_2 < t_3$, and there are p_i eigenvalues of X_* lie in $\{z \mid |z - t_i| \le O(\delta)\}$, for i = 1, 2, 3. Using $\eta_j = O(\delta)$ and (39), we get

$$\operatorname{tr}(X_*) = q_1 t_1 + q_2 t_2 + q_3 t_3 + O(\delta) = 0, \tag{41a}$$

$$\operatorname{tr}(X_*^2) = q_1 t_1^2 + q_2 t_2^2 + q_3 t_3^2 + O(\delta) = q, \tag{41b}$$

$$\operatorname{tr}(X_*^4) = q_1 t_1^4 + q_2 t_2^4 + q_3 t_3^4 + O(\delta).$$
(41c)

Let $u = [\sqrt{q_1}t_1^2, \sqrt{q_2}t_2^2, \sqrt{q_3}t_3^2]^{\top}$, $v = [\sqrt{q_1}, \sqrt{q_2}, \sqrt{q_3}]^{\top}$. Then we have $||u||^2 + O(\delta) = \operatorname{tr}(X_*^4)$, $||v|| = \sqrt{q}$. Using Cauchy's inequality, we get

$$\operatorname{tr}(X_*^4) + O(\delta) = ||u||^2 = ||u||^2 ||v||^2 / q \ge (u^\top v)^2 / q = (q_1 t_1^2 + q_2 t_2^2 + q_3 t_3^2)^2 / q = q + O(\delta),$$

and the equality holds if and only if u and v are co-linear. Using the first two equalities of (41), q_1 , q_2 , q_3 can not have more than one zeros. If one of q_1 , q_2 , q_3 is zero, say $q_3 = 0$, then the eigenvalues of X_* lie in two disks $\bigcup_{i=1,2,3,q_i\neq 0} \{z \mid |z - t_i| \leq O(\delta)\}$. Otherwise, q_1 , q_2 and q_3 are all positive integers. Therefore, $t_1^2 = t_2^2 = t_3^2$, which implies that $t_2 = t_1$ or $t_2 = t_3$. This contradicts with $t_1 < t_2 < t_3$. To summarize, the eigenvalues of X_* lie in $\bigcup_{i=1,2} \operatorname{Rect}_i$.

The above proof essentially show that the optimal value is achieved at $X = X_*$, with its eigenvalues lie in $\bigcup_{i=1,2} \operatorname{Rect}_i$. The following statements show that such an X is feasible in $\mathscr{N}_{\delta}(\widetilde{\mathcal{D}})$.

If $\widetilde{\mathcal{D}}$ has a nontrivial δ -diagonalizer, then there exists a matrix Z such that $\sum_{i=1}^{m} \|\widetilde{D}_{i} - Z\Phi_{i}Z^{\top}\|_{F}^{2} \leq \frac{1}{4}\delta^{2}$, where Φ_{i} 's are all $\tau_{q} = (q_{1}, q_{2})$ block diagonal matrices. Let $X = Z^{-\top}\Gamma Z^{\top}$, where $\Gamma = \text{diag}(\sqrt{\frac{q_{2}}{q_{1}}}I_{q_{1}}, -\sqrt{\frac{q_{1}}{q_{2}}}I_{q_{2}})$. We know that X is also feasible. Therefore, we may declare that $\text{OPT}(\widetilde{\mathcal{D}}, \delta)$ is minimized at $X = X_{*}$, with the eigenvalues of X_{*} lying in two disks.

Lastly, let $(\rho_1, 0)$, $(\rho_2, 0)$ be the centers of the two disks, and there are q_1, q_2 eigenvalues of X_* lie Disk₁, Disk₂, respectively. We show $\rho_1 - \rho_2 \ge 2 + O(\delta)$. Rewrite the first two equalities of (41) as

$$q_1\rho_1 + q_2\rho_2 = O(\delta), \quad q_1\rho_1^2 + q_2\rho_2^2 = q + O(\delta).$$

By calculations, we get $\rho_1 = \sqrt{\frac{q_2}{q_1}} + O(\delta)$, $\rho_2 = -\sqrt{\frac{q_1}{q_2}} + O(\delta)$. Then it follows that

$$\rho_1 - \rho_2 = \sqrt{\frac{q_2}{q_1}} + \sqrt{\frac{q_1}{q_2}} + O(\delta) \ge 2 + O(\delta)$$

completing the proof.

6.8 Proof of Theorem 2.8

Theorem 2.8. Assume that the BJBDP for $\mathcal{C} = \{C_i\}_{i=1}^m$ is uniquely τ_p -block-diagonalizable, and let (τ_p, A) be a solution satisfying (1). Let $\widetilde{\mathcal{C}} = \{\widetilde{C}_i\}_{i=1}^m = \{C_i + E_i\}_{i=1}^m$ be a perturbed matrix set of \mathcal{C} . Denote

 $\tau_p = (p_1, \dots, p_\ell), \quad \hat{\tau}_p = (\hat{p}_1, \dots, \hat{p}_\ell), \quad A = [A_1, \dots, A_\ell], \quad \widehat{A} = [\widehat{A}_1, \dots, \widehat{A}_\ell],$

where $(\hat{\tau}_p, \widehat{A})$ is the output of Algorithm 4. Assume $\mathscr{N}(G_{jj}) = \mathscr{R}(\operatorname{vec}(I_{p_j}))$ for all j, where G_{jj} is defined in (5a). Also assume that p is correctly identified in Line 3 of Algorithm 4. Let the singular values of $\widetilde{\underline{C}}$ be the same as in Theorem 2.2,

$$\epsilon = \frac{\|\underline{E}\|}{\tilde{\phi}_p}, \quad r = \frac{\sqrt{2(d+2C)}}{\sigma_{\min}^2(A)(1-\epsilon^2)}, \quad g_j = \frac{\sqrt{2j}}{(\hat{\ell}-1)\kappa\sqrt{p}} - \max\{\frac{\kappa}{\omega_{\operatorname{neq}}}, \frac{1}{\omega_{\operatorname{ir}}}\}r, \quad \text{for } j = 1, 2$$

where C and κ are two constants.

(I) If $g_1 > 0$, then $\hat{\ell} = \ell$, and there exists a permutation $\{1', 2', \ldots, \ell'\}$ of $\{1, 2, \ldots, \ell\}$ such that $p_j = \hat{p}_{j'}$. In order words, $\hat{\tau}_p \sim \tau_p$.

(II) Further assume $g_2 > \frac{r}{\omega_{ir}}$, then there exists a τ_p -block diagonal matrix D such that

$$\|[\widehat{A}_{1'},\ldots,\widehat{A}_{\ell'}] - AD\|_F \le \frac{\frac{c r}{\omega_{neq}}}{g_2 - \frac{r}{\omega_{ir}}} \|A\|_F + (\frac{\epsilon^2}{\sqrt{1 - \epsilon^2}} + \epsilon) \|\widehat{A}\|_F = O(\epsilon),$$

where c is a constant.

Proof. Using $\|\underline{E}\| < \epsilon \tilde{\phi}_p$ and Theorem 2.2, we have

$$\delta = \tilde{\phi}_{p+1} \le \|\underline{E}\| \le \epsilon \tilde{\phi}_p, \qquad \|\sin \Theta(\mathscr{R}(A), \mathscr{R}(\widetilde{V}_1))\| \le \frac{\|\widetilde{U}_1^\top \underline{E} V_2\|}{\tilde{\phi}_p} \le \frac{\|\underline{E}\|}{\tilde{\phi}_p} \le \epsilon.$$
(42)

Let $[V_1, V_2]$ be an orthogonal matrix such that $\mathscr{R}(V_1) = \mathscr{R}(A), \ \mathscr{R}(V_2) = \mathscr{N}(A^{\top})$. Then we can write $\widetilde{V}_1 = V_1 T_c + V_2 T_s$, where $\begin{bmatrix} T_c \\ T_s \end{bmatrix}$ is orthonormal, $\|T_s\| = \|\sin \Theta(V_1, \widetilde{V}_1)\| \le \epsilon, \ \sigma_{\min}(T_c) = \sqrt{1 - \|\sin \Theta(V_1, \widetilde{V}_1)\|^2} \ge \sqrt{1 - \epsilon^2}$. Therefore, T_c is nonsingular. Let $B_i = V_1^{\top} C_i V_1, \ \widetilde{B}_i = \widetilde{V}_1^{\top} \widetilde{C}_i \widetilde{V}_1$. And by calculations, we have

$$\begin{split} \|\widetilde{B}_{i} - T_{c}^{\top}B_{i}T_{c}\|_{F} &= \|\widetilde{V}_{1}^{\top}(C_{i} + E_{i})\widetilde{V}_{1} - T_{c}^{\top}V_{1}^{\top}C_{i}V_{1}T_{c}\|_{F} \\ &\leq \|\widetilde{V}_{1}^{\top}C_{i}\widetilde{V}_{1} - T_{c}^{\top}V_{1}^{\top}C_{i}V_{1}T_{c} + \widetilde{V}_{1}^{\top}E_{i}\widetilde{V}_{1}\|_{F} \\ &\stackrel{(a)}{\leq} \|T_{c}^{\top}V_{1}^{\top}C_{i}V_{2}T_{s} + T_{s}^{\top}V_{2}^{\top}C_{i}V_{1}T_{c} + T_{s}^{\top}V_{2}^{\top}C_{i}V_{2}T_{s} + \widetilde{V}_{1}^{\top}E_{i}\widetilde{V}_{1}\|_{F} \\ &\stackrel{(b)}{=} \|E_{i}\|_{F}, \end{split}$$
(43)

where (a) uses $\widetilde{V}_1 = V_1 T_c + V_2 T_s$, (b) uses $A^{\top} V_2 = 0$ (by Theorem 2.1). On one hand, let $Z = T_c^{\top} V_1^{\top} A$, using (1), we have

$$T_c^{\top} B_i T_c = T_c^{\top} V_1^{\top} A \Sigma_i A^{\top} V_1 T_c = Z \Sigma_i Z^{\top}.$$

$$(44)$$

On the other hand, on output of Algorithm 4, it holds that

$$\sum_{i=1}^{m} \|\widetilde{B}_i - \widehat{Z}\widehat{\Sigma}_i\widehat{Z}^{\top}\|_F^2 \le C\delta^2 = C\widetilde{\phi}_{p+1}^2 \le C\widetilde{\phi}_p^2\epsilon^2,$$
(45)

where $\widehat{\Sigma}_i = \text{diag}(\Sigma_{i1}, \ldots, \widehat{\Sigma}_{i\hat{\ell}})$'s are all $\hat{\tau}_p = (\hat{p}_1, \ldots, \hat{p}_{\hat{\ell}})$ -block diagonal, and for each $1 \leq j \leq \hat{\ell}$, $\{\Sigma_{ij}\}_{i=1}^m$ does not have δ -block diagonalizer.

Using (43), (44) and (45), we have

$$\sum_{i=1}^{m} \|Z\Sigma_{i}Z^{\top} - \widehat{Z}\widehat{\Sigma}_{i}\widehat{Z}^{\top}\|_{F}^{2} \leq 2\sum_{i=1}^{m} (\|Z\Sigma_{i}Z^{\top} - \widetilde{B}_{i}\|_{F}^{2} + \|\widetilde{B}_{i} - \widehat{Z}\widehat{\Sigma}_{i}\widehat{Z}^{\top}\|_{F}^{2})$$

$$\leq 2(\sum_{i=1}^{m} \|E_{i}\|_{F}^{2} + C\widetilde{\phi}_{p}^{2}\epsilon^{2}) = \|\underline{E}\|_{F}^{2} + 2C\widetilde{\phi}_{p}^{2}\epsilon^{2} \leq d\|\underline{E}\|^{2} + 2C\widetilde{\phi}_{p}^{2}\epsilon^{2}$$

$$\leq (d+2C)\widetilde{\phi}_{p}^{2}\epsilon^{2}.$$
(46)

As T_c is nonsingular, A has full column rank, $\mathscr{R}(V_1) = \mathscr{R}(A)$, we know that Z is nonsingular. \hat{Z} is also nonsingular since it is the product of a sequence of nonsingular matrices. Then we may let $Y = Z^{\top}\hat{Z}^{-\top}$, $\Gamma = Y\hat{\Gamma}Y^{-1} = \frac{1}{\varrho}Y \operatorname{diag}(\gamma_1 I_{\hat{p}_1}, \ldots, \gamma_\ell I_{\hat{p}_{\hat{\ell}}})Y^{-1}$, where $\gamma_j = -1 + \frac{2(j-1)}{\hat{\ell}-1}$ for $j = 1, \ldots, \hat{\ell}$, $\varrho = \|Y \operatorname{diag}(\gamma_1 I_{\hat{p}_1}, \ldots, \gamma_\ell I_{\hat{p}_{\hat{\ell}}})Y^{-1}\|_F$. It follows

$$\varrho = \varrho \|\Gamma\|_F = \|Y \operatorname{diag}(\gamma_1 I_{\hat{p}_1}, \dots, \gamma_\ell I_{\hat{p}_\ell}) Y^{-1}\|_F \le \kappa(Y) \sqrt{\sum_{j=1}^{\hat{\ell}} \hat{p}_j \gamma_j^2} \le \kappa(Y) \sqrt{p}.$$

$$(47)$$

Denote $F_i = Z \Sigma_i Z^\top - \widehat{Z} \widehat{\Sigma}_i \widehat{Z}^\top$ for all *i*. Direct calculations give rise to

$$\sum_{i=1}^{m} \|\Sigma_{i}\Gamma - \Gamma^{\top}\Sigma_{i}\|_{F}^{2} = \sum_{i=1}^{m} \|Z^{-1}(Z\Sigma_{i}Z^{\top}\widehat{Z}^{-\top}\widehat{\Gamma}\widehat{Z}^{\top} - \widehat{Z}\widehat{\Gamma}^{\top}\widehat{Z}^{-1}Z\Sigma_{i}Z^{\top})Z^{-\top}\|_{F}^{2}$$

$$= \sum_{i=1}^{m} \|Z^{-1}((\widehat{Z}\widehat{\Sigma}_{i}\widehat{Z}^{\top} + F_{i})\widehat{Z}^{-\top}\widehat{\Gamma}\widehat{Z}^{\top} - \widehat{Z}\widehat{\Gamma}^{\top}\widehat{Z}^{-1}(\widehat{Z}\widehat{\Sigma}_{i}\widehat{Z}^{\top} + F_{i}))Z^{-\top}\|_{F}^{2}$$

$$= \sum_{i=1}^{m} \|Z^{-1}F_{i}Z^{-\top}\Gamma - \Gamma^{\top}Z^{-1}F_{i}Z^{-\top}\|_{F}^{2}$$

$$\leq 2\|\Gamma\|_{F}^{2}\sum_{i=1}^{m} \|Z^{-1}F_{i}Z^{-\top}\|^{2} \stackrel{(a)}{\leq} \frac{2(d+2C)\widetilde{\phi}_{p}^{2}\epsilon^{2}}{\sigma_{\min}^{4}(Z)} \stackrel{(b)}{\leq} r^{2}, \qquad (48)$$

where (a) uses (46), $\|\Gamma\|_F = 1$ and (b) uses the definition of r and $\sigma_{\min}(T_c) \ge \sqrt{1 - \epsilon^2}$. Partition $\Gamma = [\Gamma_{jk}]$ with $\Gamma_{jk} \in \mathbb{R}^{p_j \times p_k}$, and recall (4) and (5). Using (48), we get

$$\sum_{j=1}^{\ell} \|G_{jj}\operatorname{vec}(\Gamma_{jj})\|^2 + \sum_{1 < j < k \le \ell} \left\|G_{jk} \left[\operatorname{vec}(\Gamma_{jk}) \\ -\operatorname{vec}(\Gamma_{kj}^{\top})\right]\right\|^2 = \sum_{i=1}^{m} \|\Sigma_i \Gamma - \Gamma^{\top} \Sigma_i\|_F^2 \le r^2.$$
(49)

Let $r_{jj} = G_{jj} \operatorname{vec}(\Gamma_{jj})$, the eigenvalues of Γ_{jj} be $\gamma_{j1}, \ldots, \gamma_{jp_j}$, for $j = 1, \ldots, \ell$. Then we have

$$\Gamma_{jj} = \widehat{\Gamma}_{jj} + \widehat{\gamma}_j I_{p_j}$$

where $\widehat{\Gamma}_{jj} = \text{reshape}(G_{jj}^{\dagger}r_{jj}, p_j, p_j)$. And it follows that

$$\sum_{k=1}^{p_j} |\gamma_{jk} - \hat{\gamma}_j|^2 \le \|\widehat{\Gamma}_{jj}\|_F^2 \le \frac{\|r_{jj}\|^2}{\omega_{\rm ir}^2}.$$
(50)

Let $r_{jk} = G_{jk} \begin{bmatrix} \operatorname{vec}(\Gamma_{jk}) \\ -\operatorname{vec}(\Gamma_{kj}^{\top}) \end{bmatrix}$, for $1 \leq j < k < \ell$. Then we have

$$\|\Gamma_{jk}\|_F^2 + \|\Gamma_{kj}\|_F^2 \le \|G_{jk}^{\dagger}r_{jk}\|^2 \le \frac{\|r_{jk}\|^2}{\omega_{\text{neq}}^2}.$$
(51)

Let $\mu_{jk} = \operatorname{argmin}_{\gamma \in \{\gamma_1, \dots, \gamma_{\ell}\}} |\frac{\gamma}{\varrho} - \gamma_{jk}|$. By Sun (1996, Remark 3.3, (2)), it holds that

$$\sum_{j=1}^{\ell} \sum_{k=1}^{p_j} |\frac{\mu_{jk}}{\varrho} - \gamma_{jk}|^2 \le \kappa^2(Y) \sum_{j \le k} (\|\Gamma_{jk}\|_F^2 + \|\Gamma_{kj}\|_F^2)$$
(52)

Using (50), (51) and (52), we have

$$\sum_{j=1}^{\ell} \sum_{k=1}^{p_j} |\frac{\mu_{jk}}{\varrho} - \hat{\gamma}_j|^2 \le \sum_{j=1}^{\ell} \sum_{k=1}^{p_j} |\frac{\mu_{jk}}{\varrho} - \gamma_{jk}|^2 + \sum_{j=1}^{\ell} \sum_{k=1}^{p_j} |\gamma_{jk} - \hat{\gamma}_j|^2 \le \frac{\kappa^2(Y)}{\omega_{neq}^2} \sum_{j(53)$$

Now we declare that for any j, it holds that $\mu_{j1} = \mu_{j2} = \cdots = \mu_{jp_j}$. Because otherwise, without loss of generality, say $\mu_{j1} = \gamma_1$, $\mu_{j2} = \gamma_2$, and they corresponds to $\hat{\gamma}_j$, then we have

$$\sum_{j=1}^{\ell} \sum_{k=1}^{p_j} \left| \frac{\mu_{jk}}{\varrho} - \gamma_{jk} \right|^2 \ge \left| \frac{\gamma_1}{\varrho} - \hat{\gamma}_j \right|^2 + \left| \frac{\gamma_2}{\varrho} - \hat{\gamma}_j \right|^2 \ge \frac{|\gamma_1 - \gamma_2|^2}{2\varrho^2} \ge \frac{2}{(\hat{\ell} - 1)^2 \kappa^2(Y)p},\tag{54}$$

where the last inequality uses the definition of γ_j and also (47). Combining (53) and (54), we get $\max\{\frac{\kappa(Y)}{\omega_{neq}}, \frac{1}{\omega_{ir}}\}r \geq \frac{1}{(\hat{\ell}-1)\kappa(Y)}\sqrt{\frac{2}{p}}$, which contradicts to the assumption that $g_1 > 0$. Therefore, $\hat{\ell} = \ell$, and there exists a permutation $\{1', 2', \ldots, \ell'\}$ of $\{1, 2, \ldots, \ell\}$ such that $p_j = \hat{p}_{j'}$, completing the proof of (I).

Without loss of generality, let j' = j for all $j = 1, ..., \ell$. Let $Y^{-\top} = [Y_{jk}]$,

$$R = [R_{jk}] = \text{OffBlkdiag}_{\tau_p}(\text{OffBlkdiag}_{\tau_p}(\Gamma^{\top})Y^{-\top}) + \text{diag}(\Gamma_{11} - \hat{\gamma}_1 I, \dots, \Gamma_{\ell\ell} - \hat{\gamma}_\ell I) \text{OffBlkdiag}_{\tau_p}(Y^{-\top}),$$

where Y_{jk} , $R_{jk} \in \mathbb{R}^{p_j \times p_k}$. Using $\Gamma = Y \widehat{\Gamma} Y^{-1} = \frac{1}{\varrho} Y \operatorname{diag}(\gamma_1 I_{p_1}, \dots, \gamma_\ell I_{p_\ell}) Y^{-1}$, we have $\Gamma^\top Y^{-\top} = Y^{-\top} \widehat{\Gamma}$, whose off-block diagonal part reads

$$\operatorname{diag}(\hat{\gamma}_{1}I,\ldots,\hat{\gamma}_{\ell}I)\operatorname{OffBlkdiag}_{\tau_{p}}(Y^{-\top}) - \operatorname{OffBlkdiag}_{\tau_{p}}(Y^{-\top})\frac{1}{\varrho}\operatorname{diag}(\gamma_{1}I,\ldots,\gamma_{\ell}I) = -R$$

Then it follows that $(\hat{\gamma}_j - \frac{\gamma_k}{\varrho})Y_{jk} = R_{jk}$ for $j \neq k$. By calculations, we have

$$\begin{aligned} \|Y_{jk}\|_{F} &= \frac{\|R_{jk}\|_{F}}{|\hat{\gamma}_{j} - \gamma_{k}/\varrho|} \leq \frac{\|R_{jk}\|_{F}}{|\gamma_{j}/\varrho - \gamma_{k}/\varrho| - |\hat{\gamma}_{j} - \gamma_{j}/\varrho|} \stackrel{(a)}{\leq} \frac{\|R_{jk}\|_{F}}{\frac{2|j-k|}{\varrho(\ell-1)} - |\hat{\gamma}_{j} - \gamma_{j}/\varrho|} \stackrel{(b)}{\leq} \frac{\|R_{jk}\|_{F}}{g_{2}}, \\ \|R\|_{F} &\leq \|\operatorname{OffBlkdiag}_{\tau_{p}}(\Gamma^{\top})\|\|Y^{-\top}\| + \max_{j}\|\Gamma_{jj} - \hat{\gamma}_{j}I\|\|\operatorname{OffBlkdiag}_{\tau_{p}}(Y^{-\top})\|_{F} \\ &\stackrel{(c)}{\leq} \|\operatorname{OffBlkdiag}_{\tau_{p}}(\Gamma^{\top})\|\|Y^{-\top}\| + \frac{\sqrt{\sum_{j}\|r_{jj}\|^{2}}}{\omega_{\mathrm{ir}}}\|\operatorname{OffBlkdiag}_{\tau_{p}}(Y^{-\top})\|_{F}, \end{aligned}$$

where (a) uses the definition of γ_j , (b) uses (47) and (53), (c) uses (50). Therefore,

$$\|\operatorname{OffBlkdiag}_{\tau_{p}}(Y^{-\top})\|_{F} \leq \frac{\|R\|_{F}}{g_{2}}$$

$$\leq \frac{1}{g_{2}} \Big(\|\operatorname{OffBlkdiag}_{\tau_{p}}(\Gamma^{\top})\|_{F} \|Y^{-\top}\| + \frac{\sqrt{\sum_{j} \|r_{jj}\|^{2}}}{\omega_{\mathrm{ir}}} \|\operatorname{OffBlkdiag}_{\tau_{p}}(Y^{-\top})\|_{F} \Big).$$

and hence

$$\|\operatorname{OffBlkdiag}_{\tau_p}(Y^{-\top})\|_F \le \frac{\|\operatorname{OffBlkdiag}_{\tau_p}(\Gamma^{\top})\|_F \|Y^{-\top}\|}{g_2 - \frac{\sqrt{\sum_j \|r_{jj}\|^2}}{\omega_{\mathrm{ir}}}} \le \frac{\frac{r}{\omega_{\mathrm{neq}}} \|Y^{-1}\|}{g_2 - \frac{r}{\omega_{\mathrm{ir}}}},\tag{55}$$

where the last inequality uses (50) and (51).

Finally, by calculations, we have

$$\begin{split} \widehat{A} &= \widetilde{V}_{1}\widehat{Z} = (V_{1}T_{c} + V_{2}T_{s})\widehat{Z} = (V_{1}T_{c}^{\top} (I - T_{s}^{\top}T_{s}) + V_{2}T_{s})\widehat{Z} \\ &= V_{1}T_{c}^{-\top}ZY^{-\top} + (-V_{1}T_{c}^{-\top} (T_{s}^{\top}T_{s}) + V_{2}T_{s})\widehat{Z} \\ &= AY^{-\top} + (-V_{1}T_{c}^{-\top} (T_{s}^{\top}T_{s}) + V_{2}T_{s})\widehat{Z} \\ &= A\operatorname{diag}(Y_{11}, \dots, Y_{\ell\ell}) + A\operatorname{OffBlkdiag}_{\tau_{p}}(Y^{-\top}) + (-V_{1}T_{c}^{-\top} (T_{s}^{\top}T_{s}) + V_{2}T_{s})\widehat{Z}, \end{split}$$

and it follows that

$$\begin{split} \|\widehat{A} - A \operatorname{diag}(Y_{11}, \dots, Y_{\ell\ell})\|_{F} &\leq \|A\| \|\operatorname{OffBlkdiag}_{\tau_{p}}(Y^{-\top})\|_{F} + (\|T_{c}^{-\top}T_{s}^{\top}T_{s}\| + \|T_{s}\|)\|\widehat{Z}\|_{F} \\ &\leq \|A\| \frac{\frac{r}{\omega_{\operatorname{neq}}}\|Y^{-\top}\|}{g_{2} - \frac{r}{\omega_{\operatorname{ir}}}} + (\frac{\epsilon^{2}}{\sqrt{1 - \epsilon^{2}}} + \epsilon)\|\widehat{A}\|_{F}. \end{split}$$

The proof is completed.